J.-H. Eschenburg

WILLMORE SURFACES AND MOEBIUS GEOMETRY

The following notes grew out of discussions between J.Eschenburg,
U.Pinkall and K.Voss about R.Bryants work on Willmore surfaces
{(Brl. 1In particular, the computations of ch.3 are due to Voss.
The main theorem of Bryant says that Willmore spheres are Moebius
transforms of certain minimal surfaces in R®. The proof has two
sources: the theory of conformal area in Moebius geometry
developed by Thomsen and Blaschke in the 20's, and the study of
minimal 2-spheres in spaces of constant curvature by Calabi,
Chern and others. Our aim is to exhibit these sources more
clearly than in the original paper which makes the proof more
transparent. We wish to thank G.Metzger who helped us under-
standing the Moebius geometry.
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l. The Willmore Functional

Throughout this paper, 1let M be a surface and x : M -> R®

an immersion. T.Willmore [W] proposed to consider the functional
W(x) = f(H® - K)dA = % f(k., - k=)™ dA
M M

where K and H are the GauB and the mean curvature, k., ks the
principal curvatures and dA the area element of the induced
metric on M . For compact surfaces, W is a measure for the total
mean curvature since the GauB-Bonnet integral JKdA does not
depend on x

It is a remarkable fact (cf. Appendix) that the functional W
is invariant under conformal diffeomorphisms of the target space.
In fact, by Liouville's theorem, the conformal diffeomorphisms of
open subsets of R® do also preserve the set of spheres and
planes of R® and form the group Moeb(3) of the Moebius
transformations of R® U {«} (cf. [Spl). For any dimension n ,
the group Moeb(n) is generated by isometries, homotheties and

some inversion (reflection at some sphere).

Lemma 1. Let Si, Sz ¢ R be (n-1)-spheres which touch .each

other at some point p i.e. they have a common normal vector n

4

at p . Let g € Moeb(n) . Then the mean curvatures k., of S
with respect to n and k.' of g(S.) with respect to dg. (n)
satisfy

Xp)olka' = ka'l = ks — kal

where X\ is the metric delatation factor of g




Proof. The statement is true for isometries and homotheties. We
have to show it for one inversion. But there exists exactly one
sphere S touching S: and Sz at p such that reflection at §
interchanges S. and Sz . Since p € S , we have xp) =1 for

this inversion and so the formula holds trivially.

Remark. This sphere S 1is called the central sphere of 8. and

Sz . Its mean curvature with respect to n is k = %(k: + K=)

Proposition 1. PFor any g € Moeb(3) we have
W(gox) = W(x)

oof. For any P € M, consider the bunch of spheres S(k)
having first order contact with x(M) at x(p) , where the

parameter k denotes the mean curvature of the corresponding

sphere S(k) . 1In particular, S(0) is the tangent plane at
x(p) . For 1large |kl , the sphere S(k) 1lies on one side of
x(U) for some neighborhood U of p . The supremum and the

infimum of these k-values are the principal curvatures Kku and
k= of the surface x at p . This characterization of the prin-
cipal curvatures shows that the Moebius transformation g maps
the corresponding spheres S(k.) and S(kz) , the so called
principal curvature spheres of x at p , onto the principal
curvature spheres of gox at p . Thus the proposition follows

from Lemma 1.

Since the conformal geometry of R® U {w} is mapped to that
of the 3-sphere S¥ Dby any stereographic projection ¢ : R® -

5% , we also consider the analogue functional for immersions x'




M -> S® , namely

Wr(x') =% f(ka' - k='")® dA' = f(1 + H'®* - K') dA'
M M

where the quantities with ' always refer to the immersion x'. The

euclidean and the spherical curvatures are related as follows:

Lemma 2: Let S' < 8™ be some (n-1)-sphere with spherical mean

curvature k' . Then k' 1is the euclidean mean curvature of the
sphere s* in R™"* which intersects §© orthogonally along
Sl

This can be seenwithout computation in the case n = 2 by looking

at the tangent cone C which touches S™ along S!

