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Abstract. We investigate a 3-dimensional analogue of the Penrose tiling, a
class of 3-dimensional aperiodic tilings whose edge vectors are the vertex
vectors of a regular icosahedron. It arises by an equivariant orthogonal pro-
jection of the unit lattice in euclidean 6-space with its natural representation
of the icosahedral group, given by its action on the 6 icosahedral diagonals
(with orientation). The tiling has a canonical subdivision by a similar tiling
(“deflation”). We give an essentially local construction of this subdivision,
independent of the actual position inside the tiling. In particular we show
that the subdivisions of the edges, faces and tiles (with some restriction) are
unique.
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1. Introduction

In 1974 Roger Penrose (see [19]) constructed a class of tilings of the euclidean
plane which are not periodic but quasiperiodic, a concept introduced by Harald
Bohr [2] in 1924. The tilings consist of two congruence types of tiles which are
the two isosceles triangles formed by edges and diagonals of a regular pentagon.
The triangular tiles compose pairwise to two types of rhombs all of whose edges
are parallel to the vertex vectors of a fixed regular pentagon. These tilings enjoy
some kind of self-similarity: the tiles are subdivided uniquely by smaller tiles with
equal shapes, and also these can be subdivided again and again, always by the
same rule. On every stage, the small tiles together form another Penrose tiling.

This work was completed with the support of Deutsche Forschungsgemeinschaft.
We thank the referee for several valuable hints and suggestions. (May 19, 2016).
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This process is called “deflation”, its inverse process “inflation”. This property of
the tiling follows in an elementary way from the pentagon geometry [7], and it
is a purely local property: the subdivision in each part is independent from the
rest of the tiling. But many (not all, see [9]) of these tilings can be obtained also
globally by a 2-dimensional projection of part of the 5-dimensional standard grid
Z5 ⊂ R5. This method has been introduced first by Nicolaas Govert de Bruijn
[4], see also [1]. It can be extended to other dimensions, see subsection 2.1, and
it is a useful tool in order to construct many other tilings in euclidean 2-plane
and 3-space. However, most of these tilings do not admit a subdivision for which
a local construction is possible, see [8].

The physicist Alan Mackay is one of the first observing possible applications of the
Penrose tiling in the field of solid state physics, see [15],[16]. With the discovery of
quasicrystals by Dan Shechtman in 1982 for which he was awarded with the No-
bel Prize for chemistry in 2011, the interest in aperiodic tilings started growing:
neighbouring disciplines such as crystallography, chemistry or physics considered
these tilings as possible models for quasicrystals. In this context also the ques-
tion of a 3-dimensional generalization of the Penrose tiling of the plane arised.
Some years earlier, in 1976, Robert Ammann, considering himself as an “amateur
doodler with math background” [20, p.11], has already proposed such a general-
ization: two different types of rhombohedra can tile the space only aperiodically
if they are marked in a certain way, see [20],[21]. These rhombohedra have been
described earlier by Kowalewski [14] in connection with 6-dimensional geometry;
for details see subsection “Coxeter’s Golden Isozonohedra” in our Appendix. In
1984 Peter Kramer and Roberto Neri provided a theoretical approach for such
tilings consisting of Kowalewski’s rhombohedra, see [13]. For this purpose they
worked with the projection from R12 via R6 to R3 and introduced a “Hexagrid”
in R3 as an analogue to de Bruijn’s “Pentagrid” in R2. Furthermore they associ-
ated these tilings with the icosahedral group, isomorphic to A5. Since these tilings
have all edges parallel to the vertex vectors of a fixed regular icosahedron, they
will be called icosahedral tilings. Michel Duneau and André Katz answered some
important questions concerning the self-similarity properties of this tiling in 1986,
see [10]: the scaling factor is Φ3 (where Φ denotes the golden ratio; in case of the
Penrose tiling of the plane the scaling factor is Φ), furthermore they showed that
the tiles can’t be subdivided in a unique way by deflation. The question how a
possible subdivision of the two tiles looks like was not addressed. At the same time
also the Japanese Tohru Ogawa dealed with the icosahedral tiling, see [17],[18]. He
generated the tiling by inflation and distinguished two parts for each tile (“skeleton
part” and “internal part”). Some years later, Ogawa also worked with a projection
method and presented the different types of vertices for icosahedral tilings.

