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Introduction

A Riemannian manifold (M, g) is Einstein if its Ricci tensor satisfies Ric(g) = λ ·g
for some constant λ. The terminology results from the fact that if (M, g) is a Lorentz 4-
manifold, then the Einstein condition is precisely Einstein’s field equation in vacuo. In
this paper, we are interested in the situation where (M, g) admits a compact Lie group
action by isometries with cohomogeneity one, i.e., an action whose principal orbits are
hypersurfaces in M .

In the study of Einstein metrics, cohomogeneity one examples are of particular
interest because the regular part of (M, g) corresponds in a natural way to a spatially
homogeneous Lorentz Einstein manifold. Indeed, the first non-Kähler inhomogeneous
compact Riemannian Einstein manifold was constructed by the physicist D. Page from
the Taub-NUT solution [Pa]. His construction was generalized by Berard-Bergery in
the unpublished preprint [BB] and later independently by Page and Pope [PP1]. Sub-
sequently, many authors have studied Einstein metrics of cohomogeneity one in various
specific instances. While these works are too numerous to list, we mention specially
the work of Y. Sakane, for he constructed in [Sa] the first non-homogenous examples of
Kähler-Einstein metrics with positive anti-canonical class. These examples were later
generalized by him and N. Koiso in [KS1] and [KS2].

Cohomogeneity one Einstein metrics are interesting from another point of view.
As a partial differential equation, the Einstein equation is a very complicated non-
linear system whose gauge group is the group of all diffeomorphisms of the manifold.
A standard strategy in dealing with non-linear scalar partial differential equations is to
study the rotationally symmetric case as a preliminary step. For the Einstein equation,
the analogous step is the study of cohomogeneity one metrics, which includes the special
case where the metric is rotationally symmetric about a point in the manifold. We
shall see that having a singular orbit (i.e., one whose dimension is less than that of the
principal orbits) which does not reduce to a point necessitates additional considerations
and gives rise to new phenomena not encountered when the metric is rotationally
symmetric.

The object of this paper is to undertake a general study of the problem of the local
existence and uniqueness of a smooth invariant Einstein metric (of any sign of the Ein-
stein constant) in the neighborhood of a singular orbit of the group action. If a compact
Lie group G acts with cohomogeneity one on a manifold M with a singular orbit Q,
then Q = G/H and a tubular neighbourhood of Q is equivariantly diffeomorphic to an
open disk bundle of the normal bundle E = G×HV , where V is a normal slice of Q in
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M on which H acts orthogonally via the slice representation. The principal orbits are
then the hypersurfaces which are the sphere bundles over Q of (small) positive radii.
As the radius tends to zero, these principal orbits collapse onto the singular orbit in a
smooth way. This basic geometry allows one to reformulate the Einstein condition in
the tubular neighborhood as an initial value problem in which the initial data consist
of a given invariant metric and a prescribed shape operator on Q. Our main result is

Theorem. Let G be a compact Lie group, H a closed subgroup with an or-

thogonal linear action on V = Rk+1 which is transitive on the unit sphere Sk, and

E = G ×H V be the vector bundle over Q = G/H with fiber V . Denote by p− an

ad-invariant complement of h in g. Let v0 ∈ Sk have isotropy group K. Assume that

as K−representations, V and p− have no irreducible sub-representations in common.

Then, given any G-invariant metric gQ on Q and any G-equivariant homomorphism

L1 : E −→ S2(T ∗Q), there exists a G-invariant Einstein metric on some open disk

bundle E′ of E with any prescribed sign (positive, zero, or negative) of the Einstein

constant.

Some remarks about the theorem are in order. First, the assumption about the
irreducible summands in V and p− may appear strange, but we shall see in §2 that
it is quite natural in the context of the Kaluza-Klein construction. Second, note that
the initial metric and shape operator are actually not sufficient to ensure uniqueness of
the local solution. Because of the requirement of smoothness, the distance spheres in
V must become round to first order as the distance tends to 0. Therefore, one expects
to be able to prescribe the initial second derivatives of the V -part of the metric in the
initial value problem. However, we will find out in §5 that when the singular orbit G/H
does not reduce to a point, still more initial conditions need to be prescribed before
the solution of the initial value problem is unique. The number of parameters of local
solutions with a given initial metric and shape operator can be computed explicitly
using representation theory. In particular, in §5.5 we give an example of a sequence
of manifolds (of increasing dimension) for which, in order to specify a solution of the
initial value problem, one needs to prescribe higher and higher initial derivatives of the
p−-part of the metric.

Generally speaking, the Einstein condition for metrics of cohomogeneity one re-
duces to a non-linear second order system of ordinary differential equations. We include
a derivation of this well-known reduction in §2. Our version is actually a reduction to
a first order system that emphasizes the role of the shape operator of the orbits. For
example, the existence of a smooth metric on E implies that Q must be a minimal
submanifold. We also discuss an important observation of A. Back (Lemma 2.2) re-
garding the role of the second Bianchi identity (i.e., the infinitesimal action of the
diffeomorphism group). It implies that when there is a singular orbit, any smooth

invariant metric which satisfies the Einstein system in the principal orbit directions
automatically satisfies the whole system.

The Einstein system is also complicated by the boundary conditions which are
necessary to ensure that a solution actually corresponds to a smooth metric on M .
While it is not difficult in specific situations to formulate the appropriate boundary
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conditions, it is not entirely trivial to do so in complete generality and in an explicit

form. In §1, we give a necessary and sufficient condition for an invariant metric on E\Q
to extend to a smooth metric on E. But, as can be seen from the statement of Lemma
1.1, a more explicit condition requires computations involving representation theory,
which in turn requires more specific knowledge of the triple (G, H, K). Much of the
difficulty in analysing the Einstein system in generality stems from these “non-specific”
boundary conditions, which make ordinary analytic techniques (such as the variational
approach) hard to apply.

Another source of difficulty in treating the Einstein system in generality is the
complexity of the expression of the Ricci tensor of a homogeneous space. Without
specifying (G, H, K) explicitly, one must nevertheless extract enough geometrical infor-
mation from the general expression of the Ricci tensor for use in solving the Einstein
system. In the initial value problem, as the regular orbits collapse to the singular orbit,
the Ricci tensor and shape operator blow up in the collapsing directions. In terms of
the Einstein system, this is reflected in the singular point at the origin (which cor-
responds to the singular orbit). From a purely analytic point of view, one therefore
cannot expect to have formal power series solutions, even when the system is linear.

We shall solve the initial value problem by the method of “asymptotic series”. The
first step is to show that there is in fact a formal power series solution. After that, one
takes a high order truncation of the formal solution and applies Picard’s iteration to
it to get a real solution. Finally, one must ensure that the real solution actually gives
a smooth Einstein metric. The bulk of the work of this paper is in establishing the
first step and will be presented in §4 and §5. Through studying the limiting behavior
of the Ricci tensors of one-parameter families of homogeneous metrics satisfying the
appropriate initial conditions, we show that a formal power series solution always exists,
even though the linear operator (Lm in §5) in the recursion formula for the Taylor
coefficients of the solution is not surjective in general. This is possible because the
requirement for smoothness, when set up properly, ensures us that we stay in the range
of the operator Lm. The non-uniqueness comes from the kernel of this operator.

We hope that an understanding of the initial value problem will eventually con-
tribute towards the understanding of the general problem of constructing complete
and compact cohomogeneity one solutions. We take the opportunity here to mention
two very recent developments on this front. First, Christoph Böhm, in his Augsburg
thesis [Bm], gave a rigorous construction of a cohomogeneity one Einstein metric on
HP 2] (−HP 2) and other low dimensional spaces. A numerical construction for such a
metric was given in [PP2]. In a different direction, Jun Wang, in his McMaster thesis,
has extended the work of Koiso and Sakane by showing that even when the existence
of Kähler-Einstein metrics is obstructed, there exist Riemannian Einstein metrics on a
large family of associated 2-sphere bundles over products of Kähler-Einstein manifolds
with positive anti-canonical class.

The second author would like to acknowledge the support and hospitality of the
Mathematics Institute of the University of Augsburg during his visit in July 1993 as
part of the Graduiertenkolleg program. Both authors would like to thank Lionel Berard-
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Bergery for discussions and his hospitality during their visit to the University of Nancy
in June 1990. We are grateful to C. Böhm for several useful comments on preliminary
versions of this paper.

1. Smoothness of tensor fields along the singular orbit

Let M be a connected (n+1)-dimensional manifold on which a compact Lie group
G acts smoothly with cohomogeneity one, i.e. the codimension of the principal orbits
is one. Let Q = G · q be a singular orbit with isotropy group H = Gq, and let
V = TqM/TqQ be its “normal space” at q on which H acts linearly with cohomogeneity
one. The normal bundle of Q is E = G · V = G ×H V , and we may identify a
neighborhood of Q in M with the total space of E. The principal orbits are P = G · v0

for any nonzero v0 ∈ V ; they are tubes around Q and can be identified with the sphere
bundle of E where we have chosen an H-invariant scalar product 〈 , 〉 on V .

Abstractly, let G be a compact Lie group and H a closed subgroup which has an
orthogonal representation (not necessarily faithful) on V = Rk+1 with cohomogeneity
one, i.e. it acts transitively on the unit sphere Sk ⊂ V . Let E = G ×H V ; this is a
vector bundle over Q = G/H. We regard V as the fibre of E over q = eH ∈ Q by the
embedding

V → E, v 7→ (e, v) · H,

where e ∈ G denotes the unit element. The unit sphere bundle of E is P = G×H Sk =
G · v0 = G/K for some fixed v0 ∈ V with isotropy group K = Gv0

= Hv0
.

