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Abstract. The octonian cross product on R
7 induces a nearly

Kähler structure on S
6, the analogue of the Kähler structure of S2

given by the usual (quaternionic) cross product on R
3. Pseudoholo-

morphic curves with respect to this structure are the analogue of
meromorphic functions. They are (super-)conformal minimal im-
mersions. Using a slightly different method we reprove a theorem
of Hashimoto [9] giving an intrinsic characterization of pseudoholo-
morphic curves in S

6 and (beyond Hashimoto’s work) S5. Instead
of the Maurer-Cartan equations we use an embedding theorem into
homogeneous spaces (here: S6 = G2/SU3) involving the canonical
connection. The integrability conditions must be checked only for
a 3× 3 matrix system instead of 7× 7.

Contents

1. Introduction 2
2. Embedding into a homogeneous space 3
3. Octonions 4
4. The nearly Kähler structure on S

6 5
5. Pseudoholomorphic curves 7
6. The generalized Hopf differentials 9
7. The derivatives of the Frenet frame 10
8. The canonical G2 connection 13
9. Canonical torsion and curvature on S

6 14
10. Structure equations 16
11. Integrability conditions 17
12. Existence of pseudoholomorphic curves 19
13. Pseudoholomorphic curves in S

5 21
References 23

Date: January 18, 2018.
2010 Mathematics Subject Classification. 53C42, 32Q65, 53B05.
Key words and phrases. branched minimal surfaces, Ricci condition, canonical

connection.
The second named author was supported by the Alexander von Humboldt

Foundation.
1



2 J.-H. ESCHENBURG, TH. VLACHOS

1. Introduction

Minimal surfaces in the round 3-sphere S
3 have an intrinsic charac-

terization: A metric ds2 on a simply connected Riemann surface M
is the induced metric of a full conformal minimal immersion into S

3 if
and only if its Gaussian curvature K satisfies K ≤ 1 and

∆ log(1−K) = 4K

where ∆ is the Laplacian of the metric ds2.1 The formula goes back
to Ricci [11, p. 340] who actually looked at surfaces of constant mean
curvature 1 in euclidean 3-space, but these are isometric to minimal
surfaces in S

3. There are similar (“Ricci-like”) formulas in other sit-
uations. In S

4, superminimal surfaces (those with trivial associated
family) are characterized by the equation (cf. [7, p. 191])

∆ log(1−K) = 6K − 2 .

In the present paper, we give such characterizations for certain types
of minimal surfaces in S

5 and S
6:

(53) ∆ log(1−K) = 6K

for so called pseudoholomorphic curves2 in S
5 and

(50) ∆ log(1−K) = 6K − 1

for superminimal pseudoholomorphic curves in S
6 (see below). General

pseudoholomorphic curves in S
6 allow a similar characterization [9]

which however depends on an additional structure, a holomorphic 6-
form Λ on M (which is zero in the superminimal case):

(46) ∆ log(1−K)− (6K − 1) = |Λ|2/(1−K)2 .

A general theory of minimal surfaces in spheres allowing for Ricci-like
characterizations was recently given in [14].
Pseudoholomorphic curves in S

6 are the analogues of meromorphic
functions on Riemann surfaces when H is replaced by O. In fact, let
S ∈ {S2, S6} be the unit sphere in the imaginary quaternions H

′ or
octonions O

′, respectively. Left translation with the position vector
p ∈ S induces an almost complex structure on S (which is integrable
for S = S

2). For any Riemann surface M , a smooth mapping f :
M → S is pseudoholomorphic if its derivative dfu : TuM → Tf(u)S

6

is complex linear with respect to this almost complex structure. For

1This condition makes sense even at the zeros of 1 −K. In fact, for a minimal
surface in S

3, the expression 1 − K is a so called absolute value type function [5],
the absolute value of a holomorphic function (which may have zeros) multiplied by
a positive function. Then ∆ log(1−K) is still defined at the zeros of 1−K.

2The term “curve” means complex curve, parametrized on a Riemann surface.
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S = S
2 these are the meromorphic functions on M . In the present

paper we are dealing with the other case S = S
6. In particular, these

maps are conformal and harmonic, hence (possibly branched) minimal
immersions.
The subject was started by Bryant [3] who described pseudoholo-

morphic curves in terms of an adapted frame, called Frenet frame in
analogy to real curves in 3-space, and he gave examples for pseudoholo-
morphic curves on compact Riemann surfaces of any genus. Bolton,
Vrancken and Woodword [2] characterized pseudoholomorphic curves
among the minimal surfaces in S

6. The intrinsic characterization (46)
was given by Hashimoto [9]. In the present paper, we will use the same
Frenet frame but our method is different from that of [3, 9]. Instead
of the Maurer-Cartan equation we use an embedding theorem [6] into
reductive homogeneous spaces which reduces the a-priori number of
integrability conditions considerably.
In section 2 we briefly describe our method. After recalling the nec-

essary background on octonionic computations and pseudoholomorphic
maps in the 6-sphere (sections 3 - 7), we derive in section 10 the equa-
tions for the Frenet frame in terms of the canonical connection intro-
duced in sections 8, 9. The main results are stated and proved in
sections 12 for S

6 and in 13 for S
5 (a case which was not treated by

Hashimoto [9]). We try to give complete computations with all details.

2. Embedding into a homogeneous space

Let S = G/H be a Riemannian homogeneous space. If a smooth map
f : M → G/H is given, there exists locally a smooth “lift” F : M → G
with f = π ◦ F where π : G → G/H is the canonical projection.
Choosing a basis b = (b1, . . . , bk) of the tangent space TpoS where po =
eH ∈ G/H is the base point in S, we may consider F as the “moving
frame” Fb = (F1, . . . , Fk) where each Fj = Fbj is a vector field along
the map f . The lift F in turn can be described by the g-valued one-
form α = F−1dF .3 Vice versa, if an arbitrary g-valued one-form α on a
simply connected manifold M is given, we look for a map F : M → G
with

(1) dF = Fα .

This is an overdetermined system, and the local existence of solutions
is equivalent to an integrability condition for the coefficient matrix α,
the Maurer-Cartan equation dα = [α, α].

3To simplify notation, we think of G as a matrix group G ⊂ R
n×n.
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In the present paper we replace (1) by the equation

(2) ∇F = Fβ

where ∇ is a canonical G-connection on S = G/H (holonomy in G
and parallel curvature and torsion).4 Now β is a one-form on M which
takes values in h rather than in g. Local existence of a solution F
of (2) is still equivalent to an integrability condition, but the size of
the coefficient matrix β is considerably smaller. In the present case of
pseudoholomorphic curves in S

6, the integrability condition for β is

(40) [B′, B′′] + (B′′)z − (B′)z̄ = diag(λ, −λ/2, −λ/2)

(see section 10), where λ is the conformal factor and β = B′dz+B′′dz̄.
This is due to an embedding theorem for homogeneous spaces in [6].
Our frame F along a pseudoholomorphic curve f in S

6 is that of
Bryant and Hashimoto [3, 9], up to ordering. It is an adapted frame
which take care of the higher normal spaces of the immersion. In
particular, F1 is essentially the differential of f itself.

