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Isoparametric submanifolds and symmetric spaces

J.-H. Eschenburg

ABSTRACT. We give a survey on a new proof of a theorem of Thorbergsson
which says that a (complete, full, irreducible) isoparametric submanifold M
of codimension k > 3 in euclidean space BV is a principal orbit of an isotropy
representation of a symmetric space. Using submanifold geometry, a Lie triple
product on BV is constructed such that M is a principal orbits of its orthogonal
automorphism group.

1. Introduction

An immersed submanifold M in euclidean space V = R" is called isoparametric
if any normal vector extends to a normal vector field £ which is parallel with respect
to the covariant derivative on the normal bundle, and the corresponding shape
operator (Weingarten map) A, has constant eigenvalues on M. For hypersurfaces
the definition just says that the principal curvatures are constant. The notion
“isoparametric” for this case goes back to Levi-Civita [LC]; it means that M is a
level hypersurface of a function F whose “differential parameters” AF and |VF|?
depend only on F. A similar characterization for higher codimension was given
by Terng [Tel; in fact, F' can be chosen to be a polynomial. We refer to [Th2]
for a detailed survey. In the following, we shall always assume that M ¢ RN
is a properly immersed isoparametric submanifold which is full (i.e. M is not
contained in a hyperplane) and irreducible which means that M cannot be written
as a product of lower dimensional isoparametric submanifolds; for short we will call
M isoparametric if it has all these properties.

There are two classes of examples known. Class I (cf. [Te]) consists of ho-
mogeneous submanifolds, namely the principal orbits of isotropy representations
of irreducible Riemannian symmetric spaces, so called s-representations. In other
words, M is (up to connected components) a principal orbit of the group of or-
thogonal automorphisms for a Lie triple product R on RV (see below). The first
nontrivial examples in this class were discovered by E. Cartan [Ca], but he was not
aware of the simple relationship to symmetric spaces. Class II in turn is related
to representations of Clifford algebras; all of these examples have codimension 2,
and those which are not in the intersection with Class I are inhomogeneous (cf.
[FKM]). If M has codimension one, it is a round sphere as was shown by Segre

1991 Mathematics Subject Classification. Primary 53C30, 53035, 53C42; Secondary 22E45.

@ 2000 American Mathematical Society

145



146 J.-H. ESCHENBURG

[S]. For codimension two a classification is not yet available, but G. Thorbergsson
[Th1] has finished the remaining cases:

THEOREM 1.1 (Thorbergsson). If M is isoparametric with codimension k > 3,
than it belongs to Class I, i.e. it is a principal orbit of an s-representation.

In the main step of the proof, Thorbergsson assigns to M a topological Tits
building A(M) of rank k. A deep theorem of Burns and Spatzier states (generalizing
a well known fact for projective spaces of dimension k > 3) that such a Tits building
belongs to a semisimple Lie group G. Finally, M is shown to be an orbit of a
maximal compact connected subgroup K C G which acts orthogonally on RV. The
representation must be polar, i.e. there exists a subspace £ C RV meeting any of
the orbits perpendicularly [PT]. Now the proof is finished by applying a theorem
of J. Dadok [D]:

THEOREM 1.2 (Dadok). Any polar representation is orbit equivalent to the iso-
tropy representation of a symmetric space.

(Representations of two groups are called orbit equivalent if they have the same
orbits after a suitable isometric identification of their representation spaces. )

However, the proof of Dadok’s theorem is by classification: Using a necessary
condition for polarity, Dadok obtains a finite list of possibly polar representations
which are checked case by case. Theorem 1.2 follows from that list by inspection.
It would be most desirable to finish the proof of Thorbergsson’s theorem rather
by constructing a Lie triple product R on R" such that K acts as the group of
orthogonal automorphisms of R. Moreover, since principal orbits of polar represen-
tations are isoparametric submanifolds, this would give a classification free proof of
Dadok’s theorem for cohomogeneity k& > 3. Of course, the classification of all polar
representations is much easier if Theorem 1.2 can be used (cf. [EH3], [B]).

