
Isoparametric submanifolds and symmetric spaces

J.-H. Eschenburg

ABsrR cr. We give a survey on a new proof of a thorem of Thorb€.gson
rhich says that a (complet€, tuU, irreducible) i$parmet.ic 6ubhaDifold M
of codin€nsion fr > 3 ir euclideao spa.e RN is a pribcilal orbit of a i_etropy
rcpre*nt.lion of a sym€tric sp&e Usin8 subh&ifotd gmm€rry. a Lie rriple
producr onlR! iscoßtru.r€dsuchrhat,rl,t Eap'incipatorbirsof trso hosoDal

1. Introduction
An imm€rsed submanifold M in euclidean späce y = Rt is called ,ropcmrnernc

if any nomal vector extends to a normal vector field ( which is paralel with respecr
to the covariant derirative on the normal bundle, and rhe corrcsponding 6hap€
operator (Weingarten map) ,! has constant eigenvalues on M. For hyperiurfaces
th€ definition just says that the principal cürvatures are constant. The notion
"isoparametric" for this case goes back io Levi-Civita [LC]; it neans that M is a
level hype$urface of & function P whose ,diferentiel parameters" Ap and lVF l,
d€pend only on F. A similar chäracterizarion for higher codimension wäs given
by Terng lTe]; in fact, ,F car be chosen ro be a polynomial. W€ refer to ITh2l
for a detailed surve,'. In the following, we shall ahva's assume that nt i Rt
is a properly immersed isoparametric subnanifold which is /rlt (i.e. ,tt is not
contained iü a hyperplan€) and tn"dücibfe ivhich m€ans rhat ,t/ cannor b€ wrirt€n
as a product oI lower dimensional isoparamerric submanifolds; for short w€ vill call
,\/ isoparametric if it has all thes€ properries.

There are two classes of examptes knorvn. Class I (ct ITe]) coNists ofhe
mog€neous $rbüanifoldsr namely the principel orbits of isotropy reprcseDtations
of ineducible Riemannian symmetric spaces, so ca ed s-represenratio,r_ In orher
\ords, ,4,1 is (up to conn€cted compon€nts) a principat orbit of the group of or_
thogonal automo.phisms for a Lie iriple product R on RN (see b€tow). The fißt
rcntrivial examples in this class rvere discovered by E. Cartan [Ca], but h€ was not
arväre of thc simpl€ relationship to symmetric spaces. Ctass II in tum is related
to representatioDs of CliFord algebras; all of thes€ examples have codimension 2,
and r hosc whicb are not in the inrerse.tion with Class I are inhomosenmE (cf.
[FKM]). If r\1 has codinension one, it is a round sphere as was shown by Segre
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[Sl. For codimension tilo a clässification is not ]€t ar-ailabte, but c. Thorbergsson
[Th1] has ffnished the remainins cäses:

THEoRETT 1.1 (Thorbergsson). If jtl is isor)aranetric uith codimension k > g.
lhor tt hetonuc ta Ct.., 1. ,.p ,t ," t 7tt,,,.poL o,b,t ol "n -ftp,pq ntot,an.

In the lnah siep of the proof, Thorbergsson assigns io M a topological Tirs
buildnrs 

^(n1) 
ofrank A. Ä de€p theorem ofBurns an.l Sparzi€r stares (seneralizins

a 11€11knorv fact for projectn€ spaces ofdimension A > 3) thar süch a Tirs buitdine
belongs to a seniisnnple Lje group c. Finally, ]U js shown to be an orbit of;
maxinal cornpact connect€d subsroup K C C which acts orthogonally on Rtr. The
representation rnust be Zolar, i.e. there exisrs a subspace E c RN meetjng any of
the orbiis perpendicularly lPTl. Norv the proof is finished by applying a rheorem
of J. Dadok IDI:

THEoREM 1.2 (Dadok). Any polar representatian is orbit equiltalent ta the.ßo
trar)y rcpresentation al o slmmetri. space.

(Reprcsentations of ts'o groups are called orüjr ettli alent it they have the säme
orbils aft€r a suitable isometric idcntification of their representation spa.€s.)

