
FROM THE CATENOID-HELICOID DEFORMATION

TO THE GEOMETRY OF LOOP GROUPS
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Abstract. Infinite dimensional methods are used to solve a geo-
metric problem in finite dimensions, the classification of plurihar-
monic maps into symmetric spaces. These infinite dimensional
objects in turn can be understood from a geometric point of view.

1. Minimal surfaces

Surfaces in euclidean 3-space which locally minimize area (minimal

surfaces) are beautiful objects, attractive even for modern architecture:
their principal curvatures balance each other, i.e. the curvature average
(mean curvature) is zero. The reason is simple: deforming the surface
into the mean curvature direction would decrease area. Since soap films
try to minimize area, minimal surfaces can be realized by a soap film
spanned into a (non-planar) closed wire. The oldest known examples
are the catenoid (surface of revolution whose profile curve is the cosh-
graph) where a soap film is spanned between two coaxial planar circles,
and the helicoid (the ruled surface bounded by a double helix), realized
by a soap film between two helices.

Catenoid and helicoid belong to a famous one-parameter family (de-
formation) of surfaces enjoying the following properties:1

• the deformation is isometric, i.e. interior distance is preserved,
• the surface remains minimal during deformation,
• every tangent plane is parallel translated,
• the principal curvature directions are rotated,
• the deformation is periodic,
• after a half period a mirror image of the same surface arises

(“twist”).

We can mimic this deformation using a belt with two sides of different
colour. The closed belt approximates the equatiorial region of the
catenoid. Moving the left end up (resp. down) and the right end down
(resp. up) we obtain an approximation of a helicoid (resp. its mirror
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image). Such deformations exist for every minimal surface; they are
called associated families.

2. Harmonic and pluriharmonic maps

Analytically, a surface is an immersion f : M → P where M is a simply
connected Riemann surface (one-dimensional complex manifold) and
P = R

3 euclidean 3-space. Choosing a suitable parametrization we
may always assume that f is conformal, i.e. the complex structure J
is turned into the 90o-rotation on the tangent plane of f . With such
a parametrization f is minimal if and only if it is harmonic, ∆f = 0.
In fact, associated families are related to harmonic maps of surfaces as
follows. Given any smooth map f : M → P where P = R

n is euclidean
space of any dimension, an associated family of f is a smooth variation
fθ : M → P , θ ∈ R/(2πZ), such that

(1) dfθ = Φθ ◦ df ◦ Rθ.

Here Rθ = (cos θ)I + (sin θ)J denotes the rotation by the angle θ in
the tangent plane of M and Φθ(x) is the parallel translation in P from
f(x) to fθ(x) for any x ∈ M . We can extend this notion without
any change to the case when M is a complex manifolds of arbitrary
dimension rather than a Riemann surface. Observe from (1) that fθ

need not to exist, but if it does, it is unique up to a parallel translation
on P . In the special case θ = π we have Rπ = −I and equation (1)
becomes

(2) dfπ = Φπ ◦ (−df).

A solution of this equation can be written down immediately:

(3) fπ = −f = so ◦ f

where so = −I is the point reflection at the origin 0 ∈ P = R
n, and

Φπ(x) is the translation from f(x) to −f(x) which is the composition
of the point reflections so at 0 and sf(x) at f(x):

(4) Φπ(x) = sosf(x).

Theorem 1. A smooth map f : M → P is pluriharmonic if and only

if there exists an associated family for f .

Recall that a map f on a complex manifold M is called pluriharmonic

iff f |C is harmonic for any one-dimensional complex submanifold (com-
plex curve) C ⊂ M . The proof of this theorem is easy since we know
that a pluriharmonc map f : M → P = R

n is just the real part of
a holomorphic map h : M → C

n, and then the associated family is
fθ = Re (eiθh). Vice versa, if (1) is solvable for every θ, in particular
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for θ = π/2, the one-form df ◦ J must be closed; this is precisely the
pluriharmonicity of f .

3. Symmetric spaces

The story becomes much more interesting when it is generalized to
target spaces P which are no longer euclidean but symmetric. A Rie-
mannian manifold P with isometry group Ĝ is called symmetric if for
any p ∈ P there is an isometry sp ∈ Ĝ, called point reflection or sym-

metry at p, fixing p and reflecting all geodesics through p, i.e. sp(p) = p
and (dsp)p = −I. Therefore a symmetric space comes with a map

(5) C : P → Ĝ p 7→ sp.

