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Fifteen years ago, Detlef Gromoll gave a talk at Münster in hon-
our of Wolfgang Meyer. He summarized what he considered Wolfgang
Meyer’s most important achievements by the following four short state-
ments, where M always denotes a complete n-dimensional Riemannian
manifold with sectional curvature K and M̃ its universal covering.

[1] “Most” compact M have infinitely many closed geodesics.
[2] Every noncompact M with K > 0 is contractible.
[3] There is an exotic 7-sphere with K ≥ 0.
[4] 1

4
− ǫ ≤ K ≤ 1, n odd ⇒ M̃ ≈ S

n (“homeomorphic”).

[1]-[3] are in joint papers with Detlef Gromoll, [4] with Uwe Abresch.
I would like to add another result which puts [4] into a context:

[5] 1

4
< K < 1 ⇒ M̃ ≈ S

n.

This is the famous sphere theorem of Marcel Berger and Wilhelm Klin-
genberg which was written up extremely carefully by Detlef Gromoll
and Wolfgang Meyer. Their paper became the Springer Lecture Notes
volume 55, “Riemannsche Geometrie im Großen”, “Riemannian geom-
etry in the Large”, which is almost the title of this conference. Every
differential geometer of my generation who knew some German learned
Riemannian geometry from this textbook.
The main theorem in [1] was also influenced by another research

area of Wilhelm Klingenberg: closed Geodesics and the Morse theory
of the free loop space of a compact manifold. Closed geodesics are the
critical points of the energy function on the space LM of free loops
λ : S1 → M . By Morse theory, the number of critical points of index
k is bounded from below by the k-th Betti number bk. However, every
closed geodesic is covered by infinitely many others, the iterates of the
given one. These unwanted critical points have to be excluded. There-
fore bk(LM) must be quite large in order to produce enough critical
points even without iterates, i.e. enough simply closed geodesics. By
the result of [1] it suffices to assume that the sequence bk(LM) is un-
bounded. This is true for “most” compact manifolds M (except some
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of the simplest ones likes spheres and projective spaces). When M
satisfies this topological property, then every Riemannian metric on M
has infinitely many simply closed geodesics.
The article [2] contained in some sense the noncompact analogue

of the sphere theorem. It introduced an idea which later became ex-
tremely influential even for Aleksandrov geometry: the link between
nonnegative curvature and convexity. For nonpositive curvature Rie-
mannian balls are convex, at least in the simply connected case. For
nonnegative curvature, large balls are “virtually” (see below) concave,
that is their complements are virtually convex, and this holds without
any restrictions since a possible cut locus would only reinforce this phe-
nomenon. E.g. in a sphere with K = 1, a ball of radius > π/2 centered
at the north pole reaches the southern hemisphere, and thus its com-
plement is convex. If we only assume K > 0 or even weaker K ≥ 0,
we might not be able to find a ball of finite radius whose complement
is actually convex, but it holds for limits of balls with radius r → ∞
(this is what we mean by “virtually”), the so called horo-balls which
before have been used only in the geometry of nonpositive curvature.
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Further, if C ⊂ M is convex, its interior distance sets Cr = {x ∈ C :
|x, ∂C| ≥ r} are also convex, even strictly convex when K > 0 or when
C is strictly convex.
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In a complete noncompact manifold there are always geodesic rays,
and each of them defines a horoball. The intersection C of the horoball
complements for all rays starting in a compact region is a compact
convex set whose interior distance sets are strictly convex and thus
C shrinks to a point p which is itself comvex: there are no geodesic
loops at p. Thus the loop space ΩM is contractible by Morse theory (no
critical points for the energy on ΩM other than the constant geodesic).
In particular, all homotopy groups are trivial and M is contractible.
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As was pointed out later by Micha Gromov, the convexity idea of [1]
also works for the sphere theorem [5] (where it is hidden in Topono-
gov’s triangle theorem) and immediately explains the meaning of the
curvature bounds 1

4
and 1. Since the inequalities are strict, the mani-

fold lies “between” two round spheres of radii 1 + ǫ (curvature 1 − δ)
and 2− ǫ (curvature 1