Let a ∈ C∞(S2TE) be a smooth G-invariant field of symmetric bilinear forms
(quadratic forms) on the manifold E. Since E = G ·V , the tensor field a is determined
by any H-invariant a ∈ C∞(S2(TE)|V ). An Ad(H)-invariant (reductive) complement
p− of h in g defines a G-invariant distribution Hg = dLg · p− on G, i.e., a G-invariant
connection on the principal bundle G → G/H = Q, which in turn defines a G-invariant
connection on the associated vector bundle E. So we obtain a G-invariant decomposi-
tion of TE into vertical and horizontal subbundles. These are canonically isomorphic
to π∗E and π∗TQ respectively, where π : E → Q is the projection. Thus

TE = π∗E ⊕ π∗TQ.

Over V , these pull-back bundles are trivial, i.e., we get an H-invariant trivialization

TE |V = V × (V ⊕ p−).

Hence a G-invariant quadratic form is nothing but an H-equivariant smooth mapping

a : V → S2(V ⊕ p−).

Since H acts transitively on the unit sphere Sk ⊂ V , it is convenient to describe the
function a in polar coordinates

φ : R+ × Sk → V, φ(t, v) = φt(v) = tv.
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Then we obtain a 1-parameter family of H-equivariant mappings

at = a ◦ φt : Sk → S2(V ⊕ p−)

for t ∈ R+ = [0,∞). By equivariance, at is determined by the single value

at(v0) ∈ S2(V ⊕ p−)

for some arbitrary fixed v0 ∈ Sk; this value at(v0) must be invariant under the isotropy
group K = Hv0

, but is otherwise arbitrary.

Conversely, if H-equivariant maps at : Sk → S2(V ⊕ p−) or equivalently K-
invariant symmetric 2-tensor at(v0) ∈ S2(V ⊕ p−)K are given for all t ∈ R+, what
is the condition for the map

a : V \ {0} → S2(V ⊕ p−), a(v) = a|v|(
v

|v|
) (1)

to have a smooth extension to the origin 0?
To answer this question, it is useful to introduce the vector space W of all smooth

H-equivariant maps L : Sk → S2(V ⊕ p−). Since H acts transitively on Sk, the
evaluation map

ε : W → S2(V ⊕ p−)K , ε(L) = L(v0)

is a linear isomorphism. In particular, W is finite-dimensional. Let Wm ⊂ W be the
subspace of all maps L which are restrictions to Sk of H-equivariant homogeneous
polynomials L : V → S2(V ⊕ p−) of degree m, and let W m =

∑m
p=0 Wp. In fact, we

have W m = Wm+Wm−1 since we may alter the degree of any homogeneous polynomial
by an even number without changing its restriction to Sk, just by multiplying it with
powers of the H-invariant polynomial v 7→ 〈v, v〉. Since by polynomial approximation
∪mWm is dense in W , and W is finite-dimensional, we have W = W m0 for some
positive integer m0.

Lemma 1.1 Let t 7→ at : R+ → S2(V ⊕ p−)K be a smooth curve ( i.e. at zero,

the right hand derivatives of all orders exist and are continuous from the right ) with

Taylor expansion at zero at ∼
∑

p apt
p. Then the map a on V \ {0} defined by (1) has

a smooth extension to 0 if and only if ap ∈ ε(Wp) for all p ≥ 0.

Proof If a : V → S2(V ⊕ p−) is a smooth H-equivariant map, then a has a Taylor
expansion a ∼

∑
p Lp where Lp : V → S2(V ⊕ p−) is a homogeneous H-equivariant

polynomial of degree p. So the Taylor expansion of t 7→ at(v0) is
∑

p Lp(v0)t
p as

claimed.
Conversely, let t 7→ at ∼

∑
p apt

p : R+ → S2(V ⊕ p−)K be a smooth map with

Taylor coefficients ap = ε(Lp) ∈ ε(Wp). Let L1, ..., LN be a basis of the vector space
W , adapted to the filtration

W 0 ⊂ W 1 ⊂ ... ⊂ W m0 = W m0+1 = ... = W.
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In other words, a linear combination of the Li lies in W m \ W m−1 iff all Li with
nonzero coefficients lie in W m and at least one of them does not lie in W m−1. This
means that no linear combination of the Li as a polynomial is divisible by r2 where
r : V → R, r(v) = |v|. We have

at =
N∑

i=1

fi(t)L
i(v0)

for smooth functions fi : R+ → R. Let

fi ∼
∑

p

αipt
p

be the corresponding Taylor expansion. Then

at ∼
∑

p

N∑

i=1

tpαipL
i(v0).

On the other hand, by assumption we have at ∼
∑

p tpLp(v0), hence

Lp|Sk =
N∑

i=1

αipL
i|Sk .

By homogeneity, we obtain on V the identity

Lp =
N∑

i=1

αipr
p−miLi (∗)

where mi is the degree of Li.
Now we claim that all the powers p−mi for nonzero αip are even and nonnegative.

In fact, since the polynomial Lp is contains only an even power of r as factor, all powers
of r in (∗) must be even. Otherwise, we could rewrite (∗) in the form A = r · B for
some polynomials A and B, but this is impossible (the left hand side is C∞ while the
right hand side is not). Furthermore, if some of the powers p−mi for nonzero αip were
negative, dividing through by the highest negative power of r would give an identity of
the form

r2k0Lp =
∑′

i

αipr
2kiLi +

∑′′

j

αjpL
j ,

where k0, ki are positive and the second sum is nonzero. But then
∑′′

j αjpL
j would be

divisible by r2, which was excluded by the choice of the Li. This proves the claim.
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Thus from the Taylor expansion of fi we get

fi(t) = tmi · gi(t
2)

for some smooth function gi : R+ → R. Hence

a(v) =

N∑

i=1

gi(|v|
2) · Li(v)

is smooth.

Remark There is obviously a Ck version of the above lemma. Also, all the above
discussion holds if S2(V ⊕ p−) is replaced by End (V ⊕ p−) or indeed by any finite-
dimensional H-module.

We now make the following technical assumption:

(A) The representations of K = Gv0
on p− and V have no equivalent irreducible factors.

In this case, we have a splitting

S2(V ⊕ p−)K = S2(V )K ⊕ S2(p−)K .

and each Wm splits accordingly as W+
m ⊕ W−

m where the polynomials in W+
m (resp.

W−
m) take values in S2(V ) (resp. S2(p−)).

Remark Assumption (A) is convenient for the following computations, but presum-
ably it is not really necessary. On the other hand, we shall see in the next section that
it is a natural assumption in the context of the Kaluza-Klein construction for Einstein
metrics. Anyway, there are many cases in which it is satisfied. For example, (A) holds
if H and K are locally products H1×H2 and K1×H2 respectively such that H/K = Sk

and H2 acts non-trivially on all irreducible summands in p−. In many other cases, we
can satisfy assumption (A) by passing to a finite extension of the group G. For exam-
ple, let Q = G/H be a symmetric space and σ ∈ Aut(G) the corresponding involution
fixing H. Let Ĝ be the 2-fold extension of G by σ. If we let σ act trivially on V , then
we get a Ĝ-action on E, and the new group element σ fixes the fibre V ⊂ E, so it lies
in K̂ = Ĝv0

and it acts as id on V and as −id on p−. Thus the representations of K̂
on V and p− have no common factors.

Since V splits under the K-action as V = p+ ⊕Rv0 where p+ = v⊥
0 , we obtain a

K-invariant decomposition

S2(V )K ∼= S2(p+)K ⊕ pK
+ ⊕R. (2)

In fact, any a ∈ S2(V )K splits as a = a1 + a2 + a3 with

a2(x, y) = 〈x, v0〉a(v0, y) + 〈y, v0〉a(v0, x〉, a3(x, y) = 〈x, v0〉〈y, v0〉a(v0, v0).

Hence a2 is determined by the K-invariant linear form x 7→ a(v0, x) (or its dual vector)
and a3 by the constant a(v0, v0). For any v ∈ V , we will denote by vT the dual 1-form
〈v, .〉, and by (vT )2 the quadratic form x 7→ 〈v, x〉2 and its corresponding symmetric
bilinear form.
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Lemma 1.2 Let L ∈ W+
m nonzero and a = ε(L). Then m is even and ai = ε(Li)

for some Li ∈ W+
2 , for i = 1, 2, 3.