However, th€ proof of Dadok's theorem is by classification: Usins a nccessaxv

' or dir io1 br polä, i,y. D"Jok obrair. a tinirF I -r o. po."ibtj po är represenr ar ions
which axe checked case by case. Theorem 1.2 foltol's from rhat tist by inspecrion.
Ii would be most desirable to fiDish the proof of Thorbergsson s ttreorem rather
by constructing a Lie triple product A on RN such that 1( acts as the group of
orihogonal automorphisms of -R. Nloreover, since principal orbits of polar represen-
tations are isoparametric submanifolcls, thjs rvould give a ciassiffcation fr€e proofof
Dadok's theorem for cohomogeneity A > 3. Ofcourse. the classification ofall polar
representations is much easier if Theor€m 1.2 caD be used kf. [EHA], JBI).

Thorbergsson's homogeneity iheorem was reproved in a completely different
way by C. Olmos [O2] and exiended to the infinite dimensional settins by Heintze
and Liu [HL]. These authors applied submanifotd seomerry instead of Tits build,
inss, and the group r c O(N) actins traNitivetv on M was siven in a more
e{ec i\e wdy. h' d rFcenr ioinl päper \\.i,h E. H"inrzFltH2] rhjs,oLld bp u.cd ro
construct the co.responding Lie triple product and tbus aiso ro give a conceptual
proof of Theorem 1.2 for cohomoseneiiy * > 3:

THEoRENT 1.3. Let 
^,1 

C V : RN be isopammetric uith codimensian > B.
Then lrcm the geometry ol ItI one can constru.t a Lxe tripte product R on V such
that M is a pnncipal orbit al the connectetl, arthoganat automorphisn aroup al R.

For complei€ness let us recall that e Lie tnple praduct on a. euclidean vector
space y is a trilinear map ("rriple produci,) R:V xV t y + y satissins the
algebraic curvature identities and moreover, th€ linear maps u H A(r,3i)z beiong ro
the Lie algebra of the orthogonal automorplism group Il of (y,,R), for a r,y € y.
The cuvature tensorofa symmetric space has this property, and a construction due
to E. Cartan shows the converse: I}om a Lie triple (%R) we obtain a symmetric
space G/K Nhere G has a Lie algebrä g vith g: !S y as a vector space, anat a
Lie bracket extending that of t is defined as foltorvs: tor all ,4 € € ard , € y we
put [,4,r] :,4r € Y änd [e,yl : Ä(a,y) e f.
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Va.rious authoß have contributed to the the proof of Theorcm 1.3, and it is tlrc
aim of this suney to outiine the ftrll chain of arguments which yras necessary to
accomplish this prool It is a pleasure for me to thanl E. Ileintze and A.L. NIarc
for many useful hints and discussion.

2. Isopaiametric submanifolds

All detaiis in this section can be found in [PT]. I€t M c y = RN b€ isopara
metric. Let ,/ be the space of parallel normal fields on M; recall that a normal field
€ is parollel if its derivative A€ is always tangent to M and hence its shape operator
is sinply ,4€ = -d€. By the Ricci equetion, two such operators commute, so they
can be dia€onalized simultaneously. fhus the tangent bundle has an orthogonal
decomposition TI,I = D^.^E^ for a fiDite set l of linear forms on y 6uch that
,ar : x(1) I on E". The E^ are called ctnatue dißtributiotß, the linear forms
K € L are the principal cür?ot?rr# and their dual .reetorc nR e , principal cunahre

Isoparametric submanifolds come in families. For any € € v let T€ : M - V
be the end point map ne@) = r + €(r) and put M, = na(M). The differcntial
d.ftf = I - A€ is zero precisely on all E^ with li(€) = 1, thus it has constant raDk.
Consequently, it{ c y is again an immersed submanijold a d ra M - Mq a
submersion. If Ä(€) = 1 for some x e A, then M( drops dimerßion and is called a

focal nanilold. For such € the fibres of ne I M - Ma are tang€nt to t^(€)=r 'E'".
Hence th€s€ distributions arc integrable. Moreover, the integräl leaves (fibres) are
totäliy geodesic since ä fibre F = ?rar(c) is the inrersection of M with the affine
subspace , + yv(M{) containing aU normal spaces r+ v"(M), r e F. In pärticular,
if,i(€) = 1 forjust one Ä € 

^, 
the fibre of?r€ (the integral leafoft^) through r € M

is a sphere S^ (r) of radius l/ln^l cent€red at r + & (s) where 1^ = nilln"ir. it is
called cunature sphere. For all other I (those with 

'i(€) I 1 for each /r € 
^) 

the
map rC is regular with T"-l,yllla = 4i,t. Such ,lt{ is again isopaxam€tric since
it has th€ same parallel normal ffelds, and its shape operator sith r€sp€ct to any
4 € , has corEtant eisenvalue (4)/(l -,i(€)) on E^. lt is called a pamllet maniiotd
of lI.