In this paper the problem of a locally defined subdivision for the icosahedral tiling
is investigated, more precisely, for the class of 3-dimenisonal tilings of Kramer/Neri
and Ogawa where in some sense the pentagon (from the Penrose tiling of the plane)
is replaced by the icosahedron. The article is based on the thesis of the first named
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author, see [6]. As described above the question of a local construction has some
physical significance, however this paper follows a purely mathematical course and
it is based on geometry. It shows how to understand the icosahedral tiling just by
elementary local geometric constructions. In section 2 starting from the projec-
tion method from 6 to 3 dimensions, the two tiles are constructed and the specific
deflation is determined. Section 3 investigates what happens to the tiles under de-
flation: do these tilings generated by the projection method allow a unique locally
defined subdivision, like the Penrose tilings? Or at least, are there certain invariant
substructures present in the subdivision of every tiling?

The main result of this paper is the construction of such an invariant substructure
in each tile, having the full symmetry of the tile. It determines the subdivision
completely up to small gaps which allow several fillings; these fillings just differ
by symmetries which however do not extend to the ambient tiling. Since the local
structure of the tilings can be read off from the subdivisions of tiles, our result
shows that the icosahedral tiling is essentially determined locally.

2. Generating Icosahedral tilings

2.1. Projection method

We describe first a general form of the projection method which includes the cases
of de Bruijn [4] and Kramer-Neri [13]. The space Rd on which the tiling will be
constructed is considered as a d-dimensional affine subspace E ⊂ Rn. We call Rn

the ambient space and E ∼= Rd the projection space. The vertex set ME ⊂ E of
the tiling is the orthogonal projection onto E of the set of “admissible” integer
vectors, those in the “strip” Σ = E+Cn where C = (− 1

2 ,+
1
2 ) is the centered unit

interval,
ME = πE(Zn ∩ Σ). (2.1)

The tiles are projections of d-dimensional faces of the Zn-tiling in Rn; more pre-
cisely, a d-dimensional face is projected onto a tile in E if and only if all its vertices
are admissible. This gives a tiling when E is in general position with respect to
the shifted lattice (Z + 1

2 )n which means that any point x = (x1, . . . , xn) ∈ E has

at most d coordinates xi ∈ Z + 1
2 , see e.g. [23].

Additionally, let us assume there is a a group G of orthogonal integer matrices on
Rn. Then G preserves the cube Cn ⊂ Rn. Suppose further that G preserves also
the linear subspace Eo parallel to E in the sense that E = Eo +a for some a ∈ Rn.
Let xo ∈ E be any point close enough to some integer point zo ∈ Zn. Then G (more
precisely, the conjugate group tzoGt−zo where tzo(x) = x+zo is the translation by
zo) acts on the strip Σ′ = Eo + zo + Cn which is close to Σ = Eo + xo + Cn, and
hence ME has an almost G-symmetry, a G-symmetry which fails only for those
admissible points z ∈ Σ with z 6∈ Σ′.