Proof We extend a1 ∈ S2(p+)K to an H-invariant symmetric 2-tensor field on the
sphere Sk. We have to show that this is the restriction to Sk of a quadratic poly-
nomial L1 ∈ W+

2 . By examining the different transitive linear groups H on Sk, W.
Ziller has described the space of H-invariant symmetric 2-tensors on Sk [Z]. One may
reformulate his description as follows: besides multiples of the constant curvature met-
ric, which corresponds to the polynomial v 7→ (vT )2, all other H-invariant symmetric
2-tensors are generated by projections along H-invariant Hopf fibrations associated to
H-invariant complex or quaternionic or Cayley structures. More precisely, when there
is an H-invariant complex structure J on V , we can form the quadratic polynomial
v 7→ ((Jv)T )2 which induces an H-invariant symmetric 2-tensor on Sk. Letting J vary
over all H-invariant complex structures and taking linear combinations of the resulting
polynomials, we obtain all the H-invariant symmetric 2-tensors with one exception:
the case of S15 = Spin(9)/Spin(7). In this case, the Cayley division algebra gives
rise to a Clifford family J1, ..., J7 of anticommuting complex structures on R8. This
determines a Clifford system C = Span{P0, ..., P8} of anticommuting symmetric endo-
morphisms of order 2 (reflections) on R16 with the property that any v ∈ R16 is element
of Cv = Span {P0v, ..., P8v}; in fact

P0 =

(
I 0
0 −I

)
, P8 =

(
0 I
I 0

)
, Pi =

(
0 −Ji

Ji 0

)

for i = 1, ..., 7. For any v ∈ S15 there is exactly one Pv ∈ C with Pvv = v, namely
Pv =

∑8
i=0〈Piv, v〉Pi (note that P0v, ..., P8v is an orthonormal basis of Cv), and the

8-dimensional fixed space Ev of Pv is spanned by v and the tangent space of the Hopf
fibre through v. Thus the corresponding symmetric tensor field on S15 is given by the
projection on Ev which is 1

2 (Pv + I) = 1
2(

∑8
i=0〈Piv, v〉Pi + 〈v, v〉I) ∈ W+

2 .
Further, a2 determines an H-invariant vector field on Sk which is of type X(v) =

αJv for some α ∈ R and some H-invariant complex structure J on V . Hence a2 = ε(L2)
with L2(v) = αvT (Jv)T . Moreover, a3 = ε(L3) with L3(v) = β(vT )2 for some β ∈ R.
This finishes the proof.

Now let Mn+1 be as in the beginning of this section and let ĝ be a G-invariant
Riemannian metric on M . We will now identify E with the metric normal bundle νQ
of the singular orbit Q. The metric ĝ induces inner products on p−, which can be
identified with TqQ, and on V = νqQ. These two inner products define a G-invariant
“background” Riemannian metric ĝ0 = 〈 , 〉 on E (the connection metric for the
connection on the principal bundle G → G/H given by the reductive decomposition
g = h ⊕ p−) : just take this inner product on the fibre of TE|V = V × (V ⊕ p−) and
extend it by G to all of TE. We will identify T ∗E and TE using ĝ0, hence we also
identify bilinear forms with endomorphism fields on E.

In particular, the metric ĝ on a tubular neighborhood M ′ = Br(Q) ⊂ M is trans-
planted to E′ = {v ∈ E; ‖v‖ < r} by means of the normal exponential map exp |νQ of
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the metric ĝ0. By the above lemma, ĝ is given by a smooth curve

x = (x̃+, x−) : [0, r) → S2(V )K ⊕ S2(p−)K

and the initial values are given by

x̃+(0) = I+, x−(0) = I−. (2)

Let us choose a reductive decomposition h = k⊕p+, so that we may identify Tv0
(Sk) =

v0
⊥ with p+. By construction, x̃+(t)v0 = v0 and x̃+ maps p+ into itself for all t ∈ [0, r).

Hence, in the Taylor expansion x(t) ∼
∑

p xpt
p, we have v0 ∈ ker xp for all p ≥ 1.

Furthermore, since xp = Lp(v0) for some H-equivariant homogeneous polynomial Lp :
V → S2(V ⊕ p−) of degree p, we have Lp(v)v = 0 for all v ∈ V . In particular, for
p = 1, it follows that the tri-linear map (v, w, x) 7→ 〈L1(v)w, x〉 on V × V × V is anti-
symmetric in the first two arguments and symmetric in the last two arguments; hence
it is zero. Thus (L1)+ = 0 , i.e., (x1)+ = 0, which is a well-known fact for exponential
coordinates. On the other hand, L1 = (L1)− is the shape (Weingarten) operator of the
singular orbit Q at q, and since the linear function v 7→ tr (L1(v)) on V is H-invariant,
it must vanish, i.e. Q is minimal. Thus we obtain the initial derivatives

(x̃+)′(0) = 0, (x−)′(0) = L1(v0) (3)

with
tr (x−)′(0) = 0. (4)

Alternatively, the metric ĝ can be described in “cylindrical coordinates” around Q
by the map

φ : [0, r) × P → E′, φ(t, v) = tv,

where P is the unit normal bundle of Q. Then we have

φ∗(ĝ) = dt2 + g(t) (5)

on (0, r) × P , where g(t) is the G-invariant metric on P given by

g(t) = t2x+(t) ⊕ x−(t),

and we have x̃+(t) | v0
⊥ = x+(t).

2. The Einstein condition for metrics of cohomogeneity one

Let M be any manifold of dimension n + 1 with Riemannian metric ĝ = 〈 , 〉.
Denote by ∇̂ the Levi-Civita connection and by R̂ the curvature tensor of ĝ. We consider
an equi-distant hypersurface family in M , i.e. a diffeomorphism φ : I ×P → M0 where
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I ⊂ R is some open interval, P an n-dimensional manifold, and M0 ⊂ M an open
subset such that

φ∗(ĝ) = dt2 + g(t)

where g(t) is a family of Riemannian metrics on P . We will think of g(t) as a one-
parameter family of isomorphisms TP → T ∗P . Let N be the unit normal field of the
hypersurface family, i.e. N = dφ( ∂

∂t
), which commutes with any vector field on M0

induced by a vector field on P via dφ.
Next, let L(t) be the shape operator of the hypersurface Pt = φ({t}×P ) given by

L(t)X = ∇̂XN

for any X ∈ TPt. We will consider L(t) as a one-parameter family of endomorphisms
on TP via the diffeomorphism φ. Then we have on TP

g′ = 2g ◦ L, (1)

where ′ = d
dt is the time derivative and ◦ denotes composition. We claim that ∇̂NL

corresponds to L′ under dφ. In fact, for vector fields X, Y on P , considered also as
vector fields on M0 via dφ, using covariant derivatives, we obtain

g(LX, Y )′ = ĝ((∇̂NL)X, Y ) + 2g(L2X, Y ).

On the other hand, using the ordinary derivative and (1), we have

g(LX, Y )′ = g′(LX, Y ) + g(L′X, Y ) = 2g(L2X, Y ) + g(L′X, Y ),

which proves our claim. Now, it is well known that L satisfies the Riccati equation
∇NL + L2 + R̂N = 0, where R̂N · X = R̂(X, N)N (cf [E]). Consequently, we have

L′ + L2 + R̂N = 0. (2)

We will let Rt and Rict denote respectively the Riemann and Ricci tensors of the
metrics g(t). The Ricci endomorphism of TP , denoted by r(t), is given by g(r(X), Y ) =
Ric(X, Y ), where the t-dependence is suppressed; in other words, r = g◦Ric. Similarly,

r̂ and R̂ic = ĝ◦ r̂ will denote the Ricci endomorphism and the Ricci tensor of the metric
ĝ on M . In the following, we give a self-contained derivation of the Einstein condition
for ĝ, which can also be found, in a slightly different notation, in [BB] (4.2) or [BH]
p.211. With an appropriate change of sign, the derivation also applies to Lorentzian
metrics φ∗ĝ = −dt2 + g(t).

First, we take the trace of (2). Notice that since endomorphisms of TP are studied,
the trace does not depend on the metric. One obtains

tr (L′) + tr (L2) + R̂ic(N, N) = 0. (3)
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Using the Gauss equation for the hypersurface Pt and (2), we have, for X, Y ∈ TPt

and an orthonormal basis {ei} of ĝ,

R̂ic(X, Y ) =
∑

i

〈R̂(X, ei)ei, Y 〉 + 〈R̂N · X, Y 〉

= Ric(X, Y ) − tr (L)g(LX, Y ) − g(L′X, Y ). (4)

Furthermore, by the Codazzi equation,

R̂ic(X, N) =
∑

i

〈R̂(X, ei)ei, N〉

=
∑

i

〈(∇ei
L)X, ei〉 − 〈(∇XL)ei, ei〉)

= − tr (X a d∇L), (5)

where d∇L is the TP -valued 2-form on P which is the covariant exterior derivative of
L regarded as TP -valued 1-form on P , and a denotes the interior product. Hence, in
the case where ĝ is an Einstein metric, i.e.,

r̂ = λ · I, R̂ic = λ · ĝ

for some fixed constant λ ∈ R, we obtain:

Proposition 2.1 Notation as above, the Einstein condition for the metric ĝ on M0

is given by

g′ = 2gL (6a)

L′ = −(tr L)L + r − λ · I (6b)

tr L′ = − tr (L2) − λ (6c)

tr (X a d∇L) = 0 (6d)

for all X ∈ TP .

Remark 1. If we take the trace of (6b) and use (6c), we obtain the equation

s − (tr L)2 + tr (L2) = (n − 1)λ, (7)

where s(t) = tr r(t) denotes the scalar curvature of g(t). This equation can be regarded
as a conservation law or first integral of the system (6).

Remark 2. Note that L as a shape operator must be symmetric with respect to the
metric g which does not immediately follow from (6). But later we will replace L by
1
2g′g−1 which will settle this problem.

A. Back [Ba] has made the following useful observation about the system (6). Since
[Ba] has not appeared in print to the best of our knowledge, we include a proof.
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Lemma 2.2 (cf. [Ba]) Let ĝ = dt2 + g(t) be a metric on I ×P where g(t) is a one-

parameter family of metrics on P satisfying (6a), (6b) for some constant λ. Suppose

further that the scalar curvature ŝ of ĝ is constant along {t}× P for all t ∈ I. Let v(t)
denote the volume distortion of g(t) with respect to some fixed background metric on

P . Then R̂ic(X, N) · v is constant in time for any X ∈ TP . Furthermore, if (6d) is

satisfied, then (R̂ic(N, N) − λ)v2 is also constant in time.