To see the relation between W and W' , we observe that a
stereographic projection ¢ : R® -> 5% with ¢(w) =N € S® is
the restriction to R® < R* of the inversion ¢ at the 3-sphere

S « R* centered at, N and intersecting S® along 5% N B¥

RS




As above, we see that ¢ maps the principal curvature spheres
S(ki) of some immersion x : M -> R® to the principal curvature
spheres S'(ks'") of x' = ¢ 0 x . On the other hand, if we
enlarge the 2-spheres S(k.) < BR® < RBR* to 3-spheres with the same
center and radius, than ¢ maps these onto those 3-spheres which
intersect S® orthogonally along S'(k.') . Thus from Lemma 2 and

Lemma 1 (for n = 4) we get

Proposition 2. For any stereographic projection ¢ : R® -> g®
and any immersion x : M -> R® we have

W(x) = W'(¢ox)

Example. Consider the immersion x' : S* x S* =) §3 c=
x'{9,1) = (c.0,5-1)
where C = cos a , s = sin « for some constant « € (0,n/2)

This arises as the enveloping surface

\:;) of all 2-spheres in S® with spherical
\ \ radius o and center on the great
£ circle S.* =82 n (C x 0) . These are

orthogonal intersections of §® with

/ Fig3 3-spheres of radius tan o . Likewise,
> el is the enveloping surface of the spheres of spherical radius
/2 - « with center on Sz* = 8 n (0 x @) which are orthogonal
intersections of S® with 3-spheres of radius cot « . Since the

orientations of the latter spheres are opposite, we get

4 W'(x") (cot @ + tan a)#(2n cos a)(2x sin a)

2n#/(sin 20) 2 2n®

Il

with equality exactly for « = n/4 (Clifford torus). These




sur faces correspond to the torli of revolution under a
stereographic projection ¢ with ¢(o) € Sz* . Thus for tori of
revolution we get W 2 2n® with equality i1ff the ratio between
large and small radius is +v2 which corresponds to the Clifford

torus.

F'l,'j- 4

This was observed by Willmore [W] and lead him to the conjecture
that W 2 2n®* for any torus in R® . The conjecture has been
proved by Li and Yau [LY] for some conformal classes. L. Simon (8]
showed that there exists a smooth immersion of the torus which
minimizes the functional W , but the Willmore conjecture is still
open. More generally, an immersion x : M -> R® 1is called a
Willmore immersion 1if it is a critical point of W , 1.e. if the

first variation vanishes at x . This will be computed in ch. 3.

2. Orjiented Moebius Geometry

The preceding paragraph showed that the geometry of oriented
spheres played an important r6le for the Willmore functional. To
any unoriented 2-sphere S' < S® we assign a point P(S') in the

complement of a disk in projective 4-space RP* , namely the




center of the 3-sphere S~ which intersects 5= orthogonally
along S' or in other words the vertex of the cone ( which |1is
tangent to S® along S' (see Fig.1). If S' 1is a great sphere,
then S~ becomes a 3-plane and C a cylinder, so the center is
the point at @ in the direction of the normal vector of S~ . If
we start with the sphere
Sr-(m) = {x € R® ; Ix - mll = r}

in R® and enlarge it to a 3-sphere in R* with the same center
and radius, then P(¢(S.(m)) 1is the center of the image of that
3-sphere under the inversion & of R+ which continues the
stereographic projection ¢ : R® -> §® (cE. ch:¥3. From this we
get il

P(o(Sv(m))

(2m, Iml= — r® — 1)/(lImil*= - p= 4+ 1)

(m, %2CIml= — r® - 1), %OIml= - r= + 1)]

where we consider R* as the subset {ly,11 ; y € BR*} of RP=
Introducing the Lorentzian scalar product on R™ , namely