Thus the submanifolds M{ form a sort of foliation of RN (at least localty, büt
according to {Te] even globally) with leaves of constant distance from each other,
but sone "singülar" leaves (th€ focal marifolds) havc tolr€r dimension. The affine
norDäl spaces u,. = {r + 1(r); € € /} for ? € ,{t meet all leaves perpendicularty,
ard the singular leaves jüers€{t /- in a subset S which is the union of the /rcäl
hsperytanes I^(r) - b+ €(c); x(€) = t).

For somc 4 e / it happers that ,l'If = r{1 in particuiar this is tru€ for € = 2€ts
for anl l € I, sirce r and r+24r(r) arc arlt;podal points in S/(r) c M for
arbitrart x € t/. Those ,r€ {orm ä sroup of ditreomorphistns of rlI, called the ty4ll
groüp trl/. Thel,preserve the afrDe normal spaces, i,.e. vo1.) = y,161 saay 4 E 91r,
and conseqüently, the Dormal parallel translation from r to d(z) defines an affine
isometry d' of ,, s€ndirlg i + €(.r) onto d(r) + {(d(r)). This determines an amne
action oI lY on ," keeping th€ singulAr sei S invariaDt- For d = nr{" the map d.
is th€ reflection at the hyperplane lp. In fact, lt/ is g€nerated by the tr2a,.

A priorii the prilcipal curvature set 
^ 

might contain the zero tinear form.
but jn this case Jtf \rould split otr a euclidean factor which we have excluded by
assümption. The reason for this splitting is thät the eisenvalues of A€ - -,4r are
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bounded arvay from 0 for aDy € € / with K(€) l0 for all /r e Ä \ {0}. Namely
the leaves S0(r) of the dislribution Eo on iI are afrne subspaces along which any
€ e ,/ is corNtant; they are the fibres not of an endpoint rnap tr{ but of the "caüss
map" { : ,11 * SN t. \\Ie claim that any two nbres 5o(r) and so(y) have bounded
distance and h€nce are parallel afrne subspaces Nhich can be split on This woirld
be clear if the submersion { sere Riemannian. i.e. if d€ preseryed the lcngrh of
"horizontal" curvcs in ,11 (those pcrpendjcular to to). But instead, d{ - -,,1(
multiplies eacb l'e.tor in r'" by -a(€), he ce the leDsrh of th€ causs imase of
any horizontal curve 3 in nf is boundcd from below: I({ o e) > n . ,(e) with
m: min"lolÄ(()l >0. If in turn we start with a smooth curve cin SN-l with
lensth, from f(i) to {(y), \€ obtain a horizontal lift i bets€en S0(r) and So(y)
starting at an arbitray 2 € S0(r), ard we have r(t) < r/m whic[ sho$s thar any
point of S0(r) has distance S ,/'n from So(3/), concludiDg the argumcnt.

Now \r€ can see that ,ll lies ilselfin a sphere in RN; in particular, ,l,I is compact.
In fact, the focal set S C ,. consisting of the finitely many hyperplanes i^(.r) is
invariant und€r the reflections ac thase hypeetanes (belonging to the Weyl group);
this is possibl€ only if all l" (r) neet ir a conmon point 

"o = r+{, Then,i(€,) =1
for all n e Ä which shows that lU$ is the shrgl€ poini..", and,4il is contained in
the sphere of radius 16"l arouna r,. \Ve may assurne r" = 0 and M c SN r.
Ther the position vector x is perpendicular to ?iil. Hence y" becom€s the linear
normal space (4,11)4, aud l^(.r) c yr is the linear hyperplan€ n^(r)r; note ihat
Ii(o) = -l for all ,i € 

^.
Examples of isoparametric submanifolds ,Lt C / a se as priDcipal olbits of

subgroüps K c O(y) $hich are polar, i.e. th€re is a subspace D c y ('s€ction")
meeting all orbits perpendicularly. For a principal orbit ,4r' = lf.c (ve may assume
r € t), w€ have t = ,,. Since the isotropy group ,K" of a principal orbit scts
triviaily on y", any normal vector {o € yr can be extended to a ünique K-invariant
üormal field f rriih €(tr) : *€". Then tra(nt) (where r((r) = r + €(r)) is another
orbit which by polarity is perpendicular to t. Henc€ { is parallel b€cause a.( =
0.4 - t e Er = T"t[. Clearl)., the singular orbits are the focal manifolds.