Proof We will apply the contracted second Bianchi identity DivR̂ic = 1
2
dŝ. Now for

any X ∈ TP ,

1

2
dŝ(X) =

∑

i

(∇̂ei
R̂ic)(ei, X) + (∇̂N R̂ic)(N, X)

=
∑

i

{ei(R̂ic(ei, X))− R̂ic(∇̂ei
ei, X)− R̂ic(ei, ∇̂ei

X)}

+ N(R̂ic(N, X))− R̂ic(N, ∇̂NX)

= λ{
∑

i

(∇ei
g)(ei, X)}+ tr (L)R̂ic(N, X) + R̂ic(LX, N)

+ N(R̂ic(N, X) − R̂ic(N, LX)

= tr (L)R̂ic(N, X) + N(R̂ic(N, X)) = 0

since dŝ(X) = 0. But we also have v′(t) = tr (L)v(t). Hence one has ∂
∂t

(v ·R̂ic(N, X)) =
0, which is the first assertion.

Furthermore, since R̂ic(ei, ei) is constant, we get for the scalar curvature ŝ =

tr ĝ R̂ic:
1

2
dŝ(N) =

1

2
N(R̂ic(N, N)).

On the other hand, the second Bianchi identity gives

1

2
dŝ(N) =

∑

i

(∇̂ei
R̂ic)(ei, N) + (∇̂N R̂ic)(N, N).

If (6d) is satisfied, i.e. R̂ic(X, N) = 0 for all X ∈ TP , we get from these two equations

1

2
N(R̂ic(N, N)) =

∑

i

{R̂ic(∇̂ei
ei, N) + R̂ic(ei, Lei)}

= λ · tr (L) − tr (L)R̂ic(N, N).

This gives

−
1

2
N(R̂ic(N, N) − λ) = tr (L)(R̂ic(N, N) − λ),

which integrates to give the second assertion (using tr L = v′/v).
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Corollary 2.3 Let G be a compact Lie group acting transitively on P . For every

choice of a G-invariant metric g0 on P and a g0-symmetric G-equivariant endomorphism

field L0 of TP satisfying tr (X a d∇L0) = 0 for all X ∈ TP , there exists a unique

Einstein metric ĝ of the form dt2 + g(t) on (−a, a) × P for some a > 0 with initial

conditions g(0) = g0, L(0) = L0.

Proof For a homogeneous metric g on P , the Ricci endomorphism r(g) is a rational
function of g (cf. next chapter), so (6a), (6b) is an ODE system, depending on the
parameter λ. Using (7), we choose λ so that

(n − 1)λ = s0 − (tr L0)
2 + tr (L2

0) (∗)

where s0 is the scalar curvature of g0. Let g(t), L(t) be the unique solution deter-
mined by the initial conditions on an interval (−a, a) with a > 0. From (5) we have

R̂ic(X, N) = 0 for any X ∈ TP at the time t = 0, hence by Lemma 2.2, R̂ic(X, N) = 0
holds for all t. Further, taking the trace of (6b) and using (∗) we get (6c) for t = 0. This

means R̂ic(N, N) = λ at t = 0 and hence at any t ∈ (−a, a), due to Lemma 2.2.

Corollary 2.4 Let ĝ be a G-invariant Riemannian C3-metric on E = G ×H V as

in §1. Suppose that k ≥ 1, i.e., dimQ < dimP . Then, if (6a) and (6b) are satisfied for

g(t) (which is defined as in §1, Eq.(5)), ĝ is Einstein and hence real analytic.

Proof Since there is a singular orbit (k ≥ 1), we get that limt→0 v(t) = 0, while
the amount of smoothness implies that R̂ic(N, X) and R̂ic(N, N) are finite. Applying
Lemma 2.2, we see that g is Einstein and finally, by Theorem 5.2 in [DK], ĝ must be
real analytic.

Remark Although we are primarily interested in Riemannian metrics of cohomo-
geneity one in this paper, the above analysis holds quite generally for an equi-distant
hypersurface family, which includes in particular the following situation. Let Z be a
principal H-bundle over a smooth manifold B such that there is a smooth H-action
of cohomogeneity one on a manifold F . Let M be the associated fibre bundle Z×HF
over B. We choose a principal connection ω on Z, a metric gB with constant scalar
curvature on B, and an H-invariant metric gF of the form dt2 + h(t) on F . Then
the above choices determine a unique metric ĝ on M such that the projection onto
B is a Riemannian submersion with totally geodesic fibres. This is the Kaluza-Klein
construction, in which one seeks choices such that ĝ becomes Einstein. More generally,
let M0 denote the open submanifold of M obtained by removing the singular orbits of
F in the above construction. Then we may replace the metric gB by a one-parameter
family gB(t) of smooth metrics each having constant scalar curvature. As a result, we
obtain on M0 a metric precisely of the form considered in this section. Of course, as in
§1, there would be further conditions which are necessary to guarantee that ĝ is smooth
on all of M . Furthermore, (M, ĝ) in general will have very little symmetry.

The cohomogeneity one case we are concerned with in this paper becomes the
special case of the above where B = G/H = Q, Z = G, and F = V or Sk. The
hypersurfaces P are given by Z×H(H/K), where K is the principal isotropy group
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of the H-action on F . Finally, the principal connection in this case is given by the
reductive splitting in §1.

Notice that the Einstein condition (6b) in Proposition 2.1 can be satisfied by a
metric of the above type only if its Ricci transformation r preserves the splitting induced
by the principal connection chosen above. The technical condition (A) introduced in
section 1 is a natural and verifiable condition on the triple (G, H, K) which guarantees
this property of r.

Now we can extend Corollary 2.4 as follows. Let Z be a smooth principal H-bundle
over a manifold B with H compact, and ω be a principal connection on Z. Let gB(t)
be a one-parameter family of metrics on B such that for each t the scalar curvature
is constant and the norm of the curvature form of ω is a constant function on Z. Let
(F, gF ), gF = dt2+h(t), be a Riemannian manifold with a cohomogeneity one isometric
action of H. Suppose that ĝ is a Riemannian metric of class C3 constructed using ω on
M = Z ×H F of the form dt2 + h(t) + π∗gB(t). If F has a singular orbit, i.e., an orbit
of dimension strictly smaller than that of the principal orbit, and if (6a) and (6b) are
satisfied, then ĝ is necessarily Einstein, and hence is real analytic.

To see this, we first remark that the norm of the curvature of ω is defined using
a fixed bi-invariant metric on H and gB(t). Since for a fixed t this norm is constant
and gB(t) has constant scalar curvature, it follows that the corresponding metric on
Z ×H (H/K) has constant scalar curvature for each t (cf. [Be], (9.70d), p.253). The
rest of the proof is the same as above.

3. Setting up the initial value problem

In this section we will set up the initial value problem and make some general
remarks regarding its solution.

Let E = G×H V → G/H = Q as in §1 and let ĝ be a smooth G-invariant metric on
E. Then, on M0 = E \Q, we have φ∗ĝ = dt2+g(t) where g(t) is a one-parameter family
of homogeneous metrics on P . This metric is Einstein iff (g(t), L(t)) satisfies equations
(6a),(6b) in §2, where L(t) denotes the Weingarten map of Pt = φ({t}×P ). We remind
the reader that in §1 we have chosen a background metric ĝ0 with which we identify
TP and T ∗P , so that g(t) becomes an endomorphism of TP . This background metric
is determined by the restriction of ĝ to Q, the reductive decomposition g = h⊕p−, and
the restriction of ĝ to V .

Conversely, in constructing an Einstein metric ĝ, we will use the background metric
determined by the desired initial G-invariant metric on Q and any H-invariant inner
product on V , which of course induces the constant curvature 1 metric on Sk ∼= H/K.
By assumption (A) in §1, g(t), and hence L(t) as well as r(t) split into + and − parts,
and keeping in mind the results of §1, we choose x(t), η(t) ∈ End (p)K which preserve
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the splitting of p such that
g+(t) = t2x+(t)

g−(t) = x−(t)

L+(t) =
1

t
I + η+(t)

L−(t) = η−(t).

By equations (2) and (3) in §1, in order that ĝ admits a smooth extension to (an open
neighborhood of Q in) E, we must impose the initial conditions

x(0) = I, η+(0) = 0, η−(0) = L1(v0),

where L1 is the given shape operator of the singular orbit Q, which must be an H-
equivariant linear map V → S2(p−). Notice that the initial metric on Q has been
encoded in the background metric through the identification of TP and T ∗P . Also,
the H-equivariance of L1 implies that its trace must be 0, i.e., Q must be a minimal
submanifold in M (cf. (4) in §1). In these new variables, equations (6a),(6b) of §2
become

x′ = 2xη,

η′ = −(tr η)η −
k

t
η − (

k − 1

t2
+

tr η

t
)I+ + r − r̂,

where I+ denotes the projection onto p+ and r̂ is the Ricci endomorphism for the metric
ĝ, which, in most cases, will be λ · I. (Actually, to be precise, in the second equation
above r̂ denotes the p-component of the restriction of r̂ to p.)

However, in order to get a metric, we must impose the further condition that x
and xη are symmetric endomorphisms with respect to the background metric. To deal
with this unpleasant quadratic condition, we change variables again and put

y = xη.