This is called Cartan embedding although in general it is only a covering
map onto its image; note that a point reflection can have more than
one isolated fixed points as we see for the sphere S

2. However we will
restrict our attention to those spaces P where C is a true embedding.
The image C(P ) ⊂ Ĝ belongs to the set Inv(G) = {g ∈ Ĝ : g−1 = g}
of involutions in G; this is the fixed set of the inversion map τ : g 7→
g−1 on Ĝ. More precisely C(P ) is a connected component of Inv(G),
the set of those involutions which have an isolated fixed point on P .
After choosing a bi-invariant metric on Ĝ, τ becomes an isometry and
C(P ) ⊂ G is totally geodesic, being a connected component of the fixed
set of an isometry. Quite often one replaces the Cartan embedding C
by a left translate. E.g. we may choose a base point o ∈ P and pass to

(6) Co = soC, Co(p) = sosp

which always takes values in the transvection group G; it is the identity
component of the fixed point set of the involution

(7) τ o(g) = sog
−1go

4. Pluriharmonic maps into symmetric spaces

All what was said about pluriharmonic maps f : M → P remains true
when P is a symmetric space; only the word “translation” has to be
replaced with “transvection”. Recall that transvections on a symmet-
ric space are compositions of an even number of point reflections like
translations in euclidean space. But unlike the translation group, the
transvection group in general is non-abelian; it is the identity compo-
nent G of the full isometry group Ĝ unless P has a euclidean factor
with dimension ≥ 2. Moreover, the translation group acts simply tran-
sitively which means that there is exactly one translation Φθ(x) map-
ping f(x) to fθ(x). Not so the transvection group G whose action on P
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is transitive but no longer simply transitive: there are many transvec-
tions mapping f(x) to fθ(x) (they differ by an element of the stabilizer
Gf(x)). This requires an extra condition in order to make a choice, cf.
[5, 4]. In fact, Φθ(x) ∈ G is determined by its differential at f(x) which
is a linear map Tf(x)P → Tfθ(x)P , hence we can view Φθ as a section of
the bundle Hom(f ∗TP, f ∗

θ TP ), and as such a bundle homomorphism
it must be parallel. In the euclidean case this condition holds trivially
for any family of translations Φθ(x).

From (4) and (6) we obtain

(8) Φπ = Co ◦ f

while Φ0 = e. Hence Φθ connects e with the Cartan-embedded ver-
sion of our pluriharmonic map f (a solution of the pluriharmonic map
equation). Therefore Φ : M × (R/2πZ) → G was called extended

solution.2 There is a one-to-one correspondence between extended so-
lutions Φ such that Φπ takes values in Co(P ) and pluriharmonic maps
f : M → P where Co ◦ f = Φπ, cf. [4].

5. Isotropic pluriharmonic maps

A pluriharmonic map f : M → P is called isotropic if its associated
family is trivial, fθ = f for all θ. For full minimal surfaces or harmonic
maps with values in R

3 this is impossible; the reason will become ap-
parent in a moment. However for even dimensions there are examples:
holomorphic maps into R

2n = C
n. If f is isotropic, (1) becomes

(9) df = Φθ ◦ df ◦ Rθ

This shows that Φθ(x) must fix f(x). Moreover, if f is full, i.e. if it
does not lie in a proper totally geodesic subspace of P , the group law
RθRθ′ = Rθ+θ′ shows that Φ(x) : θ 7→ Φθ(x) can be chosen to be a
one-parameter group as well,

(10) Φ(x) ∈ Hom(R/2πZ , Gf(x))

2This definition using the associated family is due to [4]. The original definition
by Ulenbeck [8] is independent of (pluri)harmonic maps. According to [8, 6], an
extended solution is a smooth family of maps Φθ : M → G such that Φπ is pluri-
harmonic and such that the dependence of the g-valued one-form βθ = Φ−1

θ
dΦθ on

θ is very simple: Its (1, 0) part (dz-part) is

(βθ)
′ =

1

2
(1 − λ−1)(βπ)′

where λ = e−iθ. In fact, Ω carries a complex structure and the latter equation
implies that Φ : M → Ω is holomorphic.
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where Gp = {g ∈ G : gp = p} is the stabilizer subgroup for any p ∈ P .
In particular,

dfx = Φπ(x) ◦ (−dfx) = Φπ(x) ◦ sf(x) ◦ dfx

whence

(11) Φπ(x) = sf(x) = (C ◦ f)(x).

This differs from (4) only by the left translation with so. Obviously,
such solutions can exist only if sf(x) = Φπ(x) is in the identity compo-

nent G ⊂ Ĝ since Φπ(x) is joined to Φ0(x) = e by Φθ(x). A symmetric
space P with the property that a symmetry so belongs to the transvec-
tion group G is called inner; otherwise, if so ∈ Ĝ\G, it is called outer.3

Euclidean space R
n is inner if and only if so = −I has determinant one,

i.e. for even n. This explains why there are no full isotropic minimal
surfaces in R

3: the twist we have initially observed obstructs it.

As we have seen, the extended solution Φ of an isotropic pluriharmonic
map f consists of homomorphisms Φ(x) : R/2πZ → G. Due to the
parallelity assumption, all these homomorphisms are conjugate to each
other, and thus Φ is a (holomorphic) map into a so called twistor space

Z, the conjugacy class of some homomorphim γ : R/2πZ → G. If f is
full, then γ is of a special kind, a so called canonical homomorphism,
and there are only finitely many such conjugacy classes.4

6. Morse theory on the loop space

Isotropic pluriharmonic maps form a subclass which can be rather eas-
ily described in terms of finitely many holomorphic functions. We are
now ready for our main theorem which is due to [1] for inner sym-
metric spaces and to [3] for outer ones. It says that if M is compact,
the components of the space of pluriharmonic maps are labelled by the
isotropic pluriharmonic maps.

