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Abstract. We display a Penrose tiling of the entire euclidean plane
which is not of projection type although every compact subset is. It is
related to 400 year old tilings in Iranian art.

1. Introduction

In 1972, Roger Penrose [6, 7] introduced a class of aperiodic tilings of
euclidean plane which was based on the geometry of the regular pentagon.
Some years later, de Bruijn [1] gave a different description of Penrose tilings
as orthogonal projections of subsets (“strips”) of the regular 5-grid Z

5 ⊂ R
5

onto a certain 2-plane E ⊂ R
5. In the present paper we want to show that

de Bruijn’s construction does not exhaust all Penrose tilings; in fact, we will
display a Penrose tiling which is not of projection type.

We need to show how to construct Penrose tilings of the entire plane
without the projection method (section 2). This description is new. We show
by a counterexample that it does not suffice to provide tiles and matching
rules stating which pairs of oriented edges of the tiles may be adjacent to
each other, such as in [10]. In section 3 we introduce a new Penrose tiling of
the full plane. This arises from repeatedly subdividing the non-symmetric
decagon (“Penrose decagon”) occurring in every Penrose tiling all over the
place.

We will call it “extended Penrose decagon” D. In section 4 we will show
that this tilling cannot be obtained by the projection method. Before, we
need to recall the geometry of projection tilings, sections 4 and 5. The
idea to consider the extended Penrose ball came from the study of a certain
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traditional pattern at Isfahan, Iran. We explain this connection in section
7. We conclude our paper by a short discussion of our main result.

2. Penrose tilings of the full plane

To construct all Penrose tilings which extend to the full plane, start with
a regular pentagon with two diagonals enclosing one sides. Draw a line
segment parallel to the enclosed side through the intersection point of the
diagonals. This bounds two narrow triangles which are coloured as in the
subsequent figure. Now the two diagonals cut off two equisceles triangles,
a broad one and a narrow one, which come with a subdivision by similar
triangles, scaled down by the inverse golden ratio 1/τ .

Since the narrow triangle is a subset of the broad one, we only consider the
broad triangle with its subdivision. This is our initial (finite) Penrose tiling
To where the tiles are the small triangles.

We may subdivide the small triangles in the same way as before. There
are always two mirror symmetric ways to do this. But insisting that along
each edge the subdivisions from both sides agree, we get uniqueness. In fact,
the narrow tile in the middle may have one of the following two subdivisions:

However, only the left subdivision can be extended over the right edge of
the narrow tile since both acute angles of the broad tile are uncoloured.
Hence the subdivisions of the neighboring broad tiles are already fixed by
the subdivision of the edge adjacent to the narrow tile:
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Call Tn+1 the tiling which arises from Tn by subdiding all tiles and enlarging
by the factor τ ; then the tiles in Tn+1 have the same size as the tiles in Tn.
The tiling T1 is in the figure above, and T2 looks as follows.

Definition. An extendable Penrose tiling is a tiling composed of these two
types of tiles, the broad and the narrow triangle in the pentagon, such that
any finite subset of tiles is isometric to a subset of some Tn.

Since the third edge of any of the two equisceles triangles can be adjacent
only to the third edge of a mirror symmetric copy of itself, the triangles
always compose to rhombs in the interior of every Penrose tiling.

Using this doubling, our third Penrose tiling T3 looks as follows.

We have marked two decagons in the tiling where the right one is decagon-
symmetric while the left one is only reflection symmetric.
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Repeatedly subdividing the right decagon which we call symmetric decagon,
we construct the two Penrose tilings with full decagonal symmetry. The
other decagon, on the left, will be called Penrose decagon. It turns out that
the interior part of its first subdivision is similar to the original tiling, see
figure 1 below. Thus considering the union of all iterated subdivisions, each
one scaled by τ and reflected at the vertical axis, we obtain a tiling of the
full plane as explained in the next section. We will show that this tiling
cannot be obtained by the projection method.

We still need to explain why matching rules never give sufficient conditions
for unlimited extendability. The following figure shows the simplest situation
which is build legally in terms of matching rules but cannot be extended.

.