Thorbergsson’s homogeneity theorem was reproved in a completely different
way by C. Olmos [02] and extended to the infinite dimensional setting by Heintze
and Liu [HL]. These authors applied submanifold geometry instead of Tits build-
ings, and the group K C O(N) acting transitively on M was given in a more
effective way. In a recent joint paper with E. Heintze [EH2] this could be used to
construct the corresponding Lie triple product and thus also to give a conceptual
proof of Theorem 1.2 for cohomogeneity k > 3:

THEOREM 1.3. Let M C V = R be isoparametric with codimension > 3.
Then from the geometry of M one can construct a Lie triple product R on' V such
that M is a principal orbit of the connected orthogonal automorphism group of R.

For completeness let us recall that a Lie triple product on a euclidean vector
space V' is a trilinear map (“triple product”) R : V x V x V — V satisfying the
algebraic curvature identities and moreover, the linear maps z — R(z,y)z belong to
the Lie algebra of the orthogonal automorphism group K of (V, R), for all z,y € V.
The curvature tensor of a symmetric space has this property, and a construction due
to . Cartan shows the converse: From a Lie triple (V, R) we obtain a symmetric
space G//K where G has a Lie algebra g with g = £ V as a vector space, and a
Lie bracket extending that of £ is defined as follows: for all A € Eand z € V we
put [A,z] = Az € V and [r,y] = R(z,y) € &.
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Various authors have contributed to the the proof of Theorem 1.3, and it is the
aim of this survey to outline the full chain of arguments which was necessary to
accomplish this proof. It is a pleasure for me to thank E. Heintze and A.L. Mare
for many useful hints and discussion.

2. Isoparametric submanifolds

All details in this section can be found in [PT). Let M C V = R" be isopara-
metric. Let v be the space of parallel normal fields on M recall that a normal field
& is parallel if its derivative O¢ is always tangent to M and hence its shape operator
is simply A¢ = —J€. By the Ricci equation, two such operators commute, so they
can be diagonalized simultaneously. Thus the tangent bundle has an orthogonal
decomposition TM = ) ., E, for a finite set A of linear forms on v such that
A = k(§)-I on E,.. The E, are called curvature distributions, the linear forms
K € A are the principal curvatures and their dual vectors n. € v principal curvature
vectors.

Isoparametric submanifolds come in families. For any £ € v let m¢ : M — V
be the end point map m¢(z) = x + £(x) and put Mg = m¢(M). The differential
dmg = I — Ag is zero precisely on all E; with x(£) = 1, thus it has constant rank.
Consequently, Mg C V is again an immersed submanifold and m¢ : M — M, a
submersion. If #(§) = 1 for some x € A, then M, drops dimension and is called a
focal manifold. For such & the fibres of m¢ : M — Mg are tangent to Y-, ¢)—; Ex.
Hence these distributions are integrable. Moreover, the integral leaves (fibres) are
totally geodesic since a fibre ' = m '(y) is the intersection of M with the affine
subspace y + v, (M) containing all normal spaces z + v, (M), x € F. In particular,
if k(§) = 1 for just one k € A, the fibre of m¢ (the integral leaf of E,) through x € M
is a sphere Sk (x) of radius 1/|n,| centered at x + £.(x) where &, = n,/|n.|?; it is
called curvature sphere. For all other £ (those with x(€) # 1 for each & € A) the
map 7¢ is regular with T (eyMg = T: M. Such M; is again isoparametric since
it has the same parallel normal fields, and its shape operator with respect to any
1 € v has constant eigenvalue £(n)/(1 —#£(§)) on E,. It is called a parallel manifold
of M.