3. Octonions

A finite dimensional algebra A over R with euclidean inner product is
called “normed” if |ab| = |a||b| for any a, b ∈ A. We have an orthogonal
decomposition A = R · 1⊕A

′ where A′ is called the space of imaginary
elements of A. Every nonzero a ∈ A has an inverse a−1 = ā/|a|2
where ā = ao − a′ for a = ao + a′ with ao ∈ R and a′ ∈ A

′. There
are only four normed algebras: R,C,H,O (real and complex numbers,
quaternions and octonions), and the octonions O ∼= R

8 contain all the
others. Octonions are not associative, but still computations are easy if
one observes the following three rules which follow almost immediately
from the equation |ab| = |a||b|:5

(1) Any unit vector a ∈ O
′ generates a subalgebra isomorphic to C

where a plays the rôle of i.

4More precisely, a connection ∇ on TS is called G-connection if all its parallel
displacements are given by elements of G. Then the one-form β in (2) takes values
in h. In fact, along any curve c : (−ǫ, ǫ) → S starting at the base point po = eH ∈ S
we have ∇c′F.v = ∂c′(τ

−1F ).v for any v ∈ Tpo
S, where τ is the parallel transport

along c. Since τ−1F takes values in G and fixes po, it takes values in H, hence
∇c′F ∈ h.

5If a ∈ O
′ and |a| = 1, then |1± a| =

√
2, hence |1 + a||1− a| = 2. On the other

hand, (1 + a) ((1− a)x) = (1 − a)x + a(x − ax) = x − a(ax) for all x ∈ O, and
|(1 + a) ((1− a)x) | = 2|x|. Thus |x − a(ax)| = 2|x|. This is impossible unless the
two vectors x and −a(ax) (which have equal length) are equal, a(ax) = −x. This
shows (1), and (2), (3) can be proved similarly.
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(2) Any two orthonormal a, b ∈ O
′ generate a subalgebra isomor-

phic to H where a, b, ab play the rôles of i, j, k; they are asso-
ciative and anti-commutative, ab = −ba.

(3) Any three orthonormal a, b, c ∈ O
′ with c ⊥ ab (“normed Cay-

ley triples”) generate the algebra O; they are anti-associative,
a(bc) = −(ab)c.

Let 1, i, j, k, l, il, jl, kl be the standard basis of O = H + Hl. Then
(i, j, l) is a normed Cayley triple, and so is its image (αi, αj, αl) under
any automorphism α of O; note that α is orthogonal.6 Vice versa, given
any normed Cayley triple (a, b, c), there is precisely one automorphism
α of O with a = αi, b = αj, c = αl. Thus the space of normed
Cayley triples is a manifold of dimension 6 + 5 + 3 = 14 on which the
exceptional group G2 = Aut(O) ⊂ SO7 acts simply transitively. In
particular, G2 acts transitively on S

6.
We will also need the complexified octonions Oc = O⊗ C = O⊕ iO

(we distinguish i =
√
−1 from i ∈ O). This is no longer a division

algebra: there are zero devisors, e.g. 1 + ia for any a ∈ S
6 ⊂ O

′.
However, analytic formulas which hold in O extend to Oc. E.g. for
a ∈ O

′ and b ∈ O we have (using rule (2))

(3) a(ab) = a2b = −〈a, a〉b ,
and this remains true for a ∈ O

′
c, b ∈ Oc where 〈 , 〉 is the complexified

inner product. In particular a(ab) = 0 when 〈a, a〉 = 0. Other useful
formulas which extend for all a, b, c ∈ Oc are

(4) 〈ab, ac〉 = 〈a, a〉〈b, c〉
and the antisymmetry of 〈ab, c〉 in all three variables.
As O is decomposed into planes that are invariant under left multipli-

cation with C ⊂ O, we may decompose Oc into free Cc-modules where
Cc = C⊗R C is the complexification of C. A complex Cayley triple is a
triple (a, b, c) in O

′
c where a lies in Cc (or in an isomorphic subalgebra)

and where b, c belong to two perpendicular Cc-modules. Like its real
analogue, a complex Cayley triple is anti-associative, (ab)c = −a(bc).

4. The nearly Kähler structure on S
6

The 6-sphere S
6 plays a similar rôle for the octonions O as the 2-

sphere S2 for the quaternions H: they are unit spheres in A
′, the imag-

inary part of the division algebra A = O,H, respectively, a fact which

6Any automorphism of O is orthogonal: it preserves real and imaginary octo-
nions since real octonions are real multiples of 1 and imaginary octonions are those
which square to negative real multiples of 1. Thus an automorphism preserves the
conjugation a∗ = Re a− Im a and also the norm |a|2 = a∗a for any a ∈ O.
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has been observed and applied in [8]. Each p ∈ S satisfies (Lp)
2 = −I

where Lp : x 7→ px denotes the left multiplication with p. Hence Lp is a
complex structure preserving the plane Span {1, p} and its orthogonal
complement, the tangent space TpS. Thus Jp := Lp|TpS is a complex
structure on TpS and defines an almost complex structure J on S. It is
convenient to use the cross product a× b which is the imaginary (A′-)
part of the product ab for any a, b ∈ A

′:

a× b = (ab)′ =

{

ab when a ⊥ b,
0 when a, b lin. dependent

}

.

Then each Jp extends to a linear map on A
′,

(5) Jp(v) = p× v ,

and the derivative of the matrix-valued linear map J : A′ → End(A′) :
p 7→ Jp is (∂vJ)w = v × w. Denoting by D = ∂T the Levi-Civita
derivative on S, we have

(6) (DvJ)w = (v × w)p⊥ = v × w − 〈v × w, p〉 p

where p ∈ S is the position vector and v, w ∈ TpS = p⊥. In particular
(∂vJ)v = v × v = 0 and therefore

(7) (DvJ)v = 0.

A Riemannian manifold with an almost complex structure J with this
property is called nearly Kähler.7

An orthogonal linear map g on O
′ which preserves the almost com-

plex structure J satisfies gJp(v) = Jgp(gv) for any p, v ∈ O
′ with v ⊥ p.

By (5) this is equivalent to g(pv) = (gp)(gv) which holds if and only
if g ∈ G2 = Aut(O) ⊂ SO7. Thus G2 is precisely the group of isome-
tries g on S

6 which are pseudoholomorphic, that is their differentials
dgp : TaS

6 → TgpS
6 are complex linear with respect to the complex

structures given by J on the tangent spaces of S6. The stabilizer sub-
group H = (G2)p of any p ∈ S

6 (say: p = l) preserves the tangent space
TpS

6 and its complex structure Jp, making TpS
3 a 3-dimensional com-

plex vector space. Identifying (TpS
3, Jp) with C

3 we obtain H ⊂ U3.
But H preserves also the antisymmetric 3-form 〈uv, w〉 on TpS

6 which
can be viewed as the real part of a complex determinant, thusH ⊂ SU3,
and by dimension reasons we have equality H = SU3.