4
+ δ). Then the closed ball Bπ of radius π in M

is immersed as in the small sphere and strictly concave as in the large
sphere.
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However, Bπ is only immersed and the concavity has to be understood
in a local sense. It needs a careful analysis of the shrinking of locally
strictly convex hypersurfaces in an ambient space with K ≥ 0 and
n ≥ 3 (in place of Klingenberg’s injectivity radius estimate) to see that
C is an immersed ball, too, and hence M is covered by the union of two
balls, glued together by a diffeomorphism between their boundaries.
Thus M̃ is homeomorphic to a sphere; “diffeomorphic” was out of reach
at that time and had to wait for Perelman’s ideas.1

The sphere theorem is beautiful because of its natural curvature
bounds which are sharp since the projective spaces over C,H, O sat-
isfy 1

4
≤ K ≤ 1. In fact, Marcel Berger added the equality discussion:

When 1

4
≤ K ≤ 1 and M is simply connected but not a homotopy

sphere, then it is even isometric to a projective space. However, these
spaces live in even dimensions, and Berger noticed that in odd dimen-
sions the lower curvature bound can be made even smaller.2 The proof
was indirect using Gromov’s compactness theorem, hence no explicit
lower bound δ < 1

4
could be given. Wolfgang Meyer and Uwe Abresch,

using much more refined Jacobi field estimates, found such bounds
which are independent of M , even independent of dimM .
By the proof of the sphere theorem (and the lack of the differentiable

version) the question was natural whether a proper homotopy sphere

1Brendle, Simon; Schoen, Richard: Manifolds with 1/4-pinched curvature are
space forms, Journal of the American Mathematical Society 22 (2009), 287 - 307

2Berger, Marcel: Sur les variétés riemanniennes pincées juste au-dessus de 1

4
,

Ann. Inst. Fourier 33 (1963), 135 - 150
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could satisfy 1

4
< K < 1. But no metric with (at least) K ≥ 0 was

known on any homotopy sphere. In [4], such a metric was constructed
using biquotients first time. It was known that Lie groups G with
biinvariant metrics have K ≥ 0 and that Riemannian submersions
π : E → B are curvature increasing. Here are synthetic proofs.3

=

=

=e

x

y

xy

x

y

2

2

G

o

o

p

q

^

p̂

E

B

π

=

q̂

=

In [4], the total space E is the group G = Sp2 with its biinvariant
metric. Then G × G acts by isometries on G. For any closed sub-
group U ⊂ G × G there is an orbital submersion π : G → G/U , and
G/U is a smooth manifold if the action is free. This means for ev-
ery (u1, u2) ∈ U \ {(e, e)} that u1gu

−1

2
6= g for all g ∈ G, in other

words, u2 is not conjugate to u1 in G. Gromoll and Meyer choosed
U = {(( q

q ) , (
q
1
)) : q ∈ Sp1} which acts freely since ( q

1
) and its con-

jugates have a fixed space onH
2 while ( q

q ) does not. U can be enlarged
to V ∼= (Sp1)

2 where ( q
1
) is replaced with ( p

1
) for arbitrary p ∈ Sp1.

Since Sp2/Sp1 = S
7, we have Sp2/V = S7/Sp1 = HP

1 = S
4 where Sp1

acts on S
7 ⊂ H

2 by left scalar multiplication. Thus Σ7 = Sp2/U is an
Sp1-bundle over Sp2/V = S

4, in fact it is Milnor’s exotic sphere M7

3
.4
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3We have |e, x2| = 2|e, x| and |e, y2| = 2|e, y|, but |x2, y2| ≤ |x2, xy|+ |xy, y2| =
2|x, y| (left figure). Lifting the geodesics op and oq in B horizontally with starting
point ô ∈ π−1(o) we obtain endpoints p̂, q̂ ∈ E with |p, q| ≤ |p̂, q̂| since |p̂, q̂| may be
larger than the distance between the two fibres containing p̂ and q̂ (right figure).

4J.W. Milnor: On manifolds homeomorphic to the 7-sphere, Ann. of Math. 64
(1956), 399 - 405, in particular p. 402.