In our case we have n = 6 and d = 3, and the group G is the group of rotations and
reflections of a regular icosahedron (isomorphic to A5 ×Z2 where A5 is the group
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of even permutations of {1, . . . , 5}). However, we start with R12. Its standard basis
{c1, . . . , c12} will be denoted also as {a1, . . . , a6, b1, . . . , b6}. We assign these vectors
to the 12 vertices v1, . . . , v12 of the icosahedron in R3 in the following way: if a6

is assigned to some vertex v6, then a1, . . . , a5 will be assigned to the five vertices
v1, . . . , v5 which are the direct neighbours of v6, in their cyclic ordering. Moreover,
we require that bi and ai are assigned to antipodal vertices, for i = 1, . . . , 6. Then
the antipodal map −I on R3 is represented by the permutation of the basis

A : ai 7→ bi, bi 7→ ai, for i = 1, . . . , 6. (2.2)

Let W and W ′ be the eigenspaces of A corresponding to the eigenvalues −1 and
1, hence

W = Span {ai − bi : i = 1, . . . , 6}
W ′ = Span {ai + bi : i = 1, . . . , 6}

Now the symmetry group G of the icosahedron becomes a group of 12×12-matrices
permuting the standard basis like the vertex set of the icosahedron. Clearly G is
centralized by A, hence the eigenspaces W and W ′ are 6-dimensional represen-
tation spaces of G. From now on we will restrict our attention only to W .1 We
identify the eigenspace W with R6 using the basis ei := ai−bi for 1 ≤ i ≤ 6 and G
permutes the vectors ±e1, . . . ,±e6 like the oriented diagonals of the icosahedron.
Furthermore we consider the linear map U on R12, commuting with G, which is
defined as follows:

U : ci 7→
∑

direct neighbours of ci for all 1 ≤ i ≤ 12 . (2.3)

The subspace W is kept invariant by U and is decomposed into the G-invariant
eigenspaces of U .

Theorem 2.1. The eigenvalues of U on W are ±
√

5. The eigenspaces W± are
3-dimensional G-invariant irrational subspaces.

Proof. Put si = 1√
5
U(ei). Then

U(e6) =
√

5 s6 and U(s6) =
√

5 e6

The first equality is clear by definition, the second one follows from
∑5

i=1 U(ei) =
5e6, this is because all neighbours 6= e6 come in antipodal pairs and cancel each
other. Thus U keeps the plane Span (e6, s6) invariant and has eigenvalues±

√
5 with

eigenvectors e6±s6. A similar statement holds for Span (ei, si) for i = 1, . . . , 5. The

eigenvectors ±(ei + si) corresponding to the eigenvalue
√

5 form a G-orbit with

the geometry of the vertex set of an icosahedron with radius
√

2, thus they span a
3-dimensional subspace W+ ⊂W . The same holds for the eigenvectors ±(ei − si)
corresponding to the eigenvalue −

√
5.

1W ′ contains the vector e =
∑

i(ai + bi) fixed unter A5, and the orthogonal complement W ′′ =
W ′ 	 R e is a 5-dimensional irreducible representation space of A5. In fact, the map U defined

below is a multiple of the identity on W ′′. There is no G-invariant 3-dimensional subspace in
W ′.
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Next we show that W± is an irrational subspace, i.e. W± does not contain any
nonzero integer vector. Suppose we have such a vector 0 6= v ∈ W± ∩ Z6. Then
gv ∈ W± ∩ Z6 for any g ∈ G. Since W± is irreducible for G, these vectors span
W±. Thus W± is spanned by integer vectors, and therefore W± ∩ Z6 is a lattice
preserved by G. But this contradicts to the crystallograpic restriction since G
contains rotations of order 5 in 3-space which cannot preserve a lattice. �

Now we put
S := 2I − U (2.4)

having eigenvalues 2∓
√

5 on W±. Since (2 +
√

5)(2−
√

5) = −1, the matrix S on

W = R6 is integer invertible. Observe that 2+
√

5 = Φ3 where Φ = 1
2 (1+

√
5) is the

golden ratio, the positive solution of the equation Φ2 = Φ+1, while 2−
√

5 = −ϕ3

where ϕ = Φ− 1 = 1
Φ . The space

F := W− (2.5)

will be called orthogonal space. Choosing a ∈ F suitably we can arrange that the
affine subspace