<X,Y> = ,E X:I.Y:i. = Xl‘fin‘.'.‘i
. mw

we have S® = {[X] € RP* ; <X,X> = 0} and P(¢(S-(m))) is always
a homogeneous vector (Y] with <Y,¥> > 0 . Thus we may normalize
the vector Y so that <Y,¥> =1 . 1In this way, out of the line
[Y] we choose two 5-vectors Y and -V which now correspond to
the two orientations of S.(m) . We agree that negative values of
I correspond to the orientation with respect to the outer normal
so that k = 1/r 1is the mean curvature with respect to the chosen
normal. Putting Y = P.(¢S.-(m)) we get

P.(6Sv-(m)) = r~* (m, %(lImn= — pr= — ), “CImi= - r= + 1)) ,




and thus we have represented the spheres in R® by points in the
quadric Q* = (Y € R*® ; (Y,¥> =1} which is itself a Lorentzian
manifold of constant curvature. If we let r -> 0 , we have to
renormalize by multiplying again with r , and thus we get

X =1lim r-P+(¢S.-(x)) = (x, hllxi®™ - 1), %Cixi® + 1))

>0

as the representative of the point x € R® . 1In fact, the mapping
x =) X 1s an isometry onto L N {Xs - X« =1} where L = {X ;
<X,X> = 0} 1is the light cone in R® . The following table shows

how objects in R¥® are represented in R¥

Sphere of radius r r-* (m, %UImi*-r*-1), %CImi=-r=+1))
and center m :

Sphere of mean cur- (Hx+n, %B(HNxN?+2<x,n>-H), %B(HIXIF+2{x,n>+H)
vature #H through x

with unit normal n

Plane through x
with unit normal n

{n, %x,n>. <E.n>)

Point x (x, %ROIxlI=-1), %OIxlI=+1))

Incidence x € S X, P.(¢(8)> =20

Moeb(3) PO(4,1)

Here, the third line follows from the second by passing to r ->
o ., The fifth line follows since by definition, P.(¢(S)) belongs
to the tangent space of L at X . The group PO(4,1) consists
of those projective transformations of RP* which preserve the
sphere S® = {[X] ; <X,¥X> =0} . So their restrictions to 5% are
Moebius transformations since the 2-spheres (which are the inter-
sections of S® with 3-planes) are mapped onto 2-spheres. More-

over, the Moebius group on S® is generated by all reflections at




2—-spheres S* N H where H 1is any hyperplane in RP* . Such
inversion arises from the Lorentz reflection at the preimage of H

in R¥ which shows the last line.

A classical problem in Moebius geometry (cf. (Bol) 1is the
study of 2-parameter families of spheres (sphere comgruence). This
is a smooth mapping S : M -> {spheres in R®} where M is some
2-dimensional manifold. It is represented by a smooth mapping
Y : M -> Q0+, ¥Y(m) = P(¢(S(m)) . A smooth map x : M -> R® is
called enveloping surface of the sphere congruence S if

(a) x(m) € S(m) ,

(b) AXm (TwM) = Twcm»>S(m)
for all m € M . Passing to the mapping X : M -> L. which corres-
ponds to x , (a) and (b) are translated into

K(m),¥(m)> =0 , <dXw(v), ¥Y(m)> =0
for any me M , v € TwM . So we may characterize the enveloping
surface X of é sphere congruence Y by

(E) XK,¥> =0, <«X,d¥> =0
where we have used that d<X,Y¥> = 0 . 1In other words, X(m) is a

null vector in Tvc¢w>Q* which is normal to ¥

3. The conformal GauB map

Now let x : M -> R® be an immersion with unit normal field
n: M -> S* and mean curvature H . The central sphere of x at

m € M is the sphere S(m) which is tangent to x at x(m) and




has mean curvature k = H(m) . By the remark following Lemma 1,
this 1is the central sphere of the principal curvature spheres at
m, 1i.e. inversion at S(m) maps one principal curvature sphere
onto the other. This defines a sphere congruence which is Moebius-
invariantly connected with the immersion x (cf. ch.1l), called
the conformal Gaufi map of x . Clearly, X 1is an enveloping

surface of S

As above, let Y(m) = P(¢(S(m)) be the representative in
Q* . By the table in ch.2, we have
(1) Y=HX+ T
where
(2) X = (x, %R(<x,x> - 1), %(<x,x> + 1))
is the representative of x in L and
(3) T = (n, <x,n>, <x,n>)

the representation of the tangent plane.