7In the case of S2 we even obtain DJ = 0 (Kähler property) since v×w is normal
when v, w are tangent vectors, hence (DvJ)w = (v × w)T = 0.
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5. Pseudoholomorphic curves

Let M be a Riemann surface. A smooth map f : M → S
6 is called

pseudoholomorphic if it is holomorphic with respect to this almost com-
plex structure Jpv = p× v. In other words, if z = x+ iy is a conformal
coordinate on M , the corresponding partial derivatives fx, fy satisfy

(8) f × fx = fy , f × fy = −fx .

Clearly, such map is conformal since |fx| = |fy| and fx ⊥ fy. Further
f is harmonic, that is fxx + fyy is a normal vector, a multiple of f . In
fact, differentiating (8) we obtain

(9)
fyy = (f × fx)y = fy × fx + f × fxy ,
fxx = −(f × fy)x = −fx × fy − f × fyx ,

and hence

fyy + fxx = 2fy × fx ,(10)

fyy − fxx = 2f × fxy .(11)

The first equation (10) shows that f is harmonic: fy×fx is proportional
to f since by (8), f, fx, fy span a quaternion subalgebra. Moreover

(12) fyx = (f × fx)x = f × fxx = Jfxx.

It is convenient to use the complex derivatives fz =
1
2
(fx − ify) and

fzz=
1
4
((fx−ify)x − i(fx−ify)y)=

1
4
(fxx−fyy − 2ifxy)

(11)
= −1

2
(J + i)fxy.

Hence

(13)
fz = −(J + i)fy/2 ,
fzz = −(J + i)fxy/2 .

Since (J − i)(J + i) = 0, these vectors belong to the i-eigenspace E+ of
Jf : v 7→ f ×v on TfS

6. This is an isotropic subspace, i.e. 〈v, v〉 = 0 for
all v ∈ E+: If v = (J+i)a, then 〈v, v〉 = 〈Ja, Ja〉−〈a, a〉+2i〈Ja, a〉 = 0.

Lemma 5.1. Putting λ = 〈fz, fz̄〉 = |fz|2 and l = log λ, we have

(14)
fzz = f⊥

zz + lzfz ,
(fz)z̄ = −λf ,
(f⊥

zz)z̄ = −(λ+ lzz̄)fz .

Proof. To prove the first equation we note 〈fzz, fz〉 = 1
2
〈fz, fz〉z = 0

and 〈fzz, fz̄〉 = λz − 〈fz, fzz̄〉 = λz since 〈fz, fzz̄〉 = 1
2
〈fz, fz〉z̄ = 0.

Hence fzz − f⊥
zz = fT

zz =
1
λ
〈fzz, fz̄〉fz = (λz/λ)fz = lzfz.

The second equation follows since 4fzz̄ = (fx − ify)x + i(fx − ify)y =
fxx + fyy, and this is a multiple of f . To determine the multiple we
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we compute the inner product 〈fzz̄, f〉 = 〈fz, f〉z̄ − 〈fz, fz̄〉 = −λ since
〈fz, f〉 = 1

2
〈f, f〉z = 0. This shows the second equality.

The third equality follows from the two previous ones: From f⊥
zz =

fzz − lzfz we have (f⊥
zz)z̄ = fzzz̄ − (lzfz)z̄ = −(λf)z − lzz̄fz + lzλf =

−(λ+ lzz̄)fz, using λz = lzλ.

As a consequence, fz and f⊥
zz are holomorphic sections of the com-

plexified tangent and normal bundles T c and N c of f : M → S, since
(fz)z̄ and (f⊥

zz)z̄ have zero projection to T c and N c, respectively. Thus
the isotropic subbundles T ′ = Cfz and N ′

1 = Cf⊥
zz are well determined

even at possible zeros of these sections, and by isotropy the same holds
for the real bundles T and N1, the tangent bundle and the first normal
bundle of f . Hence along f , the tangent bundle of S6 splits into three
J-invariant orthogonal plane bundles, f ∗(TS6) = T ⊕N1 ⊕N2.

The full (+i)-eigenspace E+ = T ′
fS

6 is spanned by

(15)
F1 = fz ,
F2 = f⊥

zz ,
F3 = F1F2 = fz̄ × fz̄z̄ .

The third line follows since (f, F1, F2) is a complex Cayley triple, hence
f(F1F2) = −(fF1)F2 = −iF1F2 and therefore F1F2 ∈ E+. In anal-
ogy to the theory of curves in euclidian space R

3, we will call F =
(F1, F2, F3) the Frenet frame of f , as was suggested in [3].
The three vectors F1, F2, F3 together with their complex conjugates

F̄1, F̄2, F̄3 form bases of the complexified bundles T c, N c
1 , N

c
2 , respec-

tively, and the only nonzero inner products are

(16) 〈F1, F̄1〉 =: λ , 〈F2, F̄2〉 =: µ , 〈F3, F̄3〉 = 2λµ.

The last equality is seen as follows: If F1 = (f + i)a and F2 = (f + i)b,
then F1F2 = (fa + ia)(fb + ib) = (fa)(fb) − ab + i ((fa)b+ a(fb)).
If (f, a, b) is an (unnormed) Cayley triple, then so is (f, fa, b), and
(fa)(fb) = −((fa)f)b = −ab (using |f | = 1) while a(fb) = −(af)b =
(fa)b. Thus F1F2 = −2ab + 2i(fa)b, and |F1F2|2 = 8|a|2|b|2 while
|F1|2|F2|2 = 4|a|2|b|2.
Remark 1. Later we will also use the normalized Frenet frame

(17) F o
1 = F1/

√
λ, F o

2 = F2/
√
µ, F o

3 = F3/
√

2λµ.

Corollary 5.1. Let f : M → S
6 pseudoholomorphic and z a conformal

coordinate on M . Then µ = |f⊥
zz|2 depends on λ = |fz|2:

(18) µ = λ2(1−K) = λ(λ+ lzz̄) where l = log λ.
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Proof. From 〈f⊥
zz, fz̄〉 = 0 we obtain using the third equation of (14):

0 = 〈f⊥
zz, fz̄〉z̄ = −(λ+ lzz̄)〈fz, fz̄〉+ 〈f⊥

zz, fz̄z̄〉 = −(λ+ lzz̄)λ+ µ .

The first equality in (18) follows since the Gaussian curvature K of the
induced metric ds2 = 2λ · dz dz̄ on M satisfies

λK = −(log λ)zz̄ = −lzz̄,

thus λ(1−K) = λ+ lzz̄ .