E = W+ + a (2.6)

avoids any point x ∈ R6 with more than three coordinates in Z + 1
2 (general

position).2 By projecting all integer points inside the 6-dimensional strip Σ =
E+C6 orthogonally onto E we obtain the corresponding icosahedral tiling3 ME =
πE(Σ∩Z6), cf. (2.1). The basis vectors e1, . . . , e6 of the ambient space W project
onto E and F to the vectors

± vi = πE(±ei), (2.7)

±wi = πF (±ei), (2.8)

i = 1 . . . 6, in the way that both ±vi and ±wi point to the 12 vertices of an
icosahedron, but in two different parametrisations.4 Therefore the terms (basic)
vector ±vi resp. ±wi and vertex (vector) of the icosahedron ±vi resp. ±wi will
not be distinguished. Without loss of generality we can fix the constellation as
shown in figure 1.5 The tiles of the icosahedral tilings are the projections of the
3-dimensional faces of the 6-dimensional unit cube C6 onto E. In other words:
the tiles are built by the span of three linearly independent vertex vectors of an
icosahedron in the projection space E. But how many of such combinations of
vertices are possible? Concerning this we have to take a look at the icosahedron

2Choose any four different indices i, j, k, l ∈ {1, . . . , 6}. For any four integers p, q, r, s ∈ Z let

Apqrs = {x ∈ R6 : xi = p + 1
2
, xj = q + 1

2
, xk = r + 1

2
, xl = s + 1

2
} and Bpqrs = πF (Apqrs).

Then Apqrs intersects Eo + b precisely for b ∈ Bpqrs. If we choose a ∈ F outside the countably
many planes Bpqrs ⊂ F , for any p, q, r, s ∈ Z and any combination of four different indices

i, j, k, l, then no point x ∈ E = Eo + a can have four coordinates in Z + 1
2

.
3In the following we do not distinguish between the terms tiling and vertex set, cf. theorem 3.5.
4The two different 3-dimensional irreducible representations of the icosahedral group G differ by

an outer automorphism of A5.
5In figure 1 we see that U(v6) = v1 + v2 + v3 + v4 + v5. On the other hand, U(v6) =

√
5v6, cf.

theorem 2.1. Therefore v1 + v2 + v3 + v4 + v5 =
√

5v6.
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Figure 1. Left the projection of the basis vectors e1, . . . , e6 onto E and
right the projection of the basis vectors onto F

and the different relations between its vertices, cf. figure 2. For the vertex 6, three
types of neighbours exist: the direct neighbours 1, 2, 3, 4, 5, the indirect neighbours
−1,−2,−3,−4,−5, and the antipodal vertex −6. Therefore two arbitrary linearly
independent basic vectors v and v′ with v, v′ ∈ {±v1, . . . ,±v6} are either direct
or indirect neighbours of the icosahedron. They always span a golden rhomb6,
denoted by R(v, v′) in the following.

Figure 2. Vertex labelling

Altogether there are four different types
of linearly independent vertices

1. Three pairwise direct neighbours,
e. g. 1, 5, 6

2. Two direct neighbours and an in-
direct neighbour, e. g. 1, 2, 5

3. Two indirect neighbours and a di-
rect neighbour, e. g. 1, 3, 4

4. Three pairwise indirect neigh-
bours, e. g. 1,−2, 3

and we obtain two different types of tiles: a flat tile and a long tile. Both are
equilateral rhombohedra with golden rhombs as faces, see figure 3. 7 The vertices
of the flat tile are of type 2 (for the acute vertex) and 4 (for the obtuse vertex)
while for the long tile the vertices are of type 1 (acute) and type 3 (obtuse).

6This is a rhomb with diagonals in golden ratio proportion. Of course, the analogous statement
also holds for two arbitrary linearly independent vectors w,w′ ∈ {±w1, . . . ,±w6}.