1

3

2

The right figure which is the subdivision of T2 (fat lines) shows why the
left figure is legal with respect to any matching rules: the broad tile 2 is
symmetric and bounded by the narrow tiles 1 and 3, hence 1 and 3 could
be also adjacent to each other as shown in the left figure. But the left figure
cannot be extended over the left boundary since the coloured vertices of the
two tiles do not fit into the gap. Of course, the same problem may arise
after an arbitrary number of subdivisions of the two tiles.

3. The extended Penrose decagon D

Subdivision of the Penrose decagon gives the pattern shown in figure 1
below. It is remarkable that a copy of the original Penrose decagon also
occurs in the center of the subdivided pattern. Therefore, by successively
subdividing and rescaling we get a tiling of the entire plane that is invariant
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Figure 1. Subdivision of the Penrose decagon.

under subdivision. In fact, we start with the Penrose decagon D1, subdivide,
reflect at the vertical axis through the center and rescale by the golden ratio
τ ; then the points k, l,m, n in figure 1 are mapped onto K,L,M,N . Thus
we obtain a new tiling D2 of a τ -times larger decagon which contains D1.
It is clear that we can repeat this process arbitrarily: Given Dk, we obtain
Dk+1 by subdividing, reflecting and enlarging by τ , and Dk+1 ⊃ Dk. The
tiling which we are considering is the union of all Dk,

D =
⋃

k∈N

Dk,

which certainly satisfies our definition since any finite subset lies in some
Dk which in turn is a subset of some Tn; recall D1 ⊂ T3.

Theorem 1. The Penrose tiling D is not of projection type.

The rest of this article is devoted to the proof of this theorem.

4. Projection tilings

The tilings produced by the projection method [1] arise as follows. We
consider the cyclic permutation A = (12345) as an orthogonal matrix per-
muting the 5 coordinates of R5. It decomposes R

5 orthogonally as R
5 =

Rd + E + F where d = (1, 1, 1, 1, 1)T is a fixed vector and E,F are two
invariant planes on which A acts by rotations of 72 and 144 degrees, respec-
tively.
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Let a ∈ R
5 such that a := 〈a,d〉 is an integer and such that no point of

E+a has more than 2 integer coordinates; this property of a is called general

position. Then the E-projection of the set

Σa =
(

(0, 1)5 + E + a
)

∩ Z
5

is the vertex set of a tiling Ta on E, and this is a Penrose tiling in the sense
of our definition [1, 2, 9]. The elements of Σa ⊂ Z

5 are called admissible

for the tiling Ta. This condition can be transformed into planar geometry.
First note first that any grid point x ∈ Z

5 lies on one of the hypersurfaces

Hk = {x ∈ R
5 : 〈x,d〉 = k}

for some k ∈ Z. The admissablility of a point x ∈ Z
5 ∩Hk is decided by the

so called window [1]

(1) Vk = πF
(

(0, 1)5 ∩Hk

)

which is nonempty only for k ∈ {1, 2, 3, 4}; the subsequent figure shows V1.
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More precisely, for any point x ∈ Z
n ∩Hk and for a = 〈a,d〉 we have

(2) x ∈ Σa ⇐⇒ πF (x) ∈ πF (a) + Vk−a .

In fact, note that x ∈ Σa ⇐⇒ x ∈
(

(0, 1)5 + E + a
)

∩Hk ⇐⇒

πF (x) ∈ πF
((

(0, 1)5 + a
)

∩Hk

)

= πF (a) + Vk−a,
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since x = x
o + a ∈ Hk ⇐⇒ x

o ∈ Hk − a = Hk−a. For any x ∈ Σa we
denote

indx := 〈x− a,d〉 = 〈x,d〉 − a

the index of x and πE(x). In particular, when a = a
5
d for a ∈ {1, 2, 3, 4}, the

tiling has the full pentagonal symmetry. Then d ∈ Σa

5
d, and the symmetry

center πE(d) ∈ Ta

5
d has index 5− a. Note that −I maps the cases a = 1, 3

isometric onto a = 4, 2, respectively. Figure 2 below shows the case a = 1
5
d

where the symmetry center has index 4.