Remark 2. Equation (18) is just the Gauss equation (G) for the
conformal minimal immersion f : M → S

6:

4λ2(K−1) = |fx|2|fy|2(K−1)
(G)
= 〈f⊥

xx, f
⊥
yy〉− |f⊥

xy|2
∗
= −2|f⊥

xx|2 = −4µ.

For “
∗
=” recall that f⊥

yy = −f⊥
xx (harmonicity) and fxy = Jfxx (see (12).

Further we have used (13) to see

2λ = 2|fz|2 = |fx|2 = |fy|2,
2µ = 2|f⊥

zz|2 = |f⊥
xx|2 = |f⊥

xy|2.

6. The generalized Hopf differentials

For any conformal harmonic map f : M → S
n on a Riemann surface

M one considers the higher fundamental forms

Ak(v1, . . . , vk) = (∂v1 . . . ∂vkf)
Nk−1

for arbitrary tangent vectors v1, . . . , vk, where N0 = T is the tangent
space and Nk−1 for k ≥ 2 the (k−1)-th normal space8 of the surface f ,
and ( )Nk−1 denotes the orthogonal projection into this space. Using a
conformal coordinate z on M , the harmonicity of f yields the vanishing
of all mixed components of Ak (those involving both dz and dz̄). Thus

Ak = Bk + Bk with Bk =

(

(

∂

∂z

)k

f

)Nk−1

dzk ,

see [12] for details. The generalized Hopf differential is the symmetric
2k-form on M defined by

Λk = 〈Bk, Bk〉 .
The first Hopf differential Λ1 = 〈fz, fz〉 dz2 vanishes by conformality of
f , and the second one Λ2 = 〈f⊥

zz, f
⊥
zz〉 dz4 is the classical Hopf differ-

ential which is holomorphic for every conformal harmonic map. More
generally, Λk is holomorphic if Λ1, . . . ,Λk−1 vanish everywhere, cf. [12].

8Putting Ek the span of all derivatives of f with degree up to k where k ≥ 2, we
define Nk−1 recursively as the orthogonal complement of Nk−2 in Ek, where N0 is
the tangent space, the span of the first derivatives.
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If M is compact of genus 0, all holomorphic differentials vanish, hence
all Λk are zero. This is the superminimal case investigated first by
Calabi [4].

In our case of pseudoholomorphic maps f : M → S
6, we have

always Λ2 = 0 since f⊥
zz lies in the isotropic space E+. Therefore

Λ3 = 〈fN2

zzz, f
N2

zzz〉 dz6 is holomorphic.9 For completeness and to intro-
duce notation we give a direct proof.

Lemma 6.1. Let f : M → S
6 a pseudoholomorphic curve and z a

conformal coordinate on M . Then the function h := 〈fzzz, fzzz〉 is
holomorphic with

(19) h = 〈fN2

zzz, f
N2

zzz〉 = 〈(F2)z, (F2)z〉 =
〈

(F2)
N2

z , (F2)
N2

z

〉

,

and Λ3 = h(z)dz6.

Proof. 〈fzzz, fzzz〉z̄ = 2〈fzzzz̄, fzzz〉 = −2〈(λf)zz, fzzz〉 = 0 since fzzz
is perpendicular to f, fz, fzz. In fact, 〈f, fzzz〉 = 〈f, fzz〉z = 0 since
〈f, fzz〉 = −〈fz, fz〉 = 0, further 〈fz, fzzz〉 = −〈fzz, fzz〉 = 0 and
〈fzz, fzzz〉 = 1

2
〈fzz, fzz〉z = 0. Thus h is holomorphic and h(z)dz6

defines a holomorphic 6-form on M .
From (14) we have fzz = F2 + lzfz, and thus (fzz − F2)z = (lzfz)z

belongs to the span of fz and fzz which is part of the isotropic subspace
E+. Further, since fzzz ⊥ fz, fzz, we have fzzz − fN2

zzz ∈ Span (fz, fzz).
(The components of fzzz proportional to fz̄, fz̄z̄ involve the inner prod-
ucts with fz, fzz which are zero.) Thus h = 〈fzzz, fzzz〉 = 〈(F2)z, (F2)z〉
= 〈fN2

zzz, f
N2

zzz〉, and h(z)dz6 = Λ3. Moreover, (F2)z ⊥ f, F1, F2, hence
(F2)z−(F2)

N2

z ∈ Span {F1, F2}, and this component does not contribute
to the inner product 〈(F2)z, (F2)z〉. This proves the last equality in (19).

7. The derivatives of the Frenet frame

Proposition 7.1. Let f : M → S
6 be a pseudoholomorphic curve

with Frenet frame F1, F2, F3 as in (15), corresponding to a conformal
coordinate z on M . Let λ = |F1|2, µ = |F2|2 and l = log λ, m = log µ.
Then:

9A conformal harmonic map f : M → S
2m with all Λk = 0 but the highest one

Λm−1 (which then must be holomorphic) is called superconformal.
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(20)

(F1)z = lzF1 +F2 ,
(F2)z = mzF2 +(ih/2λµ)F3 − (i/2)F̄3 ,
(F3)z = iλF̄2 ,
(F1)z̄ = −λf ,
(F2)z̄ = −µ

λ
F1 ,

(F3)z̄ = (ih/µ)F2 +(lz̄ +mz̄)F3 .

Proof. The equations for (F1)z, (F1)z̄ and (F2)z̄ follow directly from

(14) using λ+lz/z = µ/λ, see (18). The equation for (F3)z = (fz × f⊥
zz)z̄

is proved as follows:

(fz × f⊥
zz)z̄ = fzz̄ × f⊥

zz + fz × (f⊥
zz)z̄

(14)
= −λf × f⊥

zz −
µ

λ
fz × fz

= −iλf⊥
zz .

The equations for (F2)z and (F3)z̄ are proved in the subsequent two
lemmas.

Lemma 7.1.

(21) (f⊥
zz)z = mzf

⊥
zz + ih/(2λµ)fz̄ × fz̄z̄ − (i/2)fz × fzz

where l = log λ and m = log µ.

Proof.