7By courtesy of Paul Hildebrandt, Zoometool Inc.
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Figure 3. Left the long tile and right the flat tile 7

Below a schematic representation of the tiles will be important. In figure 4 we
have drawn a planar projection of the six vertices of a half icosahedron (plus five
antipodal vertices in the right figure), and each coloured edge corresponds to the
rhomb spanned by two vertex vectors in 3-space.

Figure 4. From left to right: long tile, seen from its acute vertex (yellow)
and from its obtuse vertex (purple), as well as the flat tile, seen from
its acute vertex (green) and from its obtuse vertex (red)

Using the orthogonal space F we have an alternative characterization of the 6-
dimensional strip Σ = E + C6 which serves to reduce the considered dimensions
from six to three. It is called window V ⊂ F and it satisfies

Σ = E + C6 = E + V with V := πF (C6) (2.9)

Being a projection onto F of the convex unit cube C6, the window V itself is
convex and it is bounded by the projections of the 2-dimensional faces of C6.
These projections are spanned by linearly independent vectors w and w′ with
w,w′ ∈ {±w1, . . . ,±w6} which form always a golden rhomb, cf. footnote 6. Since
there are

(
6
2

)
= 15 pairs of linearly independent vectors w and w′ we obtain 15

parallel classes of golden rhombs. By convexity of the projection, parallel rhombs
always come in pairs, cf. proof of lemma 6 in the appendix, and therefore the
window V is a rhombic triacontahedron: a convex equilateral polyhedron bounded
by 30 golden rhombs with 32 vertices and 60 edges, see figure 5.9

8By courtesy of Paul Hildebrandt, Zoometool Inc.
9The rhombic triacontahedron was discovered and named by Johannes Kepler, [11], [12, p. 62],
https://archive.org/stream/ioanniskepplerih00kepl#page/n85/
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Figure 5. The window V in the orthogonal space F 8

But the window V is more than just a lower dimensional substitute for the strip; it
distinguishes which integer vectors z ∈ Z6 are admissible, i.e. projected to vertices
of our tiling. For any grid point z ∈ Z6 let zE := πE(z) and zF := πF (z). Then10

zE belongs to ME

⇐⇒ z is projected onto E

⇐⇒ z ∈ (E + C6) ⊂ R6

⇐⇒ zF ∈ V

(2.10)

Using the linearity of the projection we can apply these equivalences also to the
neighbour points11 of the grid point z ⊂ Z6 which are z±ei ⊂ Z6 for all 1 ≤ i ≤ 6:

zE ± vi belongs to ME

⇐⇒ zF ± wi ∈ V
(2.11)

Thus the window V also gives a decision criterion for admissible neighbour points
of an arbitrary grid point z ⊂ Z6 and it provides information about all the possible
vertex configurations of the tiling ME . In fact, we may ask: where in V ⊂ F must
zF be located so that for zE in the projection space E a certain neighbour point
zE + v with v ∈ {±v1, . . . ,±v6} is also part of the tiling ME? By systemizing this
concept we get a partition of the window V in disjoint regions and each region
belongs to a certain vertex configuration, see [6].

Remark 2.2. In the following the equivalences in (2.10) and (2.11) will be impor-
tant because they allow us to switch back and forth (without any loss of informa-
tion) between the ambient space W on the one side and the projection space E or
the orthogonal space F on the other side.

10Here we are using that the eigenspaces of U are irrational, i.e. they do not contain any nonzero

integer vector, see theorem 2.1.
11In the present paper neighbour or neighbour point of a grid point always means another integer

point one of whose coordinates differs by ±1.
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2.2. Inflation and deflation

Figure 6. The process of inflation and deflation: the projection space
corresponds to the straight line E and the orthogonal space to the
straight line F .