The most prominent €xamples of polar representations are the isotropy rep
res€ntations of symmetric spaces (s-representations): Let G/l( be a Riemannian
symmetlic späce of compact type and g = t + p its Cartan de.ompo6ition. Th€n
the action of ,4d(Jl) C Ad(C) on p C g is polar, and any maximal abelian subal,
gebla o c € is a section: eanh Ad(K)-orbit meets o (conjugacy of maximal abeliar
subalsebras of p, ct lHj), and for any r € o \€ have 

",(Ad(l()r) 
= ad(tb r o.

since (od(r)-., y) = (l,lr. Jl) - 0 for all v € 3

Th€ principal curvatures in this exa.nple are express€d by the rort, of the sym-
metric space. Recall that th€ common eigenspac€ d€compocition of the ad(r) , r € a
(which are skev symmetric linear maps of g) leads to orthogonal decompositions
t: to + D"ea !" and p = a+ t"€Ä p", where A is a finite subset of a' (rhe set of
molr), such that each od(r) map6 p" into l" and vice velsa ishile od(')2 has eigen
value -a(r)' on l" +p". Now let ,U : , d(r)r for some r € q be a prjncipal orbit,
i.e. a(r) l0 for aU o e A. Let ( € 2,,\,I = o andu=adlA)r = -ad,(r)A €T,II
lor some .4 € t. Then A6(u) : *!ea(",txl,=u = ad(qA. ß A € td, then
ad($A = ffiadQ)A, thus ,4€ has eisenvalue - 

"afi 
-' * c ?irv, and th€ prin-

cipal cuvatures are,r = -;fu for all a € 
^. 

If also 2a € 
^, 

the corresponding
curvature distribution is pd + p2a.
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3. Homogeneous slice theorem and normal holonomy

$re want to prove that an isoparametdc submanifold M c y is the orbit
of an s-representation. As a first main step ive show that many totally geodesic

submanifolds of t/ satisly this properiy, namely the fibres of th€ focal p.ojections
(Homoeen€ous Slice Theoretn, cr [IIOTh]). Let 4 € /be ä /ocalnomal6eld, i.e.
n({) = l for at least one }i € 

^. 
Corsider the submenion r = ret M - F: lule

with fibrcs S(z) = tt-tz c M (also ca.lied slicer) for all; € F; these are the
integral lear€s of th€ distribution EF ,= D^Af=, E^ called uerrtcol öündie. From

the invariance of E under the shape operstors ,4, it follows easily that S(r) is
totally geodesic in M and again isoparametric in its linear spall (ct [HPT]). But
more is true: there is 6 large group of isometries acting on S(c). This is du€ to a
general fact for a submersion ?r : M + F with totally geodesic fibres: any piecewis€
smooth curve c in ,F ftom z0 to 2r det€rmines an isometry n.: S(zü - S(zt)
wnere A"(r) Ior any c € S(r0) is the end point of the horizonta.l lift of c staxtins
from r. In particular, for a clos€d curve (zx : z1 = z) 1 e obtain a.n isometry of
S(z). Since the horizontal distribution is totally non-integrabl€ (i.e. its it€mted
Lie brackets generate all vector fields). th€ group of isometri€s g€nerated by the ä.
acts transitively on ,5(z) (cf. [HOThl).

In our case, S(z) is not only a subEet of M but also of the normal space

z + u,F = u.F because for z = ?r(t) we have t - z = -€(t) e v,M C v.F.
If "(t) is a curve in M with projection 4t) = "(,(t)) = '(f) + €('(l)), then
c(t) ß a horizontat Iifi ol z(t) ift /(t) € tr('(t))a = T.(44. This means that

#€(r(t)) € 
".()F 

or in oiher words, 1(r) = 4(c(t)) considered as a normal 6e1d of
F along the curve z(t) is parallel in the normal bundle ofl'. Thus the isom€tries Ä.
for ciosed curv€s c(r) : z(t) in a are precis€ly the e\ements oI tt'e holonom! src1Lp
of uf, so each S(z) is an orbit of the nonnal holonomy group at z.