Figure 2. A Penrose decagon located in T 1

5
d
.

We have marked a Penrose decagon in this tiling. Its center is located at
πE(c) with c = e2 + e3 − e0; its mirror image πE(−e2 − e3 + e0) is a vertex
of the tiling. The next figure shows the subdivision which forms the other
tiling with full pentagonal symmetry.

c
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On the right margin we see the vectors πE(ei). Advancing by each of these
vectors increases the index by one. Since the index can move only between
1 and 4, the symmetry center in the right decagon must have index 4 for the
coarse tiling (long arrows) and index 2 for the fine tiling (short arrows). We
see again the small Penrose decagon in the fine tiling inside the large one in
the coarse tiling. However, after blowing up the subdivision by the factor
τ , the center of the Penrose decagon is moved to the right. Therefore we
change the origin to πE(c) by translating Td/5 to T−c+d/5 = Td/5 − πE(c).

5. Subdivision of projection tilings

The subdivision of a projection tiling can be obtained from a linear map S
on R

5 with eigenspaces E,F and Rd which contracts on E and expands on
F , thus broadening the strip and making more integer grid points admissible,
see [3] for details. We use the A-invariant linear maps

Sk : ej 7→ ej+k + ej−k

for k = 1, 2 where the indices are computed modulo 5. We have Skd = 2d,
and E, F are eigenspaces for S1, S2 with eigenvalues 1/τ,−τ on E and
−τ, 1/τ on F , respectively, as can be read from the following figure:
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The maps S = −S1 and R = S2 are inverse to each other modulo d since
SR(e0) = S(e3 + e2) = −(e2 + e4 + e1 + e3) = −d + e0, and similar
SR(ej) = −d + ej . Moreover, each integer grid point x ∈ Z

5 lies on one
of the hypersurfaces Hk = {x ∈ R

5 : 〈x,d〉 = k} for some k ∈ Z, and S
maps Hk ∩ Z

5 bijectively onto H−2k ∩ Z
5. Since S expands on F by the

factor τ , we have S(Vk) ⊃ Vk′ for k′ ≡ −2k mod 5 (see (1)) and hence
S(Σa ∩Hk) ⊃ ΣSa ∩Hk′ and

(3) πES(Σa ∩Hk) ⊃ πE(ΣSa ∩Hk′) .

This shows that the vertex set of the tiling S(Ta) (which is Ta, scaled down
by the factor −1/τ) contains the vertex set of the tiling TSa; in fact S(Ta)
is the first subdivision of TSa.

In particular, S(1
5
d) = −2

5
d ≡ 3

5
d mod d, and S(3

5
d) = −6

5
d ≡ 4

5
d mod

d, hence S maps each of the two symmetric tilings Td/5 and T3d/5 onto the
first subdivision of the other, up to sign. The same is true for the translated
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tilings P = T−c+d/5 and Q = T−c+3d/3: if we let P0 = P and Q0 = Q and
define recursively Pk+1, Qk+1 as the first subdivision of Pk, Qk, respectively,
then

(4) Pk+1 = S(Qk), Qk+1 = −S(Pk).

We will also consider the inverse map R = S2 which expands on E by
the factor −τ and maps Pk+1 onto Qk and Qk+1 onto −Pk. In particular,
the Penrose decagon Dk ⊂ Pk (centered at the origin) is mapped onto the
enlarged Penrose decagon Dk+1 ⊃ Dk.

6. The tiling D does not fit into the window

Figure 3. A path in D3

In the figure, a path inside the third subdivision D3 of the Penrose ball
D0 ⊂ P0 is marked. Both of its end point B,F have index 1, as the following
figure shows.
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We obtain the broken line DE by applying three times the mapping R
to the small broken line AB, and we reach the final point F by adding
−(e2 + e3). Hence we may describe the transition from the initial point
B = πE(e0) to the final point F by the affine map T (x) = R3

x + b with
b = −(e2+e3)−d. (The meaning of the additional term −d which projects
to 0 on E will become clear below.) Then we have F = T (B). We iterate
this process by putting x0 = e0 and xj+1 = T (xj), then πE(x0) = B
and πE(x1) = F . In every step the path is prolongated, see figure 4 for
x2 = T 2

x0 = R6
e0+R3

b+b. Note that all points πExj lie on the horizontal
line and have index 1.