We now introduce the concept of inflation and its inverse, called deflation. By
applying the linear map S = 2I − U introduced in (2.4), the following situation
occurs on the strip Σ = E + C6 with E = W+ + a and a ∈ F :

S(Σ) = S(E + V ) = E′ + Φ3V (2.12)

since S(E) = S(W+ + a) = W+ + Φ3a =: E′. The symmetric matrix S itself is
integer and because of detS = −1 also integer invertible. Therefore we obtain two
different tilings on the parallel subspace E′. The tiling

SME := πE′
(
Z6 ∩ S(Σ)

)
= πS(E)

(
S(Z6 ∩ Σ)

)
(2.13)

as well as the tiling
ME′ = πE′(Z6 ∩ Σ′) (2.14)

where Σ′ := E′+C6. What is the relation between the tiling ME on the subspace
E and the tilings ME′ and SME on the shifted subspace E′?

Theorem 2.3. The tiling SME is a proper refinement of ME′ , i.e. ME′ ⊂ SME.

Proof. Σ′ ⊂ S(Σ) because the transformed strip S(Σ) is by the factor Φ3 larger
than the usual strip Σ′. With (2.13) and (2.14) we observe

ME′ = πE′(Z6 ∩ Σ′) ⊂ πE′
(
Z6 ∩ S(Σ)

)
= SME .

�

Theorem 2.4. The tiling SME is homothetic to the tiling ME. More precisely:
SME is an image of ME, point reflected and scaled-down by the factor ϕ3.
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Proof. By definition the subspace E is a translated eigenspace of S and hence
S ◦ πE = πE ◦ S, which means that we can also first project and then apply S.
Because of (2.1) and (2.13) we have

SME = πS(E)

(
S(Z6 ∩ Σ)

)
= S

(
πE(Z6 ∩ Σ)

)
= S(ME)

with ME ⊂ E and S has eigenvalue −ϕ3 in the direction of E. �

This shows the inflation property of the tiling, see figure 6: the vertex set SME

which is a homothetic image of ME has ME′ as a subset. Thus the vertex set
ME′ can be extended to the vertex set of another icosahedral tiling whose tiles
are smaller by the factor ϕ3. Therefore we call ME′ inflation tiling or coarse tiling
of SME and the linear transformation S also inflation map. The inverse of this
procedure is called deflation: the tiling SME is the deflation tiling or fine tiling
of ME′ and T := S−1 the deflation map, see [8]. The vertices of ME′ will also
be called old vertices. Thereby the following question arises: what happens to
the coarse tiles of ME′ under deflation? For the Penrose tilings of the plane the
procedure of deflation is defined in such a way that every coarse tile has the same
subdivision, cf. [5], but does the subdivision of the tiles also occur in an unique
way in the case of icosahedral tilings in space?

Figuring out this problem the following idea is necessary: let z ∈ Z6 be a point
inside the strip Σ′ ⊂ S(Σ) then zE′ := πE′(z) belongs to the coarse tiling ME′

as well as to the fine tiling SME . But viewing zE′ as an element of ME′ it has
another vertex configuration than when we view it as an element of SME .12 There-
fore understanding the procedure of deflation involves to figure out the connection
between the old vertex configuration of zE′ in ME′ and the new vertex configura-
tion of zE′ in SME . Because SME is homothetic to the tiling ME on the subspace
E, cf. theorem 2.4, we can answer this question by studying the connection be-
tween ME′ and ME . Hence we may use the deflation map T = S−1 and we have
to investigate what happens to the window V under T .