In the variables x, y the equations become

x′ = 2y,

y′ = 2yx−1y − tr (x−1y)y −
k

t
y − (

k − 1

t2
+

tr (x−1y)

t
)x+ + xr − xr̂, (1)

x(0) = I, y+(0) = 0, y−(0) = L1(v0)

These equations will be considered as an ODE system with values in (S2p)K . Note
that

x+r+ =
1

t2
g+r+ =

1

t2
Ric+,

x−r− = g−r− = Ric−

are symmetric, and similarly, xr̂ is symmetric.
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Next we need the formula for the Ricci tensor of a homogeneous metric g on
P = G/K (see [Be], p.185 for a derivation). For any basis X1, ..., Xn of p and any
X, Y ∈ p we have

Ric(X, Y ) = −
1

2
tr g(ad(X)ad(Y )) −

1

2

∑

ij

g([X, Xi]p, [Y, Yj]p)gij

+
1

4

∑

ijpq

g(X, [Xi, Xp])g(Y, [Xj, Xq])g
ijgpq,

where gij = g(Xi, Xj) and (gij) denotes the inverse matrix of (gij). Here, we choose our
basis so that Xα =: Uα for α = 1, ..., k and Xi =: Zi for i = k + 1, ..., n are respectively
bases of p+ and p− which are orthonormal with respect to the above chosen background
metric ĝ0. We have

gαβ =
1

t2
· xαβ

+ , gij = xij
−,

and hence the Ricci endomorphism r±(t) splits as follows into a regular part and a
singular part having a double pole at t = 0 (where we have left the routine verification
to the reader):

Lemma 3

r =
1

t2
rsing + rreg

with

xrsing(U, V ) = Ric(Sk, x+)(U, V ) −
1

2
{x−([U, Zi], [V, Zj])x

ij
−

+ tr (ad(U)ad(V )|p
−

)},

xrsing(X, Y ) =
1

2
{x−(X, [Zi, Uα])x−(Y, [Zj, Uβ])xij

− x−([X, Uα], [Y, Uβ])}xαβ
+

(summation over repeated indices ) for all U, V ∈ p+ and X, Y ∈ p−.

Hence,

y′ =
1

t2
A(x) +

1

t
B(x, y) + C(x, y, t),

where
A(x) = xrsing − (k − 1)x+,

B(x, y) = −ky − tr (x−1y)x+,

C(x, y, t) = 2yx−1y − tr (x−1y)y + xrreg − xr̂.

Notice that C depends explicitly on t since rreg does.
We have therefore reduced the initial value problem for a cohomogeneity one Ein-

stein metric to a corresponding initial value problem for a non-linear first order system
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of ordinary differential equations with a singular point at the origin. Since Einstein
metrics are real analytic, we will solve the initial value problem using the method of
“asymptotic series”, which was first used by Poincaré in the linear case, see [Po]. A
more modern account can be found in [Wa], chapter 9.

The general method consists of showing that there always exists formal series
solutions of an appropriate type and then using Picard iteration on sufficiently high
truncations of the formal solutions to produce real solutions. In the linear case, it
turns out that the initial value problem can always be solved, see [CL] Chapter 5. It is
interesting to compute the linearization of our equations. One finds that it is of the form
z′ = t−2A(t)z where A(0) is lower triangular. This falls under the most complicated
case of the linear theory. In the non-linear case, formal solutions do not always exist,
let alone formal power series solutions. However, the geometric origin of the equation
brings with it nice properties which we exploit in §4 and §5 to give us formal power
series solutions. Once one has formal power series solutions, one obtains a real solution
by invoking a general theorem of Malgrange (Theorem 7.1 in [Ma]) or by carrying out
the Picard iteration directly, as indicated in §6.

4. Equivariant variation of the Ricci tensor

In view of §5, we have to study families (variations) g(t) = t2x+(t) + x−(t) of
G-invariant metrics on P with initial condition

x+(0) = I+, x−(0) = I−.

Lemma 4.1 Let ρ : H → O(k+1) be a homomorphism by which H acts transitively

on the unit sphere Sk ⊂ V = Rk+1. Let v0 ∈ Sk have isotropy group K ⊂ H. Suppose

that ( , ) is an Ad(H)-invariant inner product on h and p+ is the orthogonal complement

of k. Finally, let 〈 , 〉 be the inner product on p+ induced by the constant curvature

1 metric on Sk = H/K. Then for any orthonormal basis U1, · · ·, Uk of (p+, 〈 , 〉), we

have

−
∑

α

ρ∗(Uα)2v0 = kv0

Proof We first show that −
∑

α ρ∗(Uα)2v0 is independent of the choice of the or-
thonormal basis {U1, · · ·, Uk}. Let v ∈ Rk+1 and consider

βv(X, Y ) =
1

2
〈(ρ∗(X)ρ∗(Y ) + ρ∗(Y )ρ∗(X))v0, v〉.

This bilinear form on p+ has trace equal to 〈
∑

ρ∗(Uα)2v0, v〉, which of course does not
depend on the choice of {U1, · · ·, Uk} as long as it is orthonormal with respect to 〈 , 〉.
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Next, let S be the Ad(K)-invariant endomorphism on p+ such that 〈X, Y 〉 =
(S(X), Y ) for all X, Y ∈ p+. Then there is an 〈 , 〉-orthonormal basis U1, · · ·, Uk of
eigenvectors of S. For X ∈ p+, we have

〈ρ∗(Uα)2v0, ρ∗(X)v0〉 = −〈ρ∗(Uα)v0, ρ∗(Uα)ρ∗(X)v0〉

= −〈ρ∗(Uα)v0, ρ∗(X)ρ∗(Uα)v0〉 + 〈ρ∗(Uα)v0, ρ∗([X, Uα])v0〉.

The first term is 0 since ρ∗(X) is skew-symmetric and the second term is by definition
〈Uα, [X, Uα]p

+
〉 = (S(Uα), [X, Uα]p

+
) = λ(Uα, [X, Uα]) = −λ([Uα, Uα], X) = 0, by the

Ad(H)-invariance of ( , ). So ρ∗(Uα)2v0 is perpendicular to the H-orbit through v0,
i.e., ρ∗(Uα)2v0 is a multiple of v0. But 〈ρ∗(Uα)2v0, v0〉 = −〈ρ∗(Uα)v0, ρ∗(Uα)v0〉 =
−〈Uα, Uα〉 = −1. Summing over α gives the desired result.

Lemma 4.2 For any variation x±(t), we have

(r−)sing(0) = 0,

δ(r−)sing =
1

2
C(δx−)

with C = −
∑

α ad(Uα)2 (where the adjoint representation of h on p− is canonically

extended to End (p−) ).

Proof Let (Zi) and (Uα) be orthonormal bases for the background metrics on p−

and p+ and X ∈ p−. Using Lemma 3 and the facts that x±(0) = I± and that x−(0) is
H-invariant, we get the first equality. Furthermore, by summing over repeated indices,
we have

2δ(r−)sing(X) = {−δx−(X, [Zi, Uα])〈[Zp, Uα], Zi〉 − 〈[X, Uα], Zi〉δx−(Zp, [Zi, Uα])

− δx−([X, Uα], [Zp, Uα])

− 〈[X, Uα], Zi〉〈[Zp, Uα], Zj〉δx−(Zi, Zj)} · Zp

− {〈X, [Zi, Uα]〉〈[Zp, Uα], Zi〉 − 〈[X, Uα], [Zp, Uα〉}δx−(Zp, Zq)Zq

= −{δx−(X, ad(Uα)2Zp) + δx−(Zp, ad(Uα)2X)

+ 2δx−(ad(Uα)X, ad(Uα)Zp)}Zp

= C(δx−)(X, Zp)Zp

= C(δx−)X.

Remark If the standard metric on Sk is normal homogeneous with respect to H,
then we can extend the orthonormal basis (Uα) of p+ ⊂ h to an orthonormal basis
(Va) of a biinvariant metric on h, and C = −

∑
a ad(Va)2 is a Casimir operator for the

adjoint representation of H on p− and End (p−). However, if the standard metric on
Sk is not normal homogeneous with respect to H, then C is not a Casimir.
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The space (S2p−)K of K-invariant endomorphisms is isomorphic to the space W−

of all H-equivariant maps L : Sk → S2(p−), where the isomorphism is given by eval-
uation at v0, namely ε : L 7→ L(v0). Consider the subspace W m

− ⊂ W− of all maps L
which are restrictions to Sk of H-equivariant polynomials V → S2(p−) of degree ≤ m.

Lemma 4.3 C stabilizes ε(W m
− ) and its eigenvalues on ε(W m

− ) are λp := p(p−1+k)
for p = 0, · · ·, m.

Proof Let L : V → S2(p−) be an H-equivariant homogeneous polynomial of degree
p ≤ m. We consider L as an H-homomorphism L : Sp(V ) → S2(p−), where Sp(V ) de-
notes the p-th symmetric tensor power of V . Let vp ∈ Sp(V ) denote the p-th symmetric
tensor power of the vector v ∈ V . Then from the H-equivariance of L we obtain

C(ε(L)) = C(L(vp)) = L(Cvp),

where now C := −
∑

α ρ∗(Uα)2 for any representation ρ of H. Here, the representation
in question is the p-th symmetric power of the given representation of H on V . Thus, for
any h ∈ H we have h(vp) = (hv)p, and by differentiation we get U(vp) = p ·U(v) · vp−1

for any U ∈ h. Hence

U2(vp) = p · U(U(v) · vp−1) = p · {U2(v) · vp−1 + (p − 1) · U(v)2 · vp−2}.

Recall that {v0, U1(v0), ..., Uk(v0)} is an orthonormal basis of V . There is an H-
equivariant embedding

τ : Sp−2V → SpV, vp−2 7→
k∑

i=0

(ei)
2 · vp−2

where e0, ..., ek is any orthonormal basis of V , and τ does not depend on the choice of
this basis. Using Lemma 4.1 we get from the equation above

Cv0
p = p{k · v0

p − (p − 1) · τ(v0
p−2) + (p − 1) · v0

p}

= p(k + p − 1) · v0
p − p(p − 1) · τ(v0

p−2).