This completes the proof of th€ Homoge eous Slice Theorem silce a few y€ars
before, Olmo6 [O1] had showtr that the r€stricted normai holonomy group of any
subnanifold F c Rx is ar s-representatioD. The idea of this remarkable theorem
is easy to understard: Starting from the normal curvature tensor A" : T,FA?r -
End(/I) an alg€braic cur\äture tensor 7? on each l/.F is obtained by putting

ß(1,4x = t R'(,4f k,),.44k,)X

where (€,) is an orthonormal basis of ?.F. By the Ricci equaiion, the 'sectional
curvature" of ß is (R(€,d4,tt = ]llee, erll'; j particuiar, t? has nonpositive
scalar curvaturc which is zero onb if ß = 0. Lct ,Ii denote the resiricted holonomy

sroüp of ,-F at z (a compact subsroup of O('/,,F)) aDd b its Lie alsebra. Averaging
R oret H, i.e. putting ,e - .[,,(n.ß)dÄ wlrcre (n.ß)({, a) = hlz(h-l€,h tq)h 1,

onegcts an ä-iD\ariant curvature tensor\\lich is nontrivialsince averaging does nol
chansc the scalar curvature. No\r frolll R"(o, u,) € b for all r,,11] € ?.F w€ obtain
ß(€,?) € 0 and coDsequcntly R({, ?) € Ir which shows that .R is a (semisirnple) Lie
triple product oIr ,: F; recall tlDt b belongs to the Lie algebrä of the autornorphism
group of R. This argument was alread) used bl Siruons [Si].

4. The homogeneous structure

A compact subnranifold ,\/ c SN-t c y - RN is cnlled eztrinsic homoseneous
iI it is the orbit of a compact subgroup I( C O (N) . This global property can also be
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expr€sr€d in local terms ivhich wäs obs€rved first by Ferus [F] änd Strübing [St] in
a sp€cial cÄse: trI is e dnsic s|mmetric (i.e. invadant under lhe reflections at all
rcrmal spaces) iland only itit has pa.allcl second fundamental fonn a for the Levi-
Civita connection V on fM and v^1. trlore generally, ,4/ is extrinsic homogeneous
ifand only if a is parallel for a connection, on TtI G /,ill prcserving this sptitting
such ihat D - V is ,-paraller (losl, IEI).

Lci us briefly r.call the id€a of the proof. \\'e consid€r a conn€rtior , on
tlre trivial bundle E = U x V = T II A v M fü which ?,jl{ ard,M are parallel
subbütdles and o is D-parallel, i.e. V - ä is ,-parallel, $here a is the trivial
connection on ,. Suppose further that ,) :: A , is ,-parallel (which is €quivalcnt
to the r-pamlletity of D-V). Then a D-parallel basisb= (br,...,ötu) of E alons
a r-seodesic ? (\e may a5"sume .)/ = 4) solves r/ : ,r1,ü = ö. A for soüre constant
matrix A (the matrix of the parallel cndomorphisrn 71, wiih respcct to thc parallel
basis ü), hence ö(r) : b(o)erj. Now consider a € O(N) sendins r = ^/(0) onto
kx : ! e lt s'rch thai A(4,U) = T,nI and l.(r(r)) - .r(u) (where &.1"ru =
A'lr '.A-'ru). Then t: *ö solves the same ODE as d, so it is a parallei basis along
the ,-seodesic t startins at y with initial direction r1'(0) = kbr(0). In particular
ör = kür and by intcCration'i = *?. Appbing the sam€ argument to aI geodesics
'7 starting at x and even to all g€odesic polygons we s€€ that klM) = M. It].
particulär w€ can choos€ /. to b€ a paiall€l displac€ment frorn r to y along aDy
curve connectirg these points. So we se€ that th€ group K = {/i € O(N); ,t(Lt) =
M) acrs trans:ri\eJy on \r: in fa.ct rhi" hokl pven for rln slbgroup generatcd by
the transoe.tioß of , (i.e. isometries being parallel displacem€nts along some
geodesic).

Vice versa, if,t/ c y is extrinsic homogeneous then tI = I(/K, where J("
is the isotropy group at t E 44. An ,4d(K,)-invariant decomposition I = lr + n
determjnes a ieft invariant horizontäl distribution A (a connection) on the principal
bjtndle K - K/K" = I,l with 7-l^ : /i.rn C T^lf and hence a K-invariant covariant
derilaiive D on the associated buDdle E: a seclion o(r) of E along a curve:r(t) in
M is by definition ,-parallel itrtl(t) = A(t).l, for some u € y and a horizontal cüv€
k(r) in K (a horizontal lift of r(t) ). Thus the (-invaxiant tensors o and ,) := A - ,
are ,-parallel. It remains to compute I ai r. Let .r(r) be a ,-geodesic starting
at t. Then r(r) = e'Äz for some Ä € m and A(r) = eli is a horizontal lift, h€nce
tl(r) = ,t(t)o is parallel alons r(,). Thus r.", = rr7(0) = ,4tl, so %, = 1 € End(V).
We will call such connections cdnon,cal (cf JKI).