Thus the submanifolds M form a sort of foliation of R" (at least locally, but
according to [Te] even globally) with leaves of constant distance from each other,
but some “singular” leaves (the focal manifolds) have lower dimension. The affine
normal spaces v, = {z + £(z); € € v} for 2 € M meet all leaves perpendicularly,
and the singular leaves intersect v, in a subset S which is the union of the focal
hyperplanes l,.(z) = {x + &(z); &(€) = 1}.

For some £ € v it happens that Mg = M; in particular this is true for £ = 2¢,
for any p € A, since x and z + 2¢,(x) are antipodal points in S,(x) C M for
arbitrary x € M. Those m¢ form a group of diffeomorphisms of M, called the Weyl
group W. They preserve the affine normal spaces, i.e. vy(,) = v, for each ¢ € W,
and consequently, the normal parallel translation from z to ¢(x) defines an affine
isometry ¢* of v, sending x + £(x) onto ¢(z) + £(¢(z)). This determines an affine
action of W on v, keeping the singular set S invariant. For ¢ = my¢, the map ¢*
is the reflection at the hyperplane I,,. In fact, W is generated by the 7, .

A priori, the principal curvature set A might contain the zero linear form,
but in this case M would split off a euclidean factor which we have excluded by
assumption. The reason for this splitting is that the eigenvalues of 9§ = — A are
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bounded away from 0 for any § € v with k() # 0 for all kK € A\ {0}. Namely,
the leaves Sy(x) of the distribution Eq on Al are affine subspaces along which any
& € v is constant; they are the fibres not of an endpoint map =¢ but of the “Gauss
map” £: M — SV~ We claim that any two fibres Sy(z) and Sy(y) have bounded
distance and hence are parallel affine subspaces which can be split off. This would
be clear if the submersion ¢ were Riemannian, i.e. if d preserved the length of
“horizontal” curves in M (those perpendicular to Ep). But instead, dé = —Ag¢
multiplies each vector in Ex by —~x(), hence the length of the Gauss image of
any horizontal curve ¢ in M is bounded from below: L(£ 0 &) > m - L(¢) with
m = min |k(€)| > 0. If in turn we start with a smooth curve ¢ in S¥~1 with
length L from £(x) to £(y), we obtain a horizontal lift ¢ between Sy(x) and Sy(y)
starting at an arbitray z € Sy(x), and we have L(é) < L/m which shows that any
point of Sy(z) has distance < L/m from Sy(y), coucludmg the argument.

Now we can see that M lies itself in a sphere in R"; in particular, M is compact.
In fact, the focal set S C v, consisting of the finitely many hyperplanes I.(z) is
invariant under the reflections at these hyperplanes (belonging to the Weyl group);
this is possible only if all /() meet in a common point =, = x+&,. Then K(&,) = 1
for all K € A which shows that M, is the single point z,, and M is contained in
the sphere of radius |§,| around z,. We may assume x, = 0 and M < SV-1I,
Then the position vector r is perpendicular to T, M. Hence v, becomes the linear
normal space (T, M)+, and /() C v, is the linear hyperplane n,(x)"“; note that
k(z) = -1 for all kK € A.

Examples of isoparametric submanifolds M C V arise as principal orbits of
subgroups K C O(V) which are polar, i.e. there is a subspace & C V (“section”)
meeting all orbits perpendicularly. For a principal orbit M = K.z (we may assume
r € L), we have ¥ = v,. Since the isotropy group K, of a principal orbit acts
trivially on v, any normal vector £? € v, can be extended to a unique K-invariant
normal field & with {(kx) = k€°. Then m¢(M) (where me(x) = & + £(z)) is another
orbit which by polarity is perpendicular to ¥. Hence £ is parallel because 8, =
dyme — v € £+ = T, M. Clearly, the singular orbits are the focal manifolds.

The most prominent examples of polar representations are the isotropy rep-
resentations of symmetric spaces (s-representations): Let G/K be a Riemannian
symmetric space of compact type and g = € + p its Cartan decomposition. Then
the action of Ad(K) C Ad(G) on p C g is polar, and any maximal abelian subal-
gebra a C £ is a section: each Ad(K)-orbit meets a (conjugacy of maximal abelian
subalgebras of p, cf. [H]), and for any z € a we have T, (Ad(K)z) = ad()z L a
since (ad(€)z,y) = (¢, [z,y]) =0 for all y € E.