〈(f⊥
zz)z, fz〉 = −〈f⊥

zz, fzz〉 = 0 , (a)
〈(f⊥

zz)z, fz̄〉 = −〈f⊥
zz, fz̄z〉 = 〈f⊥

zz, λf〉 = 0 , (b)
〈(f⊥

zz)z, f
⊥
zz〉 = (1/2)〈f⊥

zz, f
⊥
zz〉z = 0 , (c)

〈(f⊥
zz)z, f

⊥
z̄z̄〉 = 〈f⊥

zz, f
⊥
z̄z̄〉z + 〈f⊥

zz, (λf)z̄〉 = µz , (d)
〈(f⊥

zz)z, fz̄ × f⊥
z̄z̄〉 = 〈f⊥

zz, λf × f⊥
z̄z̄ + fz̄ × (λf)z̄〉 = −iλµ . (e)

The last equation (e) tells us

〈(F2)z, F3〉 = −iλµ. (e)

It remains to compute 〈(F2)z, F̄3〉, using
h = 〈(F2)

N2

z , (F2)
N2

z 〉.
We have

2λµ(F2)
N2

z = 〈(F2)z, F̄3〉F3 + 〈(F2)z, F3〉F̄3

and hence

(2λµ)2h = 2 〈(F2)z, F̄3〉 · 〈(F2)z, F3〉 · 〈F3, F̄3〉
= 2 〈(F2)z, F̄3〉 · (−iλµ) · 2λµ
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from which we find the missing equation:

〈(F2)z, F̄3〉 = ih. (f)

From (a), (b), (c) we see10 that (F2)z = aF2 + bF3 + cF̄3, and further

a 〈F2, F̄2〉 = 〈(F2)z, F̄2〉
(d)
= µz ,

b 〈F3, F̄3〉 = 〈(F2)z, F̄3〉
(f)
= ih ,

c 〈F̄3, F3〉 = 〈(F2)z, F3〉
(e)
= −iλµ .

Thus

a = µz/µ = mz ,
b = ih/(2λµ) ,
c = −iλµ/(2λµ) = −i/2 . �

Lemma 7.2.

(22) (fz × fzz)z = −(ih/µ)f⊥
z̄z̄ + (lz +mz)fz × fzz.

Proof. We compute the components of (fz × fzz)z. Using fz × fzz ∈
N c

2 ⊥ T c ⊕N c
1 , we obtain:

〈(fz × fzz)z, fz〉 = −〈fz × fzz, fzz〉 = 0 ,
〈(fz × fzz)z, fz̄〉 = 〈fz × fzz, λf〉 = 0 ,

〈(fz × fzz)z, f
⊥
zz〉 = −〈fz × fzz, (f

⊥
zz)z〉

(21)
= −ih ,

〈(fz × fzz)z, fz̄z̄〉 = 〈fz × fzz, (λf)z̄〉 = 0 ,
〈(fz × fzz)z, fz × fzz〉 = 〈fz × fzz, fz × fzz〉z/2 = 0 ,

〈(fz × fzz)z, fz̄ × fz̄z̄〉 ∗
= 〈fz × fzz, fz̄ × fz̄z̄〉z = 2(λµ)z

where “
∗
=” follows since (fz̄ × f⊥

z̄z̄)z = iλf⊥
z̄z̄ ⊥ N2. Thus we obtain

(fz × fzz)z = af⊥
z̄z̄ + bfz × fzz with

a · µ = 〈(fz × fzz)z, f
⊥
zz〉 = −ih ,

b · 2λµ = 〈(fz × fzz)z, fz̄ × fz̄z̄〉 = 2(λµ)z

which shows a = −ih/µ and b = log(λµ)z = lz +mz.

10Recall that by (16) any v ∈ TfS = f⊥ has the representation v = w + w̄ with

w = 〈v, F̄1〉F1/λ+ 〈v, F̄2〉F2/µ+ 〈v, F̄3〉F3/(2λµ) .
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8. The canonical G2 connection

The three vectors F1 = fz, F2 = f⊥
zz, F3 = fz̄ × fz̄z̄ defined in (15)

(spanning the isotropic subspace E+ = {v ∈ O
′
c : f × v = iv}) are

positive real multiples of i − ili, j − ilj, k − ilk, up to transformation
with some element of G2 = Aut(O). Thus, up to positive factors, F =
(F1, F2, F3) can be considered as a moving G2-frame, a section of the
SU3-principal bundle G2 → G2/SU3 = S

6, pulled back to M via f . But
as we see from Proposition 7.1, the derivative DF cannot be expressed
in terms of F alone; one also needs F̄ . The reason is that covariant
derivatives on S

6 relies on the Levi-Civita parallel displacements which
unfortunately does not preserve J , it is not in G2. Therefore we will use
another connection∇ on S

6, whose parallel displacements belong toG2,
a G2-connection or hermitian connection. Thus we will derive formulas
of the type ∇′F = FB′ and ∇′′F = FB′′ for some complex 3 × 3-
matrices B′, B′′. It turns out that B′, B′′ depend only on the metric
coefficients of the surface f and some given holomorphic 6-form Λ3;
this will prove existence and uniqueness of pseudoholomorphic maps.
A G2-connection ∇ = D + A needs to make J parallel,

0 = ∇vJ = DvJ + [Av, J ]

where (DvJ)w = (v×w)p⊥ for v, w ∈ TpS
6 = p⊥. Thus [Av, J ] = −DvJ .

We may split Av = A+
v + A−

v where A+
v commutes with J and A−

v

anticommutes with J . Then −DvJ = [Av, J ] = [A−
v , J ] = 2A−

v J , hence
A−

v = 1
2
(DvJ)J while A+

v is unrestricted.
Among the G2-connections there is the canonical connection (see

also [1]) which has the additional property that G2 acts on S
6 by affine

transformations: ∇gV (gW ) = g(∇VW ) for any g ∈ G2 and any two
tangent vector fields V,W on S

6. Clearly G2 ⊂ SO7 is affine also for
the Levi-Civita connection D, hence it keeps A = ∇−D invariant. In
particular, fixing a base point p ∈ S

6, say p = l, the tensor A at p is
invariant under the isotropy group SU3 at l. Thus the map

v 7→ A+
v : TpS

6 = C
3 → C

3×3

is SU3-equivariant. The group SU3 acts on the matrix space C
3×3 by

conjugation, splitting it into two equivalent subrepresentations (her-
mitian and antihermitian matrices) both of which are irreducible up to
a one-dimensional fixed space. Thus there is no nonzero equivariant
linear map C

3 → C
3×3. Therefore the canonical connection satisfies

A+
v = 0, hence Av = A−

v = 1
2
(DvJ)J and therefore

(23) ∇v = Dv + Av, 2Av = (DvJ)J.

Now ∇vJ = [∇v, J ] = [Dv, J ] + [Av, J ] = 0.
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9. Canonical torsion and curvature on S
6

It is well known that a canonical connection has parallel torsion and
curvature tensors which we are going to compute now. Let us put

(24) Sv = DvJ .

Since Jpv = p × v for any p ∈ S
6 and v ∈ TpS

6 = p⊥, we have Svw =
(DvJ)w = (v × w)p⊥ = v × w − 〈p, v × w〉p, and since 〈p, v × w〉 =
〈p× v, w〉 = 〈Jv, w〉, we obtain

(25) Svw = v × w − 〈Jv, w〉p = (vw)TpS

where p is the position vector, v, w ∈ TpS
6 and ( )TpS denotes the

projection onto TpS. Using the fact that the parallel displacements of∇
belong to the group G2 which preserves the cross product and the inner
product, it is clear that S is a ∇-parallel tensor, see [1, Lemma 2.4] for
a direct proof. Note that 2A = SJ = −JS since 0 = D(J2) = SJ+JS.
Further, Svw = −Swv by (7).
The torsion tensor of ∇ is

T (v, w) = ∇vw −∇wv − [v, w] = Avw − Awv .