3. Deflation in the case of the icosahedral tilings

We adopt the terminology introduced in 2.1 and 2.2. Let zE′ always denote an
arbitrary old vertex of the coarse tiling ME′ in the projection space E′ then zF ′

denotes the corresponding point in the orthogonal space F , cf. remark 2.2. If zE′

resp. zF ′ has j neighbour points then zE′ resp. zF ′ is called vertex of type ωj .
13

12See figure 6: for z ⊂ (E′+C6) ⊂ (E′+SC6) we have z′ 6⊂ (E′+V ), but z′ ⊂ (E′+ Φ3V ); i.e.

zE′ belongs not to the coarse tiling ME′ , however zE′ is an element of the fine tiling SME .
13Of course j can be specified; in the case of icosahedral tilings it is j ∈ {4, 5, 6, 7, 8, 9, 10, 12},

see [6]. Because for 1 ≤ i ≤ 6 the basic vectors ±vi point to the vertices of an icosahedron in

a different configuration than the basic vectors ±wi, cf. figure 1 and footnote 4, a vertex of

type ωj can have another shape in the projection space E than in the orthogonal space F , cf.
figure 10.
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Concerning the question of a possible subdivision of the tiles we proceed step by
step. We first examine: what happens to all old vertices under deflation?

3.1. Subdivision at vertices

Theorem 3.1. All vertices zE′ of the coarse tiling ME′ turn into vertices of type
ω12 with respect to the fine tiling SME.

Proof. The deflation factor is ϕ3 =
√

5 − 2 and therefore the deflation map T
shrinks the window V by exactly this factor. According to the equivalences in (2.10)
and (2.11) we have to ask: for which basic vector w with w ∈ {±w1, . . . ,±w6} we
have

ϕ3V + w ⊂ V ? (3.1)

Consider the homothetic map h : x 7→ ϕ3x + w .14 Its scale factor is ϕ3 and for
the fixed point y we obtain y = 1

1−ϕ3 w. Concerning lemma 1 in the appendix we

have to verify
y ⊂ V for each w ∈ {±w1, . . . ,±w6} (3.2)

then (3.1) holds for all w ∈ {±w1, . . . ,±w6} satisfying (3.2). Since 1
1−ϕ3 = Φ3

Φ3−1 =

1 + 1
2ϕ (recall that Φ2 = Φ + 1 and hence Φ3 = Φ2 + Φ = 2Φ + 1) and Φ = 1 + ϕ,

we have 1
1−ϕ3 < Φ.

Because Φw is a vertex of the window V for all w ∈ {±w1, . . . ,±w6}, the scaled
down window ϕ3V can be shifted in any direction of the 12 basic vectors ±wi for
all 1 ≤ i ≤ 6 without leaving the original window V .15 Thus all old vertices zE′ of
the coarse tiling ME′ turn into vertices of type ω12 in the fine tiling SME . �

Condition (3.1) can be illustrated by considering the projection image of the win-
dow V , see figure 7.16 From theorem 2.3 it is known that the tiles of the fine
tiling SME are by the factor ϕ3 smaller than the tiles of the coarse tiling ME′ .
By construction the tiles of ME′ are spanned by the basic vectors ±v1, . . . ,±v6,
therefore the tiles of the fine tiling SME are spanned by the reduced basic vectors
±ϕ3v1, . . . ,±ϕ3v6 and in terms of the fine tiling SME we also call±ϕ3v1, . . . ,±ϕ3v6

basic vectors . The situation can be illustrated as shown in figure 8. Concerning
the question of a possible subdivision of the coarse tiling ME′ we have to do a
further step: what about the neighbours of the old vertices in the fine tiling SME?
Which vertex configurations are possible for them?

14It is h = t ◦ h′ where h′ : x 7→ ϕ3x is a homothety and t : x 7→ x + w is a translation. Such
composition is a homothetic map with a different center.

15The vertices of the window V are projections of the vertices of the 6-dimensional unit cube

C6 onto F . Therefore the vertices of V are sums built by ±w1, . . . ,±w6, cf. page 6. But not

all of these 26 = 64 possible sums span the convex polyhedron V . Altogether there are two
types of maximal sums, i.e. sums not lying inside the window but building a vertex of V : the
maximal sum Φw with w ∈ {±w1, . . . ,±w6} pointing to the 12 vertices of an icosahedron and

the maximal sum pointing to the 20 vertices of a dodecahedron, see [6].
16As the projection plane we always choose the plane of a rhomb of the window V .
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Figure 7. The window V under the deflation map T

(a) flat tile (b) long tile

Figure 8. Transformation of the vertices of the coarse tiling ME′ into
vertices of type ω12 in the fine tiling SME

For v ∈ {±v1, . . . ,±v6} the neighbour point zE′ + ϕ3v of an arbitrary old vertex
zE′ in the fine tiling SME is named first neighbour .