The aim in [O2] was io show the homogeneitv of an isoparametric submani-
fold ,tI by constructing such a connection , (now catled Olmos conneclron) which
imitat€s the canonical connection wh€n M:,Ad(K)r:: r(.r is a principal orbit
of an s-representation. In that case rvhich we will call ilandard, the canonical con,
ne€tion given by m - Doea t" (a rcductive complement of ti) has an important
additional property: Ifq€ pass to a singutar orbit F: K.z with;-r € /,, weC€t
a decomposition m = m0 + mj wherc mr is a reductive complement of t, in I and
rb = rnn l. b a reductive complement of t" iD 1,. In faci, \€ put no = Do(:)=o fa
snd mr = tr(:)+otJ. Hence the canonical connection for /tI also det€rmines a
caronical connection for F and further m0., -L mr.a, and mr.r = mr.z = T"F.

Let us translate this property hto the language of th€ covariant dedvative
D. The Ad(K,)-invariant splitting m = tio + rnl determines a ,-paratlel splittins
TI,l = Eo+ g \vith Er(kr) := k.m,.r for i = 0,1. Recall that tr(!) = T,a is
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invariant und€r l, and hetrce under mo. I\rth€r note that ml is a !.-module, thus
Jno,ml] C nr. This implies ?r, ro C Er since at ihe base point c we hav€

(rr, Eo, Eo) = (nr.mo.r, ro) = (mo.tnr.o, -ao) + ({rnr, mol.c, ro) = (rr, Ar) = o.

Conseqüently, ftom, = A -,y we obtain

(1) D6,E6: n6(0s,Eo)

(where no d€notes the projection onto E0) while ,Eoto is the canonicd connection
of the fibre S = I(..r belonging to the focäl projection ?r : M + F.

This gives us the idea how to define the connection , in the general case where
rtf c V = ßN is an isopanmetdc submanifold: On uLI $e let D = V (normäl
I-evi Civita comection), and for any two tangent vector fields X in E" and Y in
E^ we put

(2) Dxy = DiY if x = ),
DyY = n{ö1Y) rt nl\,

wher€ ,rr denotes the proiection onto Er and ,t the canonicel connection on
the curvature sphere S" c r11. Then the curvatur€ distributions Ei are D-parallel
which implies the D-paralielity ofo. Moreover, the fibres,5 ofany focal proiectioDs
r. M - F (which are already "standaxd", ct Ch.2) are toially geodesic wiih
resp€ct to D, and the induced connection Ds is the canonical one, according to
(1).

However, only if Ä > 3w€ can also show that l = B-D is parall€I. Lr
fact, it sufrc€s to compute (rx,))yz for X € 8", y € Er and Z € Ea at ai
arbitrary point f, € M. If we have * > 4, then all three vertors arc tangent
to a fibre S of some focal projection ,r = rr (where ,i(1) = )(4) = r(€) = 1),
tj|is (Dx1)vZ = (Dsy1s)yz = 0. But if ft = 3, this argument wo.ks only if
x, ), p are linearly dependent. If they are indepcndeni, we frnd a focal projectior
,r : M + F such that Er * 4, C EF @eing th€ veftical bundle, ct Ch.2) and
E" c (Ee)t. L€t r(t) be r-horizontat culve with o'(0) = X and put z(t) = ?r(o(l)).
By (2) , th€ connection D rest cted to thc subbundle t/. is closely related to the
normal connection of l.. In faci, th€ vectors y,Z € Er.(c) car be extended to
parallel normal fields of a alons z(t\ the]d Yt(t),Zt(t) are p€rpendicular to -8.
and hcnce also D-parallel aloDs the curve r(t), accordirg to (2). W€ have to sLow
that 1f(r)Z(l) is t-parallel. Bul the parallet displacements ir ,a atong the curve
z(f) conjugate the actions of the normal holonomj' groups at z(t) for differeDt ,,
thus,)r(i)Z(t) -.ti.(rz(t) (rvhero 1. := "/skft))) is parallel with r€5pect to thc
nortnal coDnection on F and henc€ with respect to ,.