The principal curvatures in this example are expressed by the roots of the sym-
metric space. Recall that the common eigenspace decomposition of the ad(z), z € a
(which are skew symmetric linear maps of g) leads to orthogonal decompositions
E=8+) ,cafaandp=a+3} .. Pa, where A is a finite subset of a* (the set of
roots), such that each ad(x) maps p, into £, and vice versa while ad(z)? has eigen-
value —a(z)? on £, +p,. Now let M = Ad(K)x for some z € a be a principal orbit,
ie. a(z) #0 for all o € A. Let £ € v, M = a and v = ad(A)z = —ad(z)A € T.M

for some A € & Then A¢(v) = —$Ad(e!)€i=o = ad(€)A. If A € &,, then
ad(£)A g—éi—)ad(.r)A thus AE has eigenvalue — {[:) on p, C T, M, and the prin-
cipal curvatures are £ = — - for all @ € A. If also 2a € A, the corresponding

curvature distribution is p, + pas.
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3. Homogeneous slice theorem and normal holonomy

We want to prove that an isoparametric submanifold M C V is the orbit
of an s-representation. As a first main step we show that many totally geodesic
submanifolds of M satisfy this property, namely the fibres of the focal projections
(Homogeneous Slice Theorem, cf. [HOTh]). Let £ € v be a focal normal field, i.e.
k(€) = 1 for at least one x € A. Consider the submersion # = 7¢ : M — F = Mg
with fibres S(z) = 77z C M (also called slices) for all z € F; these are the
integral leaves of the distribution Ef := Zn‘(f):l E, called vertical bundle. From
the invariance of Er under the shape operators A, it follows easily that S(z) is
totally geodesic in M and again isoparametric in its linear span (cf. [HPT]). But
more is true: there is a large group of isometries acting on S(z). This is due to a
general fact for a submersion 7 : M — F' with totally geodesic fibres: any piecewise
smooth curve ¢ in F from zp to z; determines an isometry h. : S(z9) — S(z1)
where h.(x) for any x € S(zg) is the end point of the horizontal lift of ¢ starting
from z. In particular, for a closed curve (zy = z; = z) we obtain an isometry of
S(z). Since the horizontal distribution is totally non-integrable (i.e. its iterated
Lie brackets generate all vector fields), the group of isometries generated by the h,
acts transitively on S(z) (cf. [HOTh]).

In our case, S(z) is not only a subset of M but also of the normal space
z+ v.F = v.F because for z = n(z) we have r — z = —€(z) € v.M C v.F.
If z(t) is a curve in M with projection z(t) = =(z(t)) = z(t) + &(z(t)), then
z(t) is a horizontal lift of z(t) iff 2/(t) € Ep(z(t))* = T.(F. This means that
%ﬁ(r(t)) € T.(yF or in other words, §(t) = &(x(t)) considered as a normal field of
F along the curve z(t) is parallel in the normal bundle of F'. Thus the isometries h.
for closed curves c(t) = z(t) in F are precisely the elements of the holonomy group
of vF, so each S(z) is an orbit of the normal holonomy group at z.