Proposition 1.

{dy.,dy> = (H® - K)<dx,dx>

Proof. We have (X,X> =10 , (<T,T> =1, <KX,T> = 0 and therefore

<AdX,X> = L4T,T> = 0 , <d4T,X> = —-<dX,T> . Moreover,
(4) dX = (dx, <x,dx>, <x,dx>) ,
(5) dT = (dn, <x,dn>, <(x,dn>) ,

from which we get <(dX,T> = <dx%x,n> = 0 and

<dX,dX> = dx,dx> =1 ,
<dX,dT> = <dx,dn> = -II ,
<dT,dT> = <dn,dn> = III ,
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where I , II, III denote the classical fundamental forms. Thus
<d¥,d¥> = H®.I - 2H.II + III = (H® - K).I

where we used the relation III = 2H.II - K. I

Thus, Y is a conformal map with respect to the conformal
structure on M 1induced by x , and the Willmore functional is
the area of Y ,

W(x) = Area(y¥)
In particular, X 1is a Willmore immersion if Y is a minimal
surface. To see also the converse, we need to compute the mean
curvature vector of Y . Let A be the Laplace operator with

respect to the metric induced by x on M

Proposition 2.
AY + 2(H® - K)Y = (AH + 2(H® - K)H)X

Lemma :

Ax = 2H.n ,

An = -2 dx(VH) - 2(2H® - K)n ,

Ap = 2(1 + H.o) ,

Ao = =2 (VH,Vp> - (4H® - 2K)o - 2H ,
where p = <X,x>/2 , o = <x,n
Proof of the lemma. Let e., ex be a local orthonormal basis on
M. Let 0., = Oei and D. = Dei = (0.)" , where D 1is the Levi-
Civita connection on M . Let us agree that we sum over repeated

indices. Then

AX = 0,0.x - dx(D.,e,) = (0.dx(e.),n>n = II,,.n = 2H.n ,
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An 0.0:n — dn(Dies) = Di(dn)(es) + <0:0.n,n>n

-D. (II)i.J'dx(EJ) - (II:I.._;I);E'n

]

Dy (II)as-dx(e;) - (Ka® + kz®)n

-20,H.-dx(e;) - (4H*® - 2K)n

-2 dx(VH) - (4H*®* - 2K)n

Now for any two functions u,v : M -> R® we have

Adu,v> = u,Av> + (v,Au> + 2 trace <du,dv> ,

hence
Ap = <X,Ax> + trace (dx,dx> = 2H<x,n> + 2 = 2(1 + Ho) ,
Ao = <(X,An> + <(n,Ax> + 2 trace <dx,dn>
= -2 <x,dx(VH)> - (4H® - 2K)<x,n> + 2H - 4H
= —2 dp(VH) - (4H® - 2K)o - 2H
Proof of Proposition 2. We have by (1)

AY = A(H-X + T) = (AH)X + H-AX + 2 AX(VH) + AT
and by 3.3 and (2),(3),

AX = A(X,p:p) 2H.T + 2:(0,1,1) ,

AT

A(n,o0,0) = —-(4H* - 2K).T - 2H.(0,1,1) — 2 dX(VH),
hence
AY = (AH)X - 2(H® - K).T

which gives the desired equality since T =Y - H-X

Now let M be a surface (which may be non-compact) and x
M -> R® an immersion. We call x a Willmore immersion if
W(xIM') 1is stationary for any relatively compact open subset M*
c M, i.e. for any smooth variation x* of x with x* = x

outside M' we have OSW(XIM') := (Ad/AL)IW(K*IM') = 0
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Proposition 3. The following statements are equivalent:

(i) x is a Willmore immersion,
(117 Y is a conformal harmonic map,
(iii) AH + 2(H® - K)H =0
Proof. By Prop. 1 , ¥ : M -> Q* <« R® 1s always a conformal map.