Figure 4

Now we want to show that the F -projection of the path x0,x1,x2, . . . does
not fit into the window V1 since its length lim

j→∞

|πF (xj)−πF (x0)| is precisely

the diameter of V1 along the horizontal axis, L = | 1
2
(eF1 + e

F
4 )− e

F
0 | (which

is (1+ 1
2
τ)|eF0 |), see the figure after (1). If D were a projection tiling, πF (x0)
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would have to lie somewhere in the open window V1, thus for some ǫ > 0,
every point πF (xj) must have distance ≤ L−ǫ from πF (e0), a contradiction.

To compute the length of the path on F we show first that

f := 1

2
(e1 + e4) =

1

2
S1e0

is a fixed vector for the affine map T = S3
2 + b on R

5. In fact,

S3
2f + b = 1

2
S3
2S1e0 + b

= 1

2
S2
2(d− e0)− S2e0 − d

= 1

2
(2I + S1)(d− e0)− (S2 + S1)e0 + S1e0 − d

= d− e0 +
1

2
S1(d− e0)− d+ e0 + S1e0 − d

= 1

2
S1e0 = f

using S2S1e0 = (S2 + S1)e0 = d− e0 and S2
2 = 2I + S1 and S1d = 2d.

Hence the affine map TF := πF ◦ T |F has the fixed point πF (f). The linear
part S3

2 of T has eigenvalue 1/τ3 < 1 on F , hence TF is a strong contraction.

Thus the sequence πF (xj) = πF (T
j(x0)) = T j

F (πF (x0) converges to the fixed

point of TF which is πF (f) =
1

2
(eF1 + e

F
4 ). The initial point of the sequence

is πF (x0) = e
F
0 . Thus the difference vectors πF (xj) − πF (x0) converge for

j → ∞ to the diameter vector 1

2
(eF1 + e

F
4 ) − e

F
0 of the window V1, and

therefore |πF (xj)− πF (x0)| → L. This finishes the proof that the decaonal
tiling D is not of projection type.

7. A link to traditional Islamic art

Some years ago, Peter Li and Paul Steinhard [4] (see also [8, 5]) observed
that Penrose tilings are closely related to certain 17th century patterns in Is-
lamic art. The subsequent figure shows an example from one of the entrance
gates (called “The Master”) into the courtyard of the Friday Mosque at Is-
fahan, Iran. There is self similarity, and there are regular pentagons, like
in Penrose tilings. However, the Isfahan pattern shows an exact decagonal
symmetry which is impossible for Penrose tilings. Therefore the link be-
tween the two patterns is not completely obvious. It is only revealed when
we consider the pattern of all Penrose decagons in a Penrose tiling. This
can have a quasi-decagonal symmetry, and on our extended Penrose decagon
tiling D, this symmetry becomes the more exact the farther we move away
from the center. Thus we believe that the Penrose pattern D is the closest
one to the Isfahan pattern.
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The next figure shows the 8-fold subdivided Penrose decagon D8. The Pen-
rose decagons which correspond to the white circles in the Isfahan pattern
have been marked dark. Other Penrose decagons which are marked white
correspond to the above figure composed of black and white stones. The
whole complicated arrangement is part of the geometry of the extended
Penrose decagon tiling. Centuries ago it has been discovered by Iranian
artists.
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8. Discussion

Any finite Penrose tiling is of projection type. Infinite Penrose tilings
arise as unions of infinitely many finite Penrose tilings Pj with Pj ⊂ Pj+1.
It may happen that one of the common vertex points p ∈

⋃

j Pj moves to the

boundary of the window for Pj as j → ∞. If this happens, then P =
⋃

j Pj

cannot be a projection tiling. We have seen one example, the extended
Penrose decagon tiling. However we expect that this phenomenon is not a
rare exception but may happen quite often, maybe even in the generic case.
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