This completes the proof of the Homogeneous Slice Theorem since a few years
before, Olmos [O1] had shown that the restricted normal holonomy group of any
submanifold F' ¢ R is an s-representation. The idea of this remarkable theorem
is easy to understand: Starting from the normal curvature tensor R : TF @ TF —
End(¢F) an algebraic curvature tensor R on each v.F is obtained by putting

R(E M =Y R"(A¢(es), An(ei))C

where (e;) is an orthonormal basis of T.F. By the Ricci equation, the “sectional
curvature” of R is (R(€,n)n,€) = —3|[A¢, 4,)|%; in particular, R has nonpositive
scalar curvature which is zero only if R = 0. Let H denote the restricted holonomy
group of ¥F at z (a compact subgroup of O(v. F)) and | its Lie algebra. Averaging
R over H, ie. putting R = [, (h.R)dh where (h.R)(£,n) = hR(h™'€, h~'n)h~!,
one gets an H-invariant curvature tensor which is nontrivial since averaging does not
change the scalar curvature. Now from R"(v,w) € b for all v,w € T.F we obtain
R(&,n) € b and consequently R(€,7) € h which shows that R is a (semisimple) Lie
triple product on v. F; recall that h belongs to the Lie algebra of the automorphism
group of R. This argument was already used by Simons [Si].

4. The homogeneous structure

A compact submanifold M C S¥~1 € V = R" is called estrinsic homogeneous
if it is the orbit of a compact subgroup K € O(N). This global property can also be



150 J.-H. ESCHENBURG

expressed in local terms which was observed first by Ferus [F] and Striibing [St] in
a special case: M is extrinsic symmetric (i.e. invariant under the reflections at all
normal spaces) if and only if it has parallel second fundamental form a for the Levi-
Civita connection V on TM and vAM. More generally, M is extrinsic homogeneous
if and only if « is parallel for a connection D on T'M & vM preserving this splitting
such that D — V is D-parallel ([OS], [E]).

Let us briefly recall the idea of the proof. We consider a connection D on
the trivial bundle £ = M x V = TM & vM for which TM and vM are parallel
subbundles and a is D-parallel, i.e. V — @ is D-parallel, where 8 is the trivial
connection on f7. Suppose further that v := d— D is D-parallel (which is equivalent
to the D-parallelity of D — V). Then a D-parallel basis b = (by,...,bx) of E along
a D-geodesic vy (we may assume 7" = b;) solves b’ = ~.:b = b- A for some constant
matrix A (the matrix of the parallel endomorphism <. with respect to the parallel
basis b), hence b(t) = b(0)e'*. Now consider k£ € O(N) sending z = v(0) onto
kx = y € M such that k(7. M) = T,M and k.(y(z)) = v(y) (where k.y,w =
kyp-1,k~ w). Then b = kb solves the same ODE as b, so it is a parallel basis along
the D-geodesic ¥ starting at y with initial direction ky'(0) = kb;(0). In particular
by = kb, and by integration ¥ = k. Applying the same argument to all geodesics
v starting at x and even to all geodesic polygons we see that k(M) = M. In
particular we can choose k to be a parallel displacement from z to y along any
curve connecting these points. So we see that the group K = {k € O(N); k(M) =
M} acts transitively on M; in fact this hold even for the subgroup generated by
the transvections of D (i.e. isometries being parallel displacements along some
geodesic).

Vice versa, if M C V is extrinsic homogeneous then M = K/K, where K,
is the isotropy group at x € M. An Ad(K.)-invariant decomposition ¢ = €, +m
determines a left invariant horizontal distribution H (a connection) on the principal
bundle K — K/K, = M with H;, = k.m C T K and hence a K-invariant covariant
derivative D on the associated bundle E: a section v(t) of E along a curve z(t) in
M is by definition D-parallel iff v(t) = k(t).v for some v € V and a horizontal curve
k(t) in K (a horizontal lift of x(¢)). Thus the K-invariant tensors a and v := d— D
are D-parallel. It remains to compute v at r. Let z(¢) be a D-geodesic starting
at z. Then z(t) = e’z for some A € m and k(t) = €' is a horizontal lift, hence
v(t) = k(t)v is parallel along z(t). Thus v4,v = v'(0) = Av, so y4. = A € End(V).
We will call such connections canonical (cf. [K]).