By the first variation formula (see next chapter, Equation (V)),
for any variation of Y in Q% whose variation vector &Y has

compact support we have

6(Area(Y)) = - [ <((AY)™@, 6Y¥> dA
M
where T@  denotes the projection onto the tangent space of Q
By Prop. 2,
(a) (AY)™@ = h.X

with h = AH + 2(H*®*-K)H (recall <(Y,X> =0 ). Moreover, 6Y

(6H).-X + H.86X + 6T , and <(X,X> =0, (X,86X> =20, —<X,8T> =
(6X,T> = <8x,n> =: £ . Hence
(b) 6(Area(¥)) = f h.-£f dA
M
Now (i) says that &(Area(Y)) = 0 for all compactly supported
variation fields éx along x . Hence the integral in (b)

vanishes for all £ with compact support which is possible only
if h =0 . So we get (iii). But (iii) implies (AY)™ =0 , by

(a) , so we get (ii) which trivially implies (i).

Examples. (a) Let x' : M -> S® Dbe a minimal immersion with
unit normal vector n' : M -> S® . Then the central sphere S(p)

for p € M is the intersection of 5 with the hyperplane

n'(p)+ <« B* . Hence P(S(p)) 1is the point at o in the direction
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n'(p) , namely ([n'(p),01 . Thus Y = (n',0) . Since n' 1is also
a minimal immersion in S5® (e.g. see [ET1]) » Y 1is a minimal
surface in the totally geodesic hypersurface S® = Q n R+ in

Q* . Thus x' 1is a Willmore immersion.

(b) By Proposition 3(i1ii), any minimal immersion x : M -> R® |is
a Willmore immersion, since H = 0 . In fact, we have Y = T , and
this has values in the totally geodesic hypersurface Q N {(Y.a=Yw}

with degenerate metric in Q

4. First variation of area for conformal maps

Let M be a surface with conformal structure |, £ w2 a
scalar product (possibly indefinite) on R~ and ¥ : M -> B~ a
smooth mapping. For any relatively compact open subset M' < M
with conformal coordinate (u:,u=) : M' - B® we put

Area(YIM') = f IYs A Yl d=u
Ml

where d*u = du.duz , Y. = dY¥/du:. and
Ivawll = [<vAW, VAWD | *7% = |y, uddw,wd — SV, WrE{Lam
for any v,w € R* . In particular, if Y is conformal, i.e. if
Y:,Y,> = E. &8,

for some smooth nonnegative function E on M' » then

Area(YIM') = f E d=qu
Ml
Now 1let ¥* : M -> Q be a smooth variation of a conformal

map Y: M = 0@ with Yv = v outside M? . Let dY =
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(0Y*/0t) lewe . Putting a., = <¥.,6Y,> we have
TP, ¥%,> = E-6uy + tlas, + ays) + O(t=®) ,
and hence
NYe, A You= =
EF(1 + 0(t™)) + 2tE(as: + am=) — t¥(as= + a=i)® + O(t®)
In those points where E # 0 , we get