The adjoint τ∗ : Sm(V )∗ → Sm−2(V )∗ extends to a linear map τ∗ : Wm
− → W m−2

− ,
and we have

C(ε(L)) = λpε(L) − p(p − 1)ε(τ∗L). (∗)

Thus the subspace 〈L〉 of ε(W m
− ) spanned by

ε(L), ε(τ∗L), ε((τ∗)2L), · · ·

is invariant under C, and C acts on this space as a lower triangular matrix with (possible)
diagonal entries λp, λp−2, λp−4, · · ·. Thus, any element of ε(W m

− ) lies in a C-invariant
subspace where C has the above eigenvalues. This finishes the proof.
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Remark Of course, the generators of 〈L〉 can be linear dependent so that the two
terms on the right hand side of (∗) may cancel each other. In other words, not all of
λ0, · · ·, λp arise as eigenvalues on 〈L〉, but if λq is an eigenvalue on 〈L〉 for some q ≤ p,
then λq−2i are also eigenvalues on 〈L〉 for all i ≤ q/2. The full eigenspace for λm is a
complement of W m−1

− in Wm
− . As an example for the cancellation, take the polynomial

L(v) = 〈v, v〉q · I− of degree p = 2q. By polarization,

L(e2
i v

q−2) =
1

2q − 1

(
〈ei, ei〉〈v, v〉q−1 + (2q − 2)〈ei, v〉

2〈v, v〉q−2
)
· I−.

If v is a unit vector, then

(τ∗L)(v2q−2) =
( 1

2q − 1
((k + 1) + (2q − 2))

)
I− =

(k + p − 1

p − 1

)
I−,

showing that the right hand side of (∗) is zero (which corresponds to the fact that
L ∈ W 0

− ⊂ W p
−).

Lemma 4.4 For any variation x±(t), we have

(r+)sing(0) = r(Sk, x+)(0) = (k − 1)I+,

δ(r+)sing = δr(Sk, x+).

Proof By Lemma 3 we have for any U ∈ p+

−2((r+)sing − r(Sk, x+))(U) = q(U, Uα)xαβUβ ,

where
q(U, Uα) := x−([U, Zi], [Uα, Zj ])x

ij + tr (ad(U)ad(Uα)|p
−

).

Now q(U, Uα) vanishes at t = 0, by the H-invariance of the inner product x−(0). This
proves the first equation (recall that x+(0) induces the curvature-one metric on Sk).

Moreover, for the second equation we only have to consider the variation of the
factor q(U, Uα). Note that the second term is independent of t. So we get (summing
over repeated indices)

δq(U, Uα) = δx−([U, Zi], [Uα, Zi])

− 〈[U, Zi], [Uα, Zj ]〉δx−(Zi, Zj)

= 〈[U, Zi], Zp〉〈[Uα, Zi], Zq〉δx−(Zp, Zq)

− 〈[U, Zi], Zr〉〈[Uα, Zj], Zr〉δx−(Zi, Zj)

= 0,

which finishes the proof.

Next we consider the Hopf fibrations on Sk,
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(a) S1 ⊂ Sk → CP m, k = 2m + 1,
(b) S3 ⊂ Sk → HP q, k = 4q + 3,
(c) S7 ⊂ Sk → S8, k = 15.
These are Riemannian submersions with totally geodesic fibres. Let x0 = 〈 , 〉 be the
standard curvature-one metric on Sk and consider the canonical variation (cf [Be])

xt = x0|H + (1 + t) · x0|V ,

where H and V denote the horizontal and vertical distributions. Let

dV = dimV, dH = dimH

be respectively the dimensions of the fibres and the base.

Lemma 4.5 The Ricci tensor of (Sk, xt) is given by

rt = ρH(t) · I|H + ρV (t) · I|V

where

ρH(t) = dH + 3dV − 1 − 2dV (1 + t), ρV (t) = (dV − 1)
1

1 + t
+ dH(t + 1)

Proof Recall that the Ricci tensor as well as the metric is invariant under the auto-
morphism group of the Hopf fibration, which consists of the fibre-preserving isometries
of Sk. Hence we get from Prop. 9.70, p.253, in [Be] for the Ricci tensor Rict of xt that
Rict(H,V) = 0 and

Rict |H = (ρ̄ − (1 + t)µ)x0|H

Rict |V = (ρ̂ + (1 + t)2ν)x0|V

where ρ̄ and ρ̂ are respectively the Ricci curvatures of the base manifold and the fibre,
and µ and ν are real constants. These can be computed by taking t = 0:

µ = ρ̄ − ρ, ν = ρ − ρ̂,

where ρ = k − 1 denotes the Ricci curvature of Sk. Since rt = x−1
t · Rict, we obtain

ρH(t) = ρ̄ − (ρ̄ − ρ)(1 + t),

ρV (t) = ρ̂ ·
1

1 + t
+ (ρ − ρ̂)(1 + t).

The values of the Ricci curvatures are

ρ = dH + dV − 1, ρ̂ = dV − 1, ρ̄ = dH + 3dV − 1.
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In fact, on the base space, each vector lies in dV 2-planes of curvature 4 and dH−dV −1
2-planes of curvature 1, hence ρ̄ = 4dV + dH + dV − 1 = dH + 3dV − 1. Plugging in
these values, we get the result.

Lemma 4.6 Let H be a compact Lie group acting orthogonally and transitively on

the unit sphere Sk ⊂ V . Let x+(t) be a smooth one-parameter family of H-invariant

metrics on Sk such that x+(0) is the standard curvature-one metric. Then

δr(Sk, x+) = (k + 1)δx+ − 2 tr (δx+) · I+.

Proof In the following we will drop the subscript “+”. In computing the desired
formula, we clearly may assume that H is connected and acts almost effectively on
Sk. Since the desired formula is a priori linear in δx+, we claim that it is sufficient to
consider only the following two types of one-parameter variations of x(0):
(1) the homotheties x(t) = (1 + t)x(0),
(2) the canonical variation of all possible Hopf fibrations

x(t) = (1 + t)x(0)|V + x(0)|H.

This is because the only groups H with more than a two-parameter family of H-
invariant metrics are Sp(m) and Sp(m) × U(1) with k = 4m + 3 (cf. [Z]) and in these
cases the variations are generated by Hopf fibrations by circles corresponding to various
complex structures on V = R4m+4.

For variations of type (1) we get r(t) = ρ(t) · I with

ρ(t) =
k − 1

1 + t
.

Thus δρ = −(k − 1). On the other hand, δx = I and tr δx = k, so the right hand side
of the desired equation is (k + 1 − 2k)I which shows the equality.

For variations of type (2) we have r(t) as in Lemma 4.5. Thus

δρH = −2dV , δρV = dH − dV + 1

On the other hand, δxV = 1 while δxH = 0. Thus tr δx = dV and

(k + 1)δxH − 2 tr (δx) = −2dV ,

(k + 1)δxV − 2 tr (δx) = dH + dV + 1 − 2dV = dH − dV + 1.

This finishes the proof.
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5. Formal power series solutions

5.1 The initial value problem (1) in Chapter 3 takes the following general form:

x′ = 2y (1a)

y′ =
1

t2
A(x) +

1

t
B(x, y) + C(t, x, y) (1b)

x(0) = a (1c)

y(0) = b, (1d)

where x(t), y(t), a, b ∈ (S2p)K ⊂ S2(V ⊕ p−)K are symmetric endomorphisms of a
euclidean vector space p on which K acts linearly and orthogonally, and A, B, C are
analytic mappings. Suppose that

x(t) =
∑

m

xm

m!
tm, y(t) =

∑

m

ym

m!
tm

with ym = 1
2xm+1 give a formal power series solution of (1) so that x0 = a, y0 = b.

Since the left hand side of (1b) has neither 1/t nor 1/t2 terms, the initial values a, b
must satisfy

A(a) = 0 (2a)

2 dAa · b + B(a, b) = 0. (2b)

We also let

A(x(t)) =
∑

m

Am

m!
tm, B(x(t), y(t)) =

∑

m

Bm

m!
tm, C(t, x(t), y(t)) =

∑

m

Cm

m!
tm.

We substitute these expressions into (1b) and obtain

y′(t) =
∑

m

(
1

(m + 1)!

( Am+2

m + 2
+ Bm+1

)
+

Cm

m!

)
tm.

Hence,
1

2
xm+2 = ym+1 = Cm +

1

m + 1

(Am+2

m + 2
+ Bm+1

)
. (3)

Now

Am+2 =
dm+2

dtm+2
A(x(t))|t=0

=
dm+1

dtm+1
((dA)x(t) · x

′(t))|t=0

≡ (dA)a · xm+2 (mod x1, ..., xm+1).
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Similarly,

Bm+1 ≡
1

2
(∂yB)(a,b)(xm+2) (mod x1, ..., xm+1)

where ∂yB denotes the partial derivative of B with respect to the variable y. Moreover,
Cm ≡ 0 (mod x1, ..., xm+1). Consequently,

xm+2 =
1

m + 1

(
2

m + 2
(dA)a · xm+2 + (∂yB)(a,b) · xm+2 + Dm

)
(4)

for some function Dm = Dm(x1, ..., xm+1). This can be written as

Lmxm+2 = Dm (5)

where Lm is the linear endomorphism on (S2p)K given by

Lm := (m + 1)I −
2

m + 2
(dA)a − (∂yB)(a,b).