We have 2Avw = SvJw = −JSvw, and thus Avw = −Awv. Hence

(26) T (v, w) = SvJw = −JSvw ,

which shows again that T is ∇-parallel since so are S and J .
We want to compute S in terms our frame (F, F̄ ). By (17), (13),

and (15), Fj is a real multiple of

F o
j = (ej − ifej)/

√
2

where e1, e2, e3 ∈ O
′ is an orthonormal 3-frame perpendicular to f with

e3 = e1e2. Since

(ei − ifei)(ej − ifej) = 2(ek + ifek) ,
(ei − ifei)(ej + ifej) = 0 ,
(ei − ifei)(ei + ifei) = −2 + 2if .

for (i, j, k) = (1, 2, 3) up to cyclic permutations, we have from (25)

(27) SF o
i
F o
j =

√
2F̄ o

k , SF o
i
F̄ o
j = 0, SF o

i
F̄ o
i = 0 .

The real factors are given by (17). Thus

Lemma 9.1.

(28)

SF1
F2 = F̄3 ,

SF2
F3 = 2µF̄1 ,

SF3
F1 = 2λF̄2 ,

SFj
F̄k = 0 ∀j, k .
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Recalling 2A = SJ and JFj = iFj, we obtain:

Corollary 9.1. For A′ = AF1
and A′′ = AF̄1

we have

2A′F1 = 0,
2A′F2 = iF̄3,
2A′F3 = −2iλF̄2,
2A′′F1 = 0
2A′′F2 = 0,
2A′′F3 = 0.

Next we compute the curvature tensor R of ∇, see also [10, Cor. 3.4].
From ∇v = Dv + Av we obtain when [v, w] = 0:

Rvw = [∇v,∇w] = [Dv, Dw] +DvAw −DwAv + [Av, Aw].

Here [Dv, Dw] = Ro is the curvature tensor of the sphere S
6,

(29) Ro
vwx = 〈x, w〉v − 〈x, v〉w.

Now 2Aw = (DwJ)J = SwJ , hence 2DvAw = Dv(SwJ) = (DvDwJ)J+
SwSv. Thus

2(DvAw −DwAv) = [Dv, Dw]J + [Sw, Sv],

and moreover

4[Av, Aw] = [SvJ, SwJ ] = [Sv, Sw]

since SvJSwJ = −SvJJSw = SvSw. Thus

(30) Rvw = Ro
vw + (1/2)[Ro

vw, J ]− (1/4)[Sv, Sw].

Since Ro is determined by the metric which is parallel and since J and
S are parallel, we see directly that R is parallel.

Lemma 9.2. For R11̄ := RF1F̄1
= [∇F1

,∇F̄1
] = [∇′,∇′′] we have

(31)
R11̄F1 = λF1, R11̄F2 = −λ

2
F2, R11̄F3 = −λ

2
F3

R11̄F̄1 = −λF̄1, R11̄F̄2 =
λ
2
F̄2, R11̄F̄3 =

λ
2
F̄3.

Proof. The first line follows from (30) with (29) and (28) where we
put v = F1 and w = F̄1. Applying Ro

11̄ = Ro
F1F̄1

to F1, F2, F3 we observe

〈F1, Fj〉 = 0 and 〈F1, F̄j〉 = λδ1j, hence

(32) Ro
11̄F1 = λF1 while R11̄F2 = 0, R11̄F3 = 0 .
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In particular, R11̄ commutes with J , and consequently the second term
on the right hand side of (30) vanishes, [R11̄, J ] = 0. It remains to
compute [SF1

, SF̄1
] :

SF1
: F2 7→ F̄3, F3 7→ −2λF̄2,

SF̄1
: F̄2 7→ F3, F̄3 7→ −2λF2,

while F1, F̄1 are mapped to 0. Thus [SF1
, SF̄1

] has eigenvalues −2λ for
F2, F3 and 2λ for F̄2, F̄3 while F1, F̄1 are mapped to 0. Now the first
line of (31) follows from (30).
For the second line we just observe that R1̄1 = −R11̄ and therefore

R11̄F̄j = R1̄1Fj = −R11̄Fj.

10. Structure equations

From Proposition 7.1 and Corollary 9.1 we obtain the derivatives of
the Frenet frame:

Proposition 10.1. Let M be a Riemann surface and f : M → S
6 a

pseudoholomorphic curve. Let ∇ denote the canonical G2-connection
on S

6 and let ∇′ = ∇∂/∂z and ∇′′ = ∇∂/∂z̄. Let F1 = fz, F2 = f⊥
zz,

F3 = fz̄ × fz̄z̄ be the Frenet frame of f . Then

(33)

∇′F1 = lzF1 +F2

∇′F2 = mzF2 + ih
2λµ

F3

∇′F3 = 0
∇′′F1 = 0
∇′′F2 = −µ

λ
F1

∇′′F3 = (ih̄/µ)F2 +(l +m)z̄F3.

Corollary 10.1. The frame F = (fz, f
⊥
zz, fz̄ × fz̄z̄) of E+ = {v ∈ O

′
c :

f × v = iv} solves the differential equations

(34) ∇′F = FB′, ∇′′F = FB′′

with

(35) B′ =





lz 0 0
1 mz 0
0 ih

2λµ
0



 , B′′ =





0 −µ
λ

0
0 0 ih̄/µ
0 0 (l +m)z̄



 .

Remark 1. In the superminimal case h = 0 we see that ∇F3 is a
multiple of F3. In our analogy with the Frenet frame of a space curve
c, the third vector F3 corresponds to the binormal f3 = f1 × f2, where
f1 = c′ and f2 = (c′′)⊥, and f ′

3 is proportional to f3 if and only if the
torsion of c vanished (which means that c is a planar curve). Thus
Bryant [3] calls superminimal pseudoholomorphic curves torsion free.
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However, they are not “planar” in any sense: a weak analogue of planes
would be a pseudoholomorphic embedding of a complex 2-dimensional
manifold into S

6, but there are none. This makes these mappings
particularly interesting.

Remark 2. One might wonder why the matrices B′, B′′ obviously do
not belong to su3 (though this was suggested in section 2). The reason
is that the frame F is not normalized. This can easily be corrected
by passing to the normalized frame F o with F = F oD where D =
diag(

√
λ,

√
µ,

√
2λµ). We have ∇F = ∇(F oD) = (∇F o)D + F o∂D

and FB = F oDB. Thus from ∇F = FB we obtain ∇F o = F oBo with

(36) Bo = DBD−1 − (∂D)D−1.