The aim in [02] was to show the homogeneity of an isoparametric submani-
fold M by constructing such a connection D (now called Olmos connection) which
imitates the canonical connection when M = Ad(K)z =: K.z is a principal orbit
of an s-representation. In that case which we will call standard, the canonical con-
nection given by m = 3 . €, (a reductive complement of £,) has an important
additional property: If we pass to a singular orbit F' = K.z with z — z € v,, we get
a decomposition m = my + my where m; is a reductive complement of €. in ¢ and
mg = mNE. is a reductive complement of &, in &,. In fact, we put mg = Zamzu 5
and m; = 3 5. ,0¥3. Hence the canonical connection for M also determines a
canonical connection for F' and further my.z L my.z, and my.z = my.z = T.F.

Let us translate this property into the language of the covariant derivative
D. The Ad(K;)-invariant splitting m = my + m; determines a D-parallel splitting
TM = Ey + E; with E;(kz) := k.m;.x for i = 0,1. Recall that E,(z) = T.F is
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invariant under £, and hence under my. Further note that m; is a £.-module, thus
[mg, m;] € my. This implies v5, Eg C E) since at the base point = we have

(&, Eo, Eo) = (my.mg.z, Eg) = (mg.my.x, Ep) + ([my, mg).z, Eg) = (Ey, Eg) = 0.
Consequently, from D = d — 4 we obtain
(1) Dg, Ey = mo(0g, Ey)

(where m denotes the projection onto Ey) while Dg, E;, is the canonical connection
of the fibre S = K. .z belonging to the focal projection 7 : M — F.

This gives us the idea how to define the connection D in the general case where
M c V = R¥ is an isoparametric submanifold: On vM we let D = V (normal
Levi-Civita connection), and for any two tangent vector fields X in E, and Y in
E, we put

(2) DxY =D§Y  if k=),
DXY = TI'_;\{@_\'Y) if k ‘-;é )\,

where m) denotes the projection onto E) and D" the canonical connection on
the curvature sphere S,. C M. Then the curvature distributions E, are D-parallel
which implies the D-parallelity of a. Moreover, the fibres S of any focal projections
m: M — F (which are already “standard”, cf. Ch.2) are totally geodesic with
respect to D, and the induced connection D is the canonical one, according to
(1).

However, only if k& > 3 we can also show that vy = d — D is parallel. In
fact, it suffices to compute (Dx7)yZ for X € E., Y € E, and Z € E, at an
arbitrary point # € M. If we have k > 4, then all three vectors are tangent
to a fibre S of some focal projection m = m¢ (where k(€) = A(&) = u(§) = 1),
thus (Dxv)vZ = (D37°)yZ = 0. But if k = 3, this argument works only if
K, A, are linearly dependent. If they are independent, we find a focal projection
w1 M — F such that Ey + E,, C Ep (being the vertical bundle, c¢f. Ch.2) and
E,. C (Ep)*. Let z(t) be m-horizontal curve with 2/(0) = X and put z(t) = w(z(t)).
By (2), the connection D restricted to the subbundle Ef is closely related to the
normal connection of F. In fact, the vectors Y, Z € Ep(x) can be extended to
parallel normal fields of I along z(f); then Y'(t), Z'(t) are perpendicular to Ep
and hence also D-parallel along the curve z(1), according to (2). We have to show
that vy () Z(t) is D-parallel. But the parallel displacements in ¥F along the curve
z(t) conjugate the actions of the normal holonomy groups at z(t) for different t,
thus 7y (1) Z(t) = 74y Z(t) (where v := ~5((1)) is parallel with respect to the
normal connection on F and hence with respect to D.

Thus we have shown that the Olmos connection is canonical; in particular, the
group K = {k € O(N); k(M) = M} acts transitively on M. But much more is
true: the Olmos connection corresponds to a very special reductive decomposition
t = &, +m (Olmos decomposition) where m is the space of infinitesimal transvections
at x for the connection D. We shall see that m has the same properties as in the
standard case. First of all, when we restrict D to a fibre S of a focal projection
e : M — F, it becomes the standard canonical connection on S (corresponding to
an s-representation) and my := mnNE. (for z = m¢(x)) is the corresponding space of
infinitesimal transvections which generate the standard group action on S. In other
words, the isotropy group K. acts on Ey(r) C v. F as an s-representation. Using the
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isomorphism ¢, : m — T, M, ¢.(A) = A.x we get a decomposition m = 3 m, with
M.z = Ei(z). Then mg = ) _oy_; M, since m,.me(x) = me(me.x) = me(Ex(x))
for all k € A.