Theorem 3.2. The first neighbours of all old vertices zE′ in the fine tiling SME

are vertices of type ω6 and look like flowers in the projection space E′.

More precisely: the edge between an old vertex zE′ and its first neighbour always
builds the flower stalk, the five remaining basic vectors form the petals.

Proof. From theorem 3.1 it is known that in the fine tiling SME the old vertex zE′

is a vertex of type ω12. In order to find out the type of vertex for the first neighbours
of zE′ we have to ask: for which vectors w and w′ with w,w′ ∈ {±w1, . . . ,±w6}
we have

ϕ3V + w + w′ ⊂ V ? (3.3)
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Considering the symmetry of the icosahedron the basic vectors w and w′ can be
related in four different ways:

1. If w′ = −w we obtain the trivial case ϕ3V ⊂ V and condition (3.3) holds
naturally.

2. If w′ is a indirect neighbour of w then w+w′ is the short diagonal of R(w,w′)
and the proof is as given in theorem 3.1. In this case we consider the homo-
thety h : x 7→ ϕ3x+w +w′. Its fixed point is y = 1

1−ϕ3 (w +w′) and w +w′

now points to the direction of the midpoint of the faces of the rhombic tria-
contahedron, see figure 9. But we still obtain y ⊂ V and therefore condition
(3.3) holds for all indirect neighbours w′ of w.

3. If w′ is a direct neighbour of w then w+w′ is the long diagonal of R(w,w′).
By planar geometry considering the projection image of V we can prove that
condition (3.3) fails for all direct neighbours w′ of w, see figure 9. In each
case we have to choose the projection plane parallel to the two pairs of basic
vectors ±w and ±w′. Then the translation of the reduced window ϕ3V to
w + w′ is mapped isometrically and we obtain (ϕ3V + w + w′) ∩ V = ∅.

4. If w′ = w we can apply the proof given in case 3, see figure 9. It follows
(ϕ3V + 2w) ∩ V = ∅ and therefore also in this case condition (3.3) fails.

Figure 9. Shifting ϕ3V + w to w′ is not admissible if w′ is a direct
neighbour of w or if w′ = w, see left figure. The right figure illustrates
case 2 where w′ is a indirect neighbours of w.

Therefore in the projection space E′ an arbitrary first neighbour zE′ +ϕ3v of any
old vertex zE′ always has the neighbour points

zE′ + ϕ3v − ϕ3v = zE′ and zE′ + ϕ3v + ϕ3v′ (3.4)
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where v ∈ {±v1, . . . ,±v6} and v′ is a direct neighbour of v, cf. the equivalences
in (2.10) and (2.11).17 We call this type of vertex ω6. Because of its shape in the
projection space E′ we also call it flower (vertex), see figure 10. �

Figure 10. A vertex of type ω6 in the orthogonal space F and in the
projection space E

Moreover we also know which tiles surround each flower stalk:

Theorem 3.3. The flower stalk of any vertex of type ω6 is surrounded by five long
tiles.

Proof. Fixing the first neighbour zE′ +ϕ3v6, we may ask: which tiles surround the
edge between zE′ and zE′ + ϕ3v6? Because all first neighbours of zE′ in the fine
tiling SME are vertices of type ω6 we know that the blue marked edges in figure
11 (left) exist.
As a result we obtain the rhombs R(1, 5), R(1, 6), R(5, 6).18 These three rhombs
are pairwise non-parallel