Thus \,e luve sho$r tllat the Olmüs connection is canonical; in particular, the
group Ä' - {l e O(N); /"(.1/) = n1} scts transitivelJ oD 

^y'. 
But much more is

true: thc Olmos connection corresponds to a very special reductive d€composition
2 = e,+m(Obnos decompastlron) where n is thc space ofinfinitesimal transvections
at a for the conn€ction ,. nte slnll see that n has the satnc properties as in the
standard case. First of all, wheD we restrict D to a 6bre S of a focal projection
?r{ : ,4t - f., it becomes the standard canonical corDection oD S (corrcsponding to
an s-representation) and mo := mnt. ({or z = na(r)) is the corresponding space of
infiniteshnal trans\€ctions which generate the st&ndard group action on S. In other
words, the isotrop) group l(. acts on to(r) c r/. F as an s repres€ntation. Usirg th€
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!€(^ \)'

ivhere (a,-\) d€notes the intcrsection ol the
(x, ))' = (E,.\) \ {F,.\}.

isomorphism d" rm+ r.n', d"(.4) = ,4..r se get a decomposition n = t rn^ with
m^.r - E"G). Then mo = t,L(, r tn^ sin(c rn".r.(rj = rr((md."rj nlEir))
forallE€^.

For any,r,) N€ find € €,/ with,i(€) = l(1) : 1 (usins ß > 3), hence ror
I'=tr€0\1) and z = re(r) we have E" +EÄ c /.F and m^+ru c f". From the
standard case $€ can sce

(3) m^.rr(r) c t t/,(r), tm",mrl c t mp

affin€ span of a and ) with ,{ and

llore s€nerally. let a : fl{(M) an arbjtrary focal nanifold and z = 7k(r). We
gct a deconposition m = mfi + mr with mr = Drlgy;1 rn,r, By (3),

(4) mt.u.F I v,F, [mo,m1] c Inr

b€causc ror x(€) - l and )(f) l l we ha\€ p({) I I forailp € (,i,.\)'. In
particular, t = ?. + mr is a rcductive decomposition.

5, The Lie triple product

Norv we must d€6ne the Lie triple product I on y = Rd. Again we Cet the idea
from ihe standard case where y : p is part of a Cartan decomposition g = t + p.
There we have R(r,y) = [r,y] e I for any r, y € p aod (,4, F, yl) = (dd(,A)r,v) for
any ,4 € f, if the inner product on g is the negative Killing form. Likewise, in t he
general case w€ tnay define R(r, y) € t by putting

lA, R(r,aD : \,qx,s),

for all ,4 € l, wh€re the canonical inner product on I is given by

(5)

't52

V)

(A, B) = - 112aer 1ag1 - 6acet(ad(A)ad(B)) ,

imitating the r€striction to 0 of the negative Killing form on !. This defines a
(-equivariant lin€ar map RtV AV - t, To 6nish th€ proof of Theorem 1.3, it
remains to prove the Bianchi or Jacobi idertity

J (r, e, z) :: R(x, s)z + R(y, z)x + R(2, t)u ! o.(r)
The same m€thod was used beforc frequeDtly (e.g. cf- [C], IsHtl, Jrzl, Irvl). n.
Witt [W] has applied it for the constmction of€xceptional Lie algebras.

It turns out (s€€ below) that ihe proofof (J) can be redüced to the case where
R(a,z) = R(v,z) = 0. Let us consider this case 6rst. w€ ha1€ R(o,z) = 0
if and only if r e u. := v.(K.z) since it mesns 0 = (t,Ä(r,r)) = \t.a,zt, i.e.
z I t.x - T"AI for tI = K.r. Thus this special case of ("1) is R(t,s)z = O or
.R(r,e)€t,or0=ßj,A(r,s)) : ß1.i,!), for ail r,y € ,.. So for any z € y 1A'e

t:.u, rv..
We mäy assume ze v"M fot some r €,lt. Let F -- K.z and let rn =rno+mt
denot€ the corr€sponding splitting of the Olmos complem€nt. Now (J') follows
from (4) if ve shorv that tj = rnr. 5;n"" 1, ,j + mo, this wilt follow if all rn. are
perp€ndicular to each other and to t,.
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To show this $€ have to use again /r > 3: Any two different mi I mr are contained
in an isotropy subalsebra €, (for z = t a 41s1 with Ä(€) = .r(f) = t) which
is standard. Thus rn" -L m^ -I t, with respect to the canonical (Killing) inner
product on t: sirce in the stendard case, these spaces arc sums of root spaces (cfl
Ch.l) rvhich are perpendicular. It rcmains to show this orthogonality also for the
canonical inner Foduct on t. But the canonical inner products on ! aIId t, diFer by
the contributions to the trac€s coming ftom tj and 2,1 (ct (5)). But these varish
since for an] rr € 

^ 
with p(4)11 $e obtain frorn (3)

(.r..,.r.("), s,(c)) = (mr.Ep('),m" tp(') = 0,

(ad(m^)ad(m;)rn,, m,) = (1m1, m,l, {m^, nul) =0.