Equation (5) gives the necessary and sufficient condition for the existence of a formal
power series solution, namely

Dm ∈ im (Lm) (6)

for all m ≥ 0. Since (dA)a and (∂yB)(a,b) are bounded, Lm will be invertible for all
m ≥ m0 for some m0. Thus, if (6) is satisfied for m < m0, we can prescribe further
“initial conditions” x2, ..., xm0

satisfying (4), and then the formal power series solution
is uniquely determined.

5.2 In our case, all endomorphisms preserve the splitting p = p+ ⊕ p−, and hence
decompose into a (+) and a (−) part. The initial values are

a = I, b+ = 0, b− = L1(v0),

with L1 ∈ W1, so that in particular tr L1 = 0. Furthermore, using the expressions in
§3 and 4.2, 4.4, we have

dAa · ξ = d(rsing)I · ξ (7a)

B(a, b) = −kb, (7b)

∂yB(a,b) · ξ = −kξ − (tr ξ)I+ (7c)

C(x, y, t) = 2yx−1y − tr (x−1y)y + xrreg − xr̂, (7d)

where d(rsing)I is obtained from 4.2, 4.4 and 4.6:

d(rsing)I · ξ+ = (k + 1)ξ+ − 2(tr ξ+)I+ (8a)

d(rsing)I · ξ− =
1

2
Cξ−. (8b)
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We now have two problems to solve:
Problem 1. We have to show that a formal power series solution exists, i.e. we

must verify equations (2) and (6).
Problem 2. If x(t) =

∑ xm

m!
tm is such a formal power series solution, we have to

show that

xq(t) :=

q∑

m=0

xm

m!
tm

defines a smooth G-invariant metric on E ′ for all q. By Lemma 1.1 this means that for
all m ≥ 0 we have to show that xm ∈ ε(Wm).

5.3 Let us first verify equations (2). In fact, (2a) is true by the first equations in
Lemmas 4.2 and 4.4. The (+) part of (2b) follows from b+ = 0 and (7b). Moreover,
since b− ∈ εW1, we have dAa ·b− = 1

2kb−, by (7a) (8b) and 4.3, while B(a, b)− = −kb−.
This proves (2b).

Next we have to verify Equation (6). From Lemmas 4.2, 4.4 and 4.6 we get

(Lmξ)+ = m(1 +
k + 1

m + 2
)ξ+ + (

4

m + 2
tr ξ+ + tr ξ) I+ (9a)

(Lmξ)− = (m + 1 + k)ξ− −
1

m + 2
C(ξ−) (9b)

for any ξ = (ξ+, ξ−) ∈ S2(p)K . We will compute the eigenvalues of Lm. If ξ+ =
I+, ξ− = 0, then tr ξ = tr ξ+ = k and hence Lm(ξ) = µ1ξ with

µ1 =
(2k + m)(m + 3)

m + 2
> 0.

On the other hand, if ξ+ = 0 and ξ− = I−, then tr ξ = tr ξ− = n − k, so (Lmξ)+ =
(n − k)I+ and (Lmξ)− = (m + 1 − k)I−. Note that I− ∈ εW0, so that CI− = 0 by
Lemma 4.3. Hence Lm is a triangular matrix on Span {(I+, 0), (0, I−)} ⊂ ε(W2) with
diagonal entries (eigenvalues) µ1 and

µ2 = m + 1 + k > 0.

We next consider Lm on the trace-free elements in S2(p)K . If ξ− = 0 and tr (ξ+) =
0, then we have an eigenvector of Lm with eigenvalue

µ3 = m(1 +
k + 1

m + 2
) ≥ 0,

which is zero precisely when m = 0. Finally, let ξ be such that ξ+ = 0 and tr ξ− = 0.
Suppose further that ξ− ∈ εW−

m+2 (this will be true for ξ = xm+2, cf. 5.4). By Lemma
4.3, the eigenvalues of Lm on this subspace are

νp = m + 1 + k −
p(p − 1 + k)

m + 2
≥ 0
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for p = 0, ..., m+ 2. We have νp = 0 precisely for p = m + 2. Now we have decomposed
ε(Wm+2) into eigenspaces of Lm. The eigenspaces corresponding to nonzero eigenvalues
all lie in the subspace ε(Wm) ⊂ ε(Wm+2), hence Lm(εWm+2) ⊂ εWm, and Lm maps
this subspace bijectively onto itself if m > 0. Therefore, a solution of (5) exists iff
Dm ∈ εWm, and the kernel of Lm is isomorphic to W−

m+2/W−
m .

5.4 It remains to show that xp ∈ ε(Wp) for all p (Problem 2) and that Dm ∈ εWm.
We proceed by induction over m. By assumption, x0 = a = I ∈ εW0 and x1 = 2b ∈
ε(W1). Suppose that we have already xp ∈ ε(Wp) for p = 1, ..., m + 1. Let

x̃(t) = xm+1(t) =
m+1∑

p=0

xp

p!
tp.

By the discussion in §1, x̃ defines a smooth G-invariant metric on E. Let

r̃(t) =
∞∑

m=0

r̃m

m!
tm

be the Ricci endomorphism of x̃(t) on E at the point tv0. Since the Ricci tensor is
smooth and G-invariant, we have (x̃r̃)m ∈ εWm for all m. Put ỹ = 1

2 x̃′. Then (x̃, ỹ)
solves (1) with r̂ replaced by r̃ (cf. (1) in Ch. 3). Since x̃m+2 = 0, we get from (5) that
D̃m = 0, and (3), (4) and (7d) show that

1

2(m + 1)
Dm =

1

2(m + 1)
(Dm − D̃m) = Cm − C̃m = −((xr̂)m − (x̃r̃)m)|p ∈ εWm

by Lemma 1.2. By 5.3 there exists a solution xm+2 of (5) in εWm+2, (in fact even in
εWm), but we can add an arbitrary element of the zero eigenspace of Lm. This finishes
the induction and shows the existence of a formal power series solution for our initial
value problem (1).

5.5 Finally, we will describe the indeterminacy in the formal solution above more
precisely. By the discussion in 5.3, notice that once the (−) part of (5) is solved for,
provided that m > 0, there is a unique solution of the (+) part of (5). When m = 0,
the trace-free part of x2+ is arbitrary. This is to be expected because x+(0) and y+(0)
as well as the radial part of the metric are fixed by the geometry and so the usual
freedom in the initial value problem falls upon the trace-free part of x2+.

We saw in 5.3 that ker (Lm) ∼= W−
m+2/W−

m . On the other hand, by the discussion
before Lemma 1.1 in §1 we see that the spaces W−

m eventually stablize. Suppose that
W−

2m = W−
2m0

for all m > m0 and W−
2m+1 = W−

2m1+1 for all m > m1. Then the
indeterminacy of the initial value problem is given by elements in

(W−
2m0

/W−
0 ) ⊕ (W−

2m1+1/W−
1 ).

We note that W0 = S2(V )H ⊕ S2(p−)H , where the first summand is 1-dimensional
(generated by the background metric) since V is irreducible as an H-representation.
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Thus once the G-manifold is given, the indeterminacy in the initial value problem
is completely determined by representation theory. Below we will give some examples
of the kind of computation necessary to determine the indeterminacy explicitly.

First let H be an effective compact linear group acting transitively on the unit
sphere in V . Using the proof of Lemma 2 in Ch. 1, it is not hard to compute the
dimension of Hom(S2V, S2V )H , which gives the indeterminacy in x2+. (Indeed this
lemma shows also that Hom(SmV, S2V )H ∼= 0 for odd m and that they are all isomor-
phic when m is a positive even integer.)

Next, we consider Hom(SmV, S2(p−))H ∼= W−
m .

Example 1. Let G = SO(p+n), H = SO(p)×SO(n) and K = SO(p)×SO(n−1).
In this case, p− as an H-representation is just the tensor product of the usual

representations ρp of SO(p) and ρn of SO(n). V on the other hand is the tensor
product of the trivial representation of SO(p) and the usual representation of SO(n).
As is well-known (see e.g. [FH] exercise 19.21, p.296),

SmV = σm ⊕ σm−2 ⊕ · · · ⊕ σm−2[m/2],

where σk is the irreducible representation of SO(n) whose dominant weight is k times
that of ρn. On the other hand, since p− is just ρp ⊗ ρn, we have

S2(p−) = S2(ρp) ⊗ S2(ρn) ⊕ Λ2(ρp) ⊗ Λ2(ρn),

which decomposes as

(σ2 ⊗ σ2) ⊕ (1 ⊗ σ2) ⊕ (σ2 ⊗ 1) ⊕ (1 ⊗ 1) ⊕ (adp ⊗ adn).

Therefore, by Schur’s lemma, dimW−
m is 2 when m ≥ 2 is even, and is 0 when m is odd.

Since W−
0 = (S2p−)H is 1-dimensional, the indeterminacy in this case has dimension

2−1 = 1 and it occurs with x2−. The choice of initial metric is unique up to homothety
since G/H is isotropy irreducible. Since V is not a summand in S2(p−), the only choice
for the initial shape operator is 0, i.e., the singular orbit must be totally geodesic. There
is, though, a 1-dimensional freedom in choosing x2+.

We give next an example to show that the dimension of the space of indeterminacy
can be quite high.