HY*s A Y*| E(1 + 2tE"*(a11 + am=) + O(t=))r/=

E + t(ays. + am=) + 0(t=) ’

whence SI¥sAY¥zl = @14 + am= . On the other hand, where E = 0
we also have as; =0, so Y%, A Y¢.(® = 0(t®) which implies
6UIY¥1a¥=ll = 0 in these points. In particular, A(t) := Area(¥Y*|M')

is differentiable at t=0 with
6 = [ (a.y + az=) d®u ,
MI'
and since

iy = (¥u,8Y,> = <¥4,6¥>, - (Y.,,6%)> ,

we get
6A = J (div §) d®u - f <A.Y,6Y> d®u = - [ <ALY,8Y> d=u
M! M? Mt
where  AuY = Yia + Yze and § = ((6Y,Y.>, (6Y,¥2d>) . If g is

any compatible metric on M with Laplacian A; and area element

dA., then AaY dA, = AuY d=u on M? and hence
(V) 6(Area(Y¥)) = § (ALY,8Y> da,,
Ml

This 1is the first variation formula for the area of conformal
maps. Using a partition of unity, we see that (V) is valid for any
relatively compact open subset M' < M . If the variation V&
takes value in some submanifold Q < R~ » then 6Y is a tangent

vector of Q and so we only need the TQ-component of Aa Y
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5. Minimal : l e

Let M be a Riemann surface. Fix a (possibly indefinite)
scalar product < , > on R and let Y : M -> B be a conformal
immersion. More precisely, for any holomorphic chart 2z = u. + ius
of M we have (with a slight change of notation)

Ya,¥2> =0, <(¥4,¥:> = (¥z,¥2> =: 2E > 0
where Y, = 0.Y = 0Y/Ou. . Let NY be the normal bundle and « :
T™M ® TM -> NY the second fundamental form with the components
%s 3 = (Yi,)*+ (where + denotes the normal part). Then
N = (dss + oz=)/(4E)

1s the mean curvature vector. Using the Wirtinger operators

O = %(01 — i0z) , 0z = W(d: + idx)
we get after extending the scalar product s 2 complex bi-
linearly to @+

Ve , ¥ = (¥5,¥5> =0, <(Yau,¥s> =E ,

Yoir = oy = % (€12 + ®mw) = E.q

(note that VY.x 1is othogonal to Y. and Y5 , hence a normal

vector).

Now consider the quadric
Q = {x € R™ ; <x,x> = 1}
in R" and let Y : M -> Q be a conformal minimal immersion.
Then n 1is normal to Q , hence a multiple of Y , and since
M,Y¥> = (Yux,¥>/E = —<¥,.,¥z>/E = -1 ,
we get n = -Y , thus

Y.i = -2E.Y
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On M we consider the quartic form <(e,a> . More generally,
if A is any symmetric m-form on M , it has the coordinate
representation

A= z Asw dz? dz* ,

o3 e by

and this decomposition is invariant under change of the holomor-

phic chart. We call A<3»%> = A,,. dz2 dz* the (j,k)-part of A

Proposition 1 Let Y: M->QcR be a conformal minimal
immersion. Then
<a,u>‘:4'0:, = <Y:w.v,Y:w.r>dz4

4

and (a,a>*»®> js a holomorphic form.

Proof. We have Yi. = a.-Y¥. + b.¥s + a.. for some functions a,

b . But since b:E = (Y¥..,Y¥=«> = 0 , we have b = 0 . Therefore
Yo, ¥Yuu? = COuw,%xw> . Moreover,

awrTuads = 2 Wele,Tuwd = =2 UE-Bla, Yesd = 0
since Y, V22?2 = — (¥,¥:> =0 and <(Ye,Y¥eu> = % <(¥e,Yud= =0

Therefore, the form is holomorphic.

Remark. If Y is only a conformal harmonic map, then Y 1is a
branched minimal immersion (cf. [GOR1, [ET]1). 1In particular, Y
is an immersion outside a set of isolated points. Since the form
(Y s Y ) Az is defined everywhere, it is holomorphic also in

this case.

The case n =5 1is of particular interest. Then NY is a 2-

dimensional bundle. We may choose a local pseudo-orthonormal frame
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N., N of NY ® C , i.e.
{N1,N1+> = (Nz,Nz> =0 , <Ni,Nz> =1
Then we have the decomposition
(*) Yaw,¥ex? = (Yeu,Nid<{¥eu,Nz>

and each of the factors satisfies a Cauchy-Riemann equality:

Proposition 2.