We have

DB′D−1 =





√
λ √

µ √
2λµ









lz 0 0
1 mz 0
0 ih

2λµ
0











1√
λ

1√
µ

1√
2λµ







=







lz√
µ√
λ

mz
ih

µ
√
2λ

0






,

(∂′D)D−1 =
1

2
diag(lz,mz, lz +mz) , hence by (36),

B′
o =







1
2
lz 0 0√
µ√
λ

1
2
mz 0

0 ih
µ
√
2λ

−1
2
(lz +mz)






.(37)

Similarly,

B′′
o =







−1
2
lz̄ −

√
µ√
λ

0

0 −1
2
mz̄

ih̄
µ
√
2λ

0 0 1
2
(lz̄ +mz̄)






= −(B′

o)
∗ .(38)

Recall that ∇x = ∇′ + ∇′′ and ∇y = i(∇′ − ∇′′) where z = x + iy is
the conformal coordinate. Thus

(39) ∇xF
o = F o(B′

o + B′′
o ), ∇yF

o = iF o(B′
o −B′′

o ),

and the matrices B′
o + B′′

o and i(B′
o −B′′

o ) belong to su3.

11. Integrability conditions

The coefficients of B′ and B′′ still must satisfy some relations, the
integrability conditions for the overdetermined system (34). In fact,

∇′∇′′F = ∇′(FB′′) = FB′B′′ + FB′′
z ,
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∇′′∇′F = ∇′′(FB′) = FB′′B′ + FB′
z̄ ,

which implies

[∇′,∇′′]F = F ([B′, B′′] + B′′
z −B′

z̄) .

On the other hand we have seen in Lemma 9.2:

[∇′,∇′′]F = R11̄F = F diag(λ,−λ
2
,−λ

2
).

Thus an integrability condition for (34) is

(40) diag(λ,−λ

2
,−λ

2
) = R11̄ = [B′, B′′] + (B′′)z − (B′)z̄ .

The commutator [B′, B′′] equals








lz 0 0
1 mz 0
0 ih

2λµ
0



 ,





0 −µ
λ

0
0 0 ih̄/µ
0 0 (l +m)z̄









=







µ
λ

µ
λ
(mz − lz) 0

0 −µ
λ
+ |h|2

2λµ2 ih̄mz/µ

0 − ih
2λµ

(l +m)z̄ − |h|2
2λµ2







and the derivatives are

(B′′)z =







0 −
(

µ
λ

)

z
0

0 0 ih̄
(

1
µ

)

z
0 0 (l +m)z̄z






, (B′)z̄ =







lzz̄ 0 0
0 mzz̄ 0

0 ih
2

(

1
λµ

)

z̄
0






.

Since
(

1

µ

)

z

= −mz

µ
,

(

1

λµ

)

z̄

= −(l +m)z̄
λµ

,
(µ

λ

)

z
= (m−l)z

µ

λ
,

we obtain from (40):

diag

(

λ,−λ

2
,−λ

2

)

(41)

= diag

(

µ

λ
− lzz̄,

|h|2
2λµ2

− µ

λ
−mzz̄, (l +m)zz̄ −

|h|2
2λµ2

)

.

Lemma 11.1. Let λ, µ be absolute value type functions on M such that

(42) µ = λ(λ+ lzz̄)

and let h : M → C be a holomorphic function. Then (41) is satisfied
if and only if

(43) |h|2 = λ2µ2 + 2λµ2(l +m)zz̄ .
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Proof. The condition (42) is equivalent to the equality in the first entry,
and moreover, the equalities in the second and third entry become the
same. The equality in the third entry is (43).

Lemma 11.2. If F is the Frenet frame of a pseudoholomorphic curve
f : M → S

6 with Gaussian curvature K and h = 〈fzzz, fzzz〉, then (43)
is equivalent to

(44) |h|2 = λ6(1−K)2(∆ log(1−K) + 1− 6K)

where ∆ is the Laplacian of the induced metric on M .

Proof. We have

l +m = log(λµ)
(18)
= log(λ3(1−K)) = 3 log λ+ log(1−K).

Further, from (log λ)zz̄ = −λK and µ = λ2(1−K) (cf. (18)) and ∂z∂z̄ =
1
2
λ∆ we obtain

2(l +m)zz̄ = −6λK + λ∆ log(1−K)
2λµ2(l +m)zz̄ = λ2µ2(−6K +∆ log(1−K))

λ2µ2 + 2λµ2(l +m)zz̄ = λ2µ2(1− 6K +∆ log(1−K))
= λ6(1−K)2(1− 6K +∆ log(1−K)).

Thus the conditions (43) and (44) are the same.

12. Existence of pseudoholomorphic curves

Let M ⊂ C be an open domain. Suppose that on M a holomorphic
function h and absolute value type functions λ, µ are given satisfying
(18) and (43),

µ = λ(λ+ lzz̄) ,
|h|2 = λ2µ2 + 2λµ2(l +m)zz̄ ,

where l = log λ and m = log µ. Over M we consider the trivial vector
bundle E = M ×O

′
c with a connection ∇ defined by

∇′F = FB′ and ∇′′F = FB′′

where B′, B′′ are given in (35),

B′ =





lz 0 0
1 mz 0
0 ih

2λµ
0



 , B′′ =





0 −(λ+ lzz̄) 0
0 0 ih̄/µ
0 0 (l +m)z̄



 ,

and where F = (F1, F2, F3) with

F1 =
√
λF o

1 , F2 =
√
µF o

2 , F3 =
√
2λµF o

3 ,

F o
1 = (i− ili)/

√
2 , F o

2 = (j − ilj)/
√
2 , F o

3 = (k − ilk)/
√
2 .
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In particular, the only nonzero derivatives are

(45)

∇′F1 = lzF1 + F2 ,
∇′F2 = mzF2 +

ih
2λµ

F3 ,

∇′′F2 = −(λ+ lzz̄)F1 ,

∇′′F3 = ih̄
µ
F2 + (l +m)z̄F3 .

On E we have the tensor fields J, S, T,R where

Jv = l × v , Svw = (v × w)T

with T = Span (i, j, k, li, lj, lk), and where T,R are given by (26), (30),
(29). In order to apply the existence and uniqueness theorem in [6]
we need that ∇ is a metric connection and J, S (and hence T,R) are
parallel with respect to ∇. This follows by passing to the normalized
frame F o and using that B′

o + B′′
o and i(B′

o − B′′
o ) belong to the Lie

algebra su3 acting on C
3 = T with l as complex structure, see (37),

(38) (Remark 2 in section 10). The holonomy group SU3 preserves the
metric and the tensors J and S, hence R.
We are ready now to reprove Hashimoto’s result [9].