For any k,A we find £ € v with k(&) = A(§) = 1 (using & > 3), hence for
F = m¢(M) and z = m¢(x) we have E; + Ey C v.F and m, +my C €. From the
standard case we can see

(3) m,.Fy\(z) C Z E,(z), [me,my]C Z my,
ne(x,A)" pE(KRA)"
where (x,A) denotes the intersection of the affine span of x and A\ with A and
(K, A)" = (5, M)\ {K, A},
More generally, let F' = 7¢(M) an arbitrary focal manifold and z = m¢(z). We
get a decomposition m = my + m; with my = Z)‘mﬂ my. By (3),

(4) my.F L v F, [m(),m1} Ccmy

because for k(§) = 1 and A(§) # 1 we have p(€) # 1 for all p € (k,\)*. In
particular, € = £, 4+ m; is a reductive decomposition.

5. The Lie triple product

Now we must define the Lie triple product Ron V = R". Again we get the idea
from the standard case where V' = p is part of a Cartan decomposition g = &+ p.
There we have R(x,y) = [z,y] € € for any z,y € p and (A, [z,y]) = (ad(A)z,y) for
any A € ¢, if the inner product on g is the negative Killing form. Likewise, in the
general case we may define R(x,y) € £ by putting

(A, R(z,y)) = (Az,y),
for all A € €, where the canonical inner product on £ is given by
(5) (A, B) = — tracey (AB) — tracee(ad(A)ad(B)),

imitating the restriction to & of the negative Killing form on g. This defines a
K-equivariant linear map R : VAV — £ To finish the proof of Theorem 1.3, it
remains to prove the Bianchi or Jacobi identity

(J) J(z,y,z) = R(z,y)z + R(y, z)x + R(z,x)y =0.

The same method was used before frequently (e.g. cf. [C], [EH1], [Tz], [W]). E.
Witt [W] has applied it for the construction of exceptional Lie algebras.

It turns out (see below) that the proof of (J) can be reduced to the case where
R(x,z) = R(y,z) = 0. Let us consider this case first. We have R(z,z) = 0
if and only if x € v, := v.(K.z) since it means 0 = (¢, R(z,2)) = (bz,z), ie.
z L tx =T, M for M = K.z. Thus this special case of (J) is R(z,y)z = 0 or
R(xz,y) € b, or 0 = (bL, R(x,y)) = (k-.z,y), for all 2,y € v.. So for any z € V we
have to show

(J)) e i,

We may assume z € v, M for some x € M. Let F = K.z and let m = mp + my
denote the corresponding splitting of the Olmos complement. Now (J') follows
from (4) if we show that €+ = m;. Since ¢, = €, + my, this will follow if all m, are
perpendicular to each other and to €.
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To show this we have to use again k > 3: Any two different m,, m, are contained
in an isotropy subalgebra €. (for z = z + £(x) with x(§) = A(€) = 1) which
is standard. Thus m, L my L &, with respect to the canonical (Killing) inner
product on E. since in the standard case, these spaces are sums of root spaces (cf.
Ch.1) which are perpendicular. It remains to show this orthogonality also for the
canonical inner product on £. But the canonical inner products on £ and €. differ by
the contributions to the traces coming from ¢ and v (cf. (5)). But these vanish
since for any p € A with p(€) # 1 we obtain from (3)

(my.my.Ey(z), Ey(2)) = (ma.Ey(2), me.Ey(2)) = 0,
(ad(m,)ad(my)m,, m,) = ((my,m,], [ms,m,]) = 0.