<Y::::pN:I.>;: = <N1;’N:;{H>'<th'N1> »

<Y:xz’N:2>;. = "(N:L;a-;N:F:>'<Ya::::Nz>
Emf_l_ We have <Y:r.z,N1); = <(anx_.::,N1> + <Yx=:pN1;> . The first
term vanishes since Y. = -E.¥ , and N. is perpendicular to Y

and to Y. since N. 1is a tangent vector of Q and a normal
vector of Y . Moreover, since (Nuii,¥e> = —¢{N.,¥.5> = 0O and
{N1%,N1+> =0 , the vector N.5x 1lies in the span of Y. and N. ,
due to the pseudo-orthogonality of the bases Y.,¥s and N.,N=

But Yw«. 1s orthogonal to Y. , hence only the N.-component of
N.z (which is <(N.x%,N=>.N. ) contributes to the scalar product
with VY.. , whence <(Yazu,N1z> = (N12.Nwd>.<(¥:=,N.> . This shows the

first equation. The second follows since <(Nix,Nz> = —<(Nax,Na.>

Remark. Clearly, Proposition 2 implies Proposition 1 in the 4-
dimensional case. Moreover it shows that any of the functions
{Y2xx,N+> has isolated zeros or vanishes everywhere. This remains

true for the non-zero factor if the product <(Y..,Y.»> vanishes.

Proposition 3. If ¥2u,¥xx> = 0 , then

Ny« = 0 (mod N,)

either for 3Jj=1 of for Jj=2
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Proof. Since

decomposition (*) vanishes and

tangent component of N,.

N,

Remark.

the scalar product < , > in

last result are different

Proposition 3 only says that
into @P* ,

real vectors, and so ([N,]

[NJ]¢

ition 4. Let
Riemann surface M

X (M)
where N(A)

Xx(M) the Euler number.

Proof. A
M denotes
™ , viewed

bundle is x(®"T*M) = -m.x(TM)
Hopf,
unless A =0 But locally,
function, and

which finishes the proof.

one of the factors

vanishes,

R%
for
[N,]

but in case of the type

is the number of zeros,

as a complex line bundle.

Yaww, N>

and so

various

(++++-),

must be a constant line,

A be a holomorphic m—form on a

Then either A = 0 or

=N(A) /m

is a section in the complex line bundle

the bundle of (1,0)-forms or the

= "(Ym,N_Jz> in
= —AN,,¥z> = 0 ,

N

types. In

is an antiholomorphic

counted with their order,

The Euler number of

the
the

is a multiple of

So far, we did not distinguish between different types of

But the consequences of the

general,

mapping
N. and N are

and Y(M) <

compact

and

& T*M where

complex dual of

this

By the index theorem of Poincare-

A behaves

so the index of a zero is'the order of that

like a

this Euler number equals the index sum of the zeros of A ,

holomorphic

zero,
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6. Willmore Spheres and Tori

Now let x : M -> BR® be a Willmore immersion. Then by ch.3,
the conformal GauB map Y : M -> Q* 1is a conformal harmonic map.
LE 4 is not constant (which means that x is not an umbilic
sur face), then Y is a conformal minimal immersion on some open
dense subset M' < M . In fact, the mapping p -> A¥u(T.M) : M' -
G=(R®) can be smoothly extended to all af M (cf. [ET]) so that
the normal bundle NY 1is defined everywhere. The induced metric
on NY has type (+-), and so it contains two null lines [N.] ,
[N:) which correspond to the two enveloping surfaces, by (E),

ch.2. One of these enveloping surfaces is the given immersion x ,

S0 we may assume N. =X . Bryant [Br] calls the remaining
enveloping surface X* := N. the conformal transform of X . 1In
the case where (Yaxx,¥==> = 0 , this is a constant map, by