Example 2. G = E7, H = SO(3) × SU(2) and K = SO(2) × SU(2).
In this case, the Lie algebra h is one of the non-regular, non-simple maximal

subalgebras of the exceptional Lie algebra E7. For more information, see [Dy], p.226.
We will denote the unique irreducible representation of SU(2) of dimension k + 1 by k
below. Then k factors through SO(3) iff k is even. With this short-hand notation, p−

is the H−representation

(8 ⊗ 2) ⊕ (6 ⊗ 4) ⊕ (4 ⊗ 6) ⊕ (4 ⊗ 2) ⊕ (2 ⊗ 4).
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The representation V is 2⊗ 0. So our assumption (A)(cf §1) is satisfied. It follows from
the decomposition of SmV in Example 1 that

S2mV = (4m ⊗ 0) ⊕ ((4m − 4) ⊗ 0) ⊕ · · · ⊕ (0 ⊗ 0),

and
S2m+1V = ((4m + 2) ⊗ 0) ⊕ ((4m − 2) ⊗ 0) ⊕ · · · ⊕ (2 ⊗ 0).

We can then use the Clebsch-Gordon formula (exercise 11.11, p. 151 of [FH]) to decom-
pose the representation S2(p−). It turns out that the irreducible summands on which
the SU(2) factor acts trivially are

(16 ⊗ 0) ⊕ 3(12 ⊗ 0) ⊕ (10 ⊗ 0) ⊕ 6(8 ⊗ 0) ⊕ 2(6 ⊗ 0) ⊕ 7(4 ⊗ 0) ⊕ 4(0 ⊗ 0).

Again by Schur’s Lemma we conclude that W−
m stablizes for even m starting at m = 8

and for odd m starting at m = 5. Also, we have

dim(W−
2m0

/W−
0 ) = 1 + 3 + 6 + 7 = 17

and
dim(W−

2m1+1/W−
1 ) = 1 + 2 = 3.

Therefore, there is a 20-parameter family of formal solutions for any choice of initial
metric, trace-free part of x2+, and initial shape operator. Of course, there is, up to
homothety, a 4-parameter family of metrics and a 1-parameter family of the trace-free
part of x2+ from which to choose the initial data. Notice that again since S2(p−) does
not contain a copy of V , the singular orbit must be totally geodesic in E in all cases.

Finally, we give an example to show that stablization of W−
m can occur at arbitarily

high order m. This means that one has to prescribe initial derivatives of arbitrarily
high order to determine a unique solution for the (−)-part of the metric.

Example 3. G = Sp(m+1
2 ) × Sp(m+1

2 ) with m odd, H = SU(2) × SU(2)
embedded by the representation m of SU(2) in each factor, a symplectic representation,
and K = SU(2) embedded diagonally into H. The manifold is then the associated 4-
plane bundle of a 3-sphere bundle over the product manifold N × N , where N =
Sp(m+1

2
)/SU(2).

The representation V (as an H-module) is 1⊗1 and as a K-module it is 2⊕0. The
isotropy representation of N is S2(m)− 2 = 2m⊕ (2m − 4)⊕ · · · ⊕ 6 (since m is odd).
Note that the factor 2 is the adjoint representation of SU(2) and must be removed.
Hence as an H-module, p− is

(2m ⊗ 0) ⊕ · · · ⊕ (6 ⊗ 0) ⊕ (0 ⊗ 2m) ⊕ · · · ⊕ (0 ⊗ 6).

Restricted to K, p− becomes

2(2m) ⊕ · · · ⊕ 2(6),
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and so condition A is clearly satisfied. Now S2(p−) contains 2m⊗ 2m as an irreducible
H-summand as does S2mV . In fact, the summands in S2(p−) are of two types. First,
there are the ones from taking S2 of the irreducible factors. These are representations
either of SU(2) × {1} or of {1} × SU(2). The other summands are of the form (2m −
4k) ⊗ (2m − 4l). On the other hand, the summands in SkV are of the form p ⊗ p for
some p by exercise 19.21 in [FH]. Hence stablization starts with S2m for W−

2m with
dim(W−

2m/W−
0 ) = m0, where m = 2m0 + 1. Of course, W−

2q+1 = 0 for all q.

6. Real solution

In §5 we showed that the initial value problem given by equations (1a,b,c,d) always
has a formal power series solution, although not necessarily a unique one. Furthermore,
by construction, the formal solution series has the property that if it is truncated
at any order, the resulting “polynomial metric” corresponds to a smooth G-invariant
Riemannian metric on E = G ×H V . In this section, we continue to use the same
notation as that in §5. By Theorem 7.1 in [Ma] (see pp.164-165), one then obtains a
real solution of the equations defined on a small interval [0, T ]. In order to make this
paper more self-contained, we outline below along the lines of [FK] the Picard iteration
argument that produces the real solution in our case, and then we give a short argument
to show that the real solution corresponds to a smooth G-invariant Einstein metric in
a small tube around the zero section of E.

Recall that we are considering the system

x(0) = a, x′ = 2y, (1a)

y(0) = b, y′ =
1

t2
A(x) +

1

t
B(t, x, y) (1b)

for functions x, y : [0, T ] → S2(p) for some fixed T > 0 where a = I and b = (0, L1). We
have absorbed the term C(t, x, y) into B at the expense of making B depend explicitly
on t as well. Note that A and B are bounded and uniformly Lipschitz in the variables
x, y (i.e. with Lipschitz constant L independent of t) as long as x − a and y − b are
bounded by some sufficiently small constant, say 2ε. As usual, we transform (1) into a
system of integral equations

x(t) = a +

∫ t

0

2y(s)ds, (2a)

y(t) = b +

∫ t

0

(
1

s2
A(x) +

1

s
B(s, x, y))ds. (2b)

For a fixed positive integer m, let (xm, ym) be a solution of order m of our initial value
problem (1). By this we mean a pair of S2(p)-valued polynomials xm, ym of degree
m + 1 and m respectively, such that

xm(0) = a, x′
m = 2ym + O(m + 1), (3a)

ym(0) = b, y′
m =

1

t2
A(xm) +

1

t
B(t, xm, ym) + O(m). (3b)
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Here, O(p) denotes an arbitrary S2(p)-valued function α on [0, T ] such that α(t)/tp is
bounded. Let us write

ξ = x − xm, η = y − ym.

Then our integral equation (2) takes the form (ξ, η) = Θ(ξ, η) where Θ = (Θ1, Θ2) is
defined as follows:

Θ1(ξ, η)(t) = a − xm(t) +

∫ t

0

2(ym + η)(s)ds,

Θ2(ξ, η)(t) = b − ym(t) +

∫ t

0

(
1

s2
A(xm + ξ) +

1

s
B(s, xm + ξ, ym + η))ds,

Let O(p) denote the Banach space of all S2(p)-valued continuous functions α on
[0, T ] of Type O(p) with the norm

‖α‖p = sup
[0,T ]

|α(t)|

tp
,

and let B = O(m + 1) ×O(m) with norm

‖(ξ, η)‖ = ‖ξ‖m+1 + ‖η‖m.

We claim that the operator Θ defined above is a contraction on the closed ε-ball Bε ⊂ B
provided that T is small and m large enough. In fact, if (ξ, η) ∈ B, then by (3) and the
Lipschitz property of A and B we have

2(ym + η) = x′
m + O(m),

1

t2
A(xm + ξ) +

1

t
B(t, xm + ξ, ym + η) = y′

m + O(m − 1),

as long as |xm + ξ − a|, |ym + η − b| ≤ 2ε. Moreover, for (ξ, η) = (0, 0), we may replace
O(m) by O(m + 1) and O(m − 1) by O(m). Choose T ∈ (0, 1] (depending on m) so
small that |xm − a|, |ym − b| ≤ ε on [0, T ] and let (ξ, η) ∈ Bε. Integration raises the
order by one, hence Θ(ξ, η) ∈ B, and ‖Θ(0, 0)‖ is arbitrary small, say ‖Θ(0, 0)‖ < ε/2,
if T is chosen small enough.

Further, if (ξ, η), (ξ̃, η̃) ∈ B1, we obtain from |xm − a|, |ym − b| ≤ ε and the
Lipschitz property of A and B:

‖Θ1(ξ, η) − Θ1(ξ̃, η̃)‖m+1 ≤
2C

m + 1
‖(ξ, η)− (ξ̃, η̃)‖,

‖Θ2(ξ, η)− Θ2(ξ̃, η̃)‖m ≤
L

m
‖(ξ, η)− (ξ̃, η̃)‖,

where C is some upper bound of |a| and |b|. Recall that ε and L depend only on A and
B, not on m. Now if we had chosen m so large that 2C

m+1 , L
m ≤ 1/4, then Θ becomes a
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contraction with factor 1/2 on Bε, and in particular, it maps Bε into itself. Therefore,
we find a fixed point (ξ∗, η∗) of Θ which gives a solution (xm + ξ∗, ym + η∗) of (2), and
hence of (1).

Notice that xm(t) defines, by its construction in §5, a smooth G-invariant metric
on the open normal tube of radius T about Q. On the other hand, ξ∗ may be regarded
as a smooth map

ξ∗ : [0, T )× Sk −→ S2(V ⊕ p−),

where ξ∗(t, v) = ξ∗(t)(v). Now ξ∗ vanishes at t = 0 up to order m + 1. So, using this
fact and the chain rule, one can easily verify by counting orders of vanishing that the
map

ξ̂∗ : V \ 0 −→ S2(V ⊕ p−), ξ̂∗(v) = ξ∗(|v|,
v

|v|
)

extends to V as a Cm map.
Since we could have chosen m to be at least 3, the solution x gives a C3 G-invariant

metric satisfying the appropriate equations. Therefore, by Corollary 2.4 in §2, x gives
a smooth G-invariant Einstein metric on the open normal tube of radius T about the
singular orbit Q. This completes the proof of our main theorem.
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