In fact, if p & (k,A), then (A, p) N (K, 1) = {pu} and (A, p)” N (K, 1)* = @ which
shows the above orthogonality. A similar argument holds for k =0 or A =0 if we
put mp = ¢£,.

It remains to show how (J) for general r,y,z follows from the special case
(J') where R(z,z) = R(y,z) = 0. The mapping J € A*V can be considered as a
trace free symmetric linear map on A2V = o(V) = €+ £*; we use the trace scalar
product (X,Y)o = —trace(XY') for X,Y € o(V). In [HZ] it was shown that J| is
a multiple of the identity (see below). Thus (J) is equivalent to J|y. = 0 (recall
that trace J = 0). Now &+ is spanned by decomposable elements z A y. In fact,
zAy LEif0= (& zAy)o = (kx,y), hence iff y € v,, and an arbitrary A € o(V) is
perpendicular to all x Ay € &+ iff A.x L v, for all z, hence iff A.x is tangent to the
orbit K.z for all © € V which shows A € . Thus it remains to show J(z Ay) =0
for y € v,.

The sections of a polar representation are the normal spaces of a principal orbit,
and the normal spaces of any orbit are unions of sections. Thus z,y € v, M for
some p € M, and we have to show J(v, v, V) = 0, 1.e. J(vp, vy, Ex(p)) = 0 for any
k € A (note that J(v,, v,, 1) = 0 due to R(v,,v,) = 0). Since J(n.(p)An.(p)) =0,
this is equivalent to J(l.(p), vy, Ex(p)) = 0. But E.(p) C v, for any z,. € L.(p),
or in other words, R(l.(p), Ex(p)) = 0. Since also R(l.(p),v,) = 0, we are done by
the special case (J').

It remains to prove that J|¢ is a multiple of the identity (cf. [HZ]). Consider the
vector space g = £ V. We imitate the way how the Lie structure on g is defined by
the Lie triple product R(x,y) = [x,y] on p =V in the symmetric case: First of all,
g is a K-module (where K acts on ¢ by Ad), hence we have a map ad(A) : g — g for
any A € b. Further, for any r € V we let ad(z) be the skew symmetric linear map on
¢ interchanging the subspaces ¢ and V with ad(z)y = R(x,y) and ad(z)A = —A.x
for y € V and A € €. This defines a K-equivariant map ad : V — o(g). Now
J(z,y,z) = ad(R(z,y))z — |ad(x), ad(y)]z for all x,y,z € V and hence

J(@ Ay) =ad(R(x,y)) — [ad(zx), ad(y)] € o(V).

We consider J(z A y) as an element of o(g) rather than of o(V). On o(g) we use
the inner product (P, @), = —trace, PQ. The canonical inner product on £ was
chosen so that (A, B) = (ad(A),ad(B)),. Further (ad(x),ad(y)), = A+ (z,y) for
all r,y € V since V is an irreducible K-representation (otherwise, M would split
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extrinsically). Now we have for any A € ¢ C o(V):

<ﬂ‘.d(A),(1d(R(l‘,y))>1 = (A,R(.r,y)} = {A.;‘L‘, y)!

(ad(A), [ad(z), ad(y)])1 = ([A, ad(z)], ad(y))
= (ad(Az), ad(y)) = \(A.z,y)

Thus (ad(A), J(z A y))1 = (1 + A)(A.z,y) = 5(1 + A){A,z A y)o. On the other
hand, since A is a derivation of R we get ad(R(z,y))A = [ad(x),ad(y)|A. Hence
the linear map J(x A y) vanishes on £, and therefore the trace in (ad(A), J(z Ay)):
has to be taken only over V. Hence we obtain

(A, J(z Ay)o = (ad(A), J(x Ay = p- (A, z Ayho

where g = 1(1+ ). Thus J[¢ = g - I. The proof of Theorem 1.3 is now complete.
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