3A compact symmetric space P = G/K is inner if and only if K contains a
maximal torus of G, in other words, if G and K have the same rank. The com-
pact irreducible outer symmetric spaces are precisely SUn/SOn, SU2n/Spn, odd-
dimensional real Grassmannians (including odd dimensional spheres) and E6/Sp4,
E6/F4.

4Let ξ = γ′(0). Then Ad(γ(θ)) = exp(θ ad(ξ)) Since Ad(γ(2π)) = I, the eigen-
values af ad(ξ) are in iZ where i =

√
−1. Let gk be the eigenspace of ad(ξ) corre-

sponding to the eigenvalue ik, k ∈ Z. It is shown in [5] that dΦ takes values in the
distribution on Z = Ad(G)γ obtained by left translating g±1; this is the so called
superhorizontal distribution. If f is full, the Lie algebra generated by g±1 must
contain every gk for k 6= 0, [5]. Such elements ξ ∈ g are called canonical; they are
precisely the simple sums ξi1

+ ξi2
+ . . . of dual roots ξ1, . . . , ξr of G, see [2]. So

there are 2r canonical elements ξ.
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Theorem 2. Let M be a compact simply connected Kähler manifold,

P a compact symmetric space and f : M → P a pluriharmonic map.

Then f = f 1 can be deformed by pluriharmonic maps f t, t ≥ 1, into

an isotropic pluriharmonic map f∞ : M → P which is uniquely deter-

mined by f .

In the proof [1] the loop space of G is used:

Ω = ΩG = {ω : R/2πZ → G; ω(0) = e}
where the loops ω must satisfy a certain regularity (C∞ or at least H1).
We can consider our extended solution as a map Φ : M → Ω. On Ω
we have the energy functional E : Ω → R,

E(ω) =

∫ 2π

0

|ω′(θ)|2dθ.

The main idea is: apply the gradient flow of E in order to move
Φ(M) ⊂ Ω into a critical manifold of E. As we learned in a first
course on differential geometry, the critical points of E are geodesics5

in G starting and ending at e. Since we have chosen a bi-invariant
metric on G, such a geodesic loop is a one-parameter subgroup, hence
a group homomorphism γ : R/2πZ → G, and the critical manifolds are
the conjugacy classes Ωγ of such homomorphic circles γ. While usually
in differential geometry one tries to decrease energy by following the
mean curvature flow which is the negative gradient flow of E, we are
here doing the opposite and follow the positive energy gradient which
increases the energy. Any critical manifold has a finite dimensional
domain of attraction Uγ under this flow, the “unstable” manifold un-
der the mean curvature (negative gradient) flow; the dimension of Uγ

is just the index of the closed geodesic γ. However, most loops are
not contained in any such domain. But if M is compact (and simply
connected), it has been shown by Uhlenbeck [8] and Ohnita-Valli [6]
that any extended solution Φ : M → Ω takes values in the subset of
algebraic loops Ωalg ⊂ Ω, the loops with finite Fourier expansion,6 and
any such loop does belong to some domain of attraction.7 In fact, since
the closures of these domains are algebraic varieties and Φ is holomor-
phic, the whole image Φ(M) lies essentially in one such domain, up to
a subvariety of lower dimension which is mapped into the boundary of

5Geodesics are locally shortest curves, and the energy is just the square of the
length if the curve is parametrized proportional to arc length.

6For the Fourier expansion ωθ =
∑

k∈Z
wkeikθ ∈ G we must embed G into a

matrix algebra. This is done by the adjoint representation.
7From an algebraic view point this fact is the Bruhat decomposition of Ωalg, as

explained in [7].
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that domain. Thus Φ(M) flows into some well defined Ωγ , and more-
over the flow preserves extended solutions. Thus Φ∞ is the extended
solution of some isotropic pluriharmonic map f∞. Moreover we may
assume that Φ and all Φt are invariant under a certain involution of Ω,
expressing the fact that f and also all f t take values in P , see below.

But if P is an outer symmetric space, there are no full isotropic pluri-
harmonic maps into P , so what is f∞? Recall from (7) that Φ∞

π =
Co ◦ f∞ is invariant under τ o(g) = sog

−1so. This involution τo can be
extended to an involution To of Ω with (Toω)π = τoωπ, namely

(Tω)θ = soωθ+πω−1
π so.

Using our freedom of choice for Φθ we may assume that Φ is To-
invariant. Since the energy functional E is also To-invariant, the same
holds for all Φt including Φ∞. Thus every homomorphism γ = Φ∞(x)
satisfies

γθ = soγθ+πγ −1
π so = soγθso,

and therefore γθ lies in K = Go, the stabilizer group of o, which is
the fixed group of the conjugation by so. Therefore f∞ takes values
in a subspace P ′ ⊂ P which is inner with transvection group K. The
corresponding twistor spaces are classified in [3]; their number is 2s

where s is the rank of K (compare footnote 4).
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