Theorem 12.1. Let M be a simply connected Riemann surface carry-
ing a compatible Riemannian metric ds2, possibly with branch points,11

and a holomorphic 6-form Λ. Let K be the Gaussian curvature and
∆ the Laplacian of ds2. Suppose that 1 −K is an absolute value type
function.
Then there is a unique pseudoholomorphic curve f : M → S

6 (up
to translation with elements of G2) such that ds2 is the induced metric
and Λ = Λ3 is the third Hopf diffential (see section 6) if and only if

(46) (1−K)2(∆ log(1−K) + 1− 6K) = |Λ|2 .

Proof. “⇒” If such a pseudoholomorphic curve f : M → S
6 is given,

then (46) is satisfied by Lemma 11.1 and (44), note that

(47) |Λ|2 = |h|2/λ6.

“⇐”: Let (M,ds2) and Λ be given with (46). Choosing a conformal
coordinate z on some simply connected open subset Mo ⊂ M , we have
ds2 = 2λdzdz̄ for some absolute value type function λ, and Λ = h(z)dz6

11A compatible Riemannian metric of a Riemann surface is locally of the type
dz2 = 2λdzdz̄ for some conformal coordinate z on M , where λ is a positive function.
If we allow for isolated zeros of λ such that λ is an absolute value type function,
such zeros are called branch points of the metric ds2.
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for some holomorphic function h with (47). Further we put l = log λ
and define the absolute value type function

µ = λ(λ+ lzz̄)
(18)
= λ2(1−K) .

Using these functions, we consider the bundle E = Mo × T with T =
SpanC(i, j, k, il, jl, kl) with sections F1, F2, F3 and a connection ∇ as
defined in (45) at the beginning of this section. By the main theorem of
[6], there exists a smooth map f : M → S

6 and a bundle isomorphism
Φ : E → f ∗TS preserving the metric and the tensors J, S,R such that

(48) Φ ◦ fz = F1

if and only if

(49)
∇′F̄1 −∇′′F1 = T (F1, F̄1) = 0 ,
[∇′,∇′′]F = RF1F̄1

F = F diag(λ,−λ
2
,−λ

2
) .

The first equation holds by (45) since ∇′F̄1 = 0 = ∇′′F1.
The second equation comes down to (40) and (41) which in turn is

equivalent to (44) or (46), by Lemma 11.1. This proves existence and
uniqueness of a pair of maps (f,Φ) satisfying (48), and f is pseudo-
holomorphic since F1 and fz lie in the i-eigenspace of J . Moreover,
F = (F1, F2, F3) becomes the Frenet frame along f (via Φ), using (45).
In particular, from the “⇒”-part we see h = 〈(F2)z, (F2)z〉, cf. (19).
This finishes the proof.

Remark. Replacing Λ by eiθΛ for some constant angle θ does not
change the condition (46). This gives the associated family of the
minimal surface f which also consists of pseudoholomorphic curves.

Corollary 12.1. Let (M,ds2) be as in the assumptions of the Theorem
12.1. Then there is a superminimal (“torsion free”) pseudoholomorphic
curve f : M → S

6, unique up to translations in G2, with induced metric
ds2 if and only if

(50) ∆ log(1−K) = 6K − 1.

13. Pseudoholomorphic curves in S
5

Another interesting special case is when a pseudoholomorphic curve
f : M → S

6 actually takes values in some equator sphere S
5 ⊂ S

6. We
will call it a pseudoholomorphic curve in S

5.

Lemma 13.1. Let f : M → S
6 be a pseudoholomorphic curve and z a

conformal coordinate on M . Then f takes values in some great sphere
S
5 ⊂ S

6 if and only if

(51) |h| = λµ.
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Proof. Assume that f lies in S
5. Then there exists a constant unit

vector ξ (inside N2) such that 〈f, ξ〉 = 0. Using fz, fzz, fzzz ⊥ ξ and
(21) we obtain

λµ〈fz × fzz, ξ〉 = h〈fz̄ × fz̄z̄, ξ〉
and by conjugation

λµ〈fz̄ × fz̄z̄, ξ〉 = h̄〈fz × fzz, ξ〉.
Multiplying these two equations we find |h| = λµ.
Conversely, we assume that |h| = λµ. Then comparing (21) and

its conjugate we obtain a linear relation between
((

f⊥
z̄z̄

)

z̄

)N2 and its
conjugate:

(52)
h

λµ

((

f⊥
z̄z̄

)

z̄

)N2

=
((

f⊥
zz

)

z

)N2

.

Thus the real and the imaginary part of ((f⊥
zz)z)

N2 are linearly depen-
dent, and hence there is a real unit vector ξ ∈ N2 which is perpendicular
to ((f⊥

zz)z)
N2 . Consequently, ξ is perpendicular to all derivatives of f up

to third order, and hence ξz ⊥ f, fz, fz̄, fzz, fz̄z̄, ξ. So ξz must be a mul-
tiple of ((f⊥

zz)z)
N2 , and by (52) the same holds for ξz̄. On the other hand,

〈ξz̄, (f⊥
zz)

N2

z 〉 = 〈ξz̄, (f⊥
zz)z〉 = −〈ξ, (f⊥

zz)zz̄〉 = 0 since from f⊥
zz = fzz+lzfz

we obtain (f⊥
zz)zz̄ = fzzzz̄ +(lzfz)zz̄ ∈ Span (f, fz, fzz) ⊥ ξz. Thus ξ is a

constant vector and we conclude that f lies in S
5 = S

6 ∩ ξ⊥.

Theorem 13.1. Let M be a simply connected Riemann surface with
compatible metric ds2 (possibly with branch points), and let K be its
Gaussian curvature and ∆ its Laplacian. Suppose that 1 − K is an
absolute value type function. Then there is an isometric pseudoholo-
morphic map f : M → S

5 if and only if

(53) ∆ log(1−K) = 6K.

In fact, up to translations with elements of G2 there is precisely one
associated family of such maps.

Proof. If f : M → S
5 is pseudoholomorphic with induced metric

ds2 = 2λdzdz̄, we have |h| = λµ and |h|2 = λ2µ2 = λ6(1 −K)2 using
µ = λ2(1−K). Thus the integrability condition

(44) λ6(1−K)2(∆ log(1−K) + 1− 6K) = |h|2

becomes (53). Conversely, (53) becomes (44) when we put |h| := µλ =
λ3(1−K). Then

∆ log |h| = 3∆ log λ+∆ log(1−K) = 0,
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using (53) and the relation between conformal factor and curvature,
∆ log λ = −2K . Thus log |h| is harmonic, hence the real part of a
holomorphic function, and |h| is the absolute value of a holomorphic
function h, uniquely determined up to some constant phase factor eiθ.
Thus Λ = hdz6 defines a holomorphic 6-form, and we conclude from
Theorem 12.1 that there is a pseudoholomorphic map f : M → S

6 with
induced metric ds2. Since |h| = λµ, we see from Lemma 13.1 that f
takes values in some great sphere S

5 ⊂ S
6.
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