Proposition 3 of the preceding chapter. Then X~ € L represents a
point X* € R® U (o} which can be mapped to o by a Moebius
transformation g € Moeb(3) (in fact by an inversion). Since all
the spheres corresponding to Y pass through x~ , they are
mapped onto planes under g . But these planes are the central
spheres of the immersion g o x : M -> B® U {o} , and so g o x

is a minimal immersion. Thus we have proved

Proposition. Let x : M -> R® be a Willmore immersion. Let VY :
M -> Q" be its conformal Gauf map and suppose that Cor, ;x> e 22
= 0 where o denotes the second fundamental form of Y . Then X
is either umbilic or a Moebius transform of a minimal immersion

X' : M -> B® U {0}
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If M is homeomorphic to a sphere, then its Euler number is
postitive, and so we must have <(a,ad>¢*»®> = 0 , by Prop.4 of

ch.5. Hence we get a main result of (Brl:

Theorem 1 A Willmore sphere in R® is either umbilic or a
Moebius transform of some complete minimal surface with finite

total curvature.

The 1last statement holds since in the minimal case, the total
curvature 1is the Willmore functional (up to sign) which is

invariant under Moebius transformations.

Moreover we note that any branch point of Y gives a zero of
Wan,¥22> = —<Y;,Yxxx> . The branch points of Y in turn are
umbilic points of x , by ch.3, Prop.l. Thus it follows from
Prop.4 of ch.5 that a Willmore torus x : T# -> R® cannot have
umbilic points unless <(a,ad>“*»©> = 0 ., In the latter case, it

e

follows from Osserman's theorem [0] that W(x) 2 8t > 2n* In

particular we get:

Theorem 2. An immersed torus in R® which minimizes the Willmore

. folOwed

functional has no umbilic points.

Wy, |
J
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Appendix

The functional W has been studied first by W.Blaschke [Bl]
and G.Thomsen [T]. They considered it as a substitute for the area
of surfaces in conformal geometry. Consequently, the surfaces x
with SW(x) = 0 (Willmore immersions) were called "Konform-
minimal fldchen" (conformally minimal surfaces). So the conformal
invariance of W was clear from the beginning. Later, B.Y.Chen
observes in a more general context [Cn] that W is in fact
invariant not only under conformal diffeomorphisms, but under
conformal changes of the metric of the target space. This is
easily seen as follows: If M™ 1is a differentiable manifold and
I some interval, consider the Riemannian metric g = £#dt® + g
on I x M, where f 1is a positive function on IxM and g a
family of metrics on M . Then N := £"*.08/0t is a unit normal
.vector field of the hypersurface ({t}xM and if b denotes the
second fundamental form of ({t}xM with respect to -N , we get

dg./dt = 2f-.b
Thus, if we consider a conformally changed metric g~ = \¥®.g on
MxI , the corresponding second fundamental form b" satisfies
2f.x-b” = dg+~/dt = 2X-(OX/Ot).-ge + A®.2f.Db
Thus the corresponding 2" fundamental tensors B, B”" defined
by g+ (B(x),y) = b(x,y) , g«"™(B™(x),y) = b~ (x,y) satisfy
ABM(x) = B(x) + u-x

with u = £7*.0(log X\)/0t . Hence, if k, are the eigenvalues of
B and dv. the volume element of g+ , then £ ke = kyl™ dve

i =3

is invariant under conformal changes of the metric g
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Thomsen [T] already states the first variational formula for
the functional W (cf. Prop. 3 of Ch.3) which was derived by
W.Schadow. The second variation was computed much later by

J.L.Weiner [Wel who also observes that the Willmore torus (cf.

Ch.1l) 1is stable in the sense that the second variation of W is
nonnegative. The quartic form A which we introduce in Ch.5 was
considered by Chern [Ch] for minimal surfaces in S . It was the

idea of R.Bryant [Br]l to use this form for the conformal GauB map

of a Willmore immersion.
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