In fact, ifr E (li,.\), then (^,p)n(e,p) = {p} and (),r)'n(/r,p)'= 0 which
shows the above orthogonalit]'. A similar argum€nt holds for K = 0or ) = 0 if we

Pulmo:=t,,

It remains to show how (J) for general r,y,z follows from the special case
(J') where R(r, z) = R(c, z) = 0. The mapping J e AlV can be considered as a
trace free symmetric lineär map on 

^'?y 
= o(y) = t + lr; we use the trace scalai

product (X,y)o = - trace(Xv) for x, v € o(Y). ltr {HZi it was shown that ,Il! is
a multiple of ihe identity (see below). Thus (J) is equirälent to Jli. = 0 (recall
that trace J = 0) . ["ow tr is spanned by decomposable elements r A y. In fact,
r^ s L t itr0 = (t, r 

^ 
s)o = (lc, g), henc€ iff 9 € y,, and an arbitrary A € o(y) is

perpendicular to all r^ y elt ift Ar ! u, for all r, hence if ,4.r is tang€nt to the
orbit K.s for all ,; € y which shorvs ,4 e t. Thus it remains to show J(s 

^x,) 
= 0

fot U e v..
The sections oIa polär representation ar€ the nornalspaces of a principal orbit,

and the normal spaces of any orbit are unions ol sections. Thusc,y€lpMlor
some p € M, and we hsve to show J(,/,, /,, y) :0, i.e. J(/p,'/p,t.(p)) = 0 for ary
d € ]r (note that J(/,,,/,,up) = 0 drcto Rluq,v; = 0). Since J(n^(p)^n^(p)) - 0,
this is €quivalent to J(l"(p), v E^(p)) = 0. But E^(p) 6 2." for any o" e L(r),
or in other $'ords, lq(l^(p), E,{p)) = 0. Shce also R(l^(p), /p) = 0, we are done by
thc special casc (J/).

It rerDäirs to prove that Jh is a multiple ofthe id€ntity (cf. [HZ]). Consider the
vectorspaceg=l€y. \Vc imitate the war ho\v the Lie structue on g is defined by
the Lie triple product .R(r, v) = {a,yl on p = y in the s}Tmetric cas€r First ofall,
g is a l(-rnodule (where K acts on I by Ad). hence we have a map ad(A) : g - I for
any,4 € l. hrther. for ant r € y \€ lct dd(r) be the skce'sJrnmetric linear map on

! interchangirg tlle subspaces t and y with ad(c)v = A(r,v) and ad(r)/ = -,4.r
for 9 € y aird ,{ € t. This denncs a 1( eqüivaria t rnap ad : y + o(g). Nolv
JQ,a,z) = ad\R(t,u))z - [od(:rJ,od(y)]z for all c,3,,2 € v and hence

J(r 
^s) 

: ad(A(r,e)) - lad(ll),od(r)i € o(v).

We consider J(r 
^ 

s) as an elemeDt of o(g) rather than of o(y). On o(g) we us€

the inner product (4Q)r = - tracen fQ. The canonical inner product on f was

chosen so that \A,B) - \ad(A), ad(B))r. Furiher (ad(r),od(s))r = ).(r,y) for
all r, y € y since y js an irredücible (-represenlation (otherNise, ,U would split
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extrinsically). Now rve have for any ,4 e I c o(V):

laa@),aa(Rb,u)))t = (A,RQ,s)) = (A.c,s),

laa@),laa@),aa@)}1= \lA, aak)1, ad{v)) t

= \a.l(Ar), ad(a)t | = 
^lA.t,ut

Thus (ad(.4), J(r n y))1 = (1+.\)(,4.r,3/) =;(1 +^)(4,il'^y)0. On rhe orher
hand, shce .4 is a derivation of .R we set ad(RQ,y))A = [oa(r), ad(y)],a. Hence
the lincar map ,/(r 

^ 
y) vanishes on l, and therefore the trac€ in (ad(A), J(r^ U))r

haq to be rskFn onl) ovpr y. Hcn.c wc obrain

(,4,J("r^v))o = (ad(,4),J('^ v))r : p.(.a,r 
^ 

e)o

where p = j(l + )). Thus Jlr: p 1. The proof of Theorem 1.3 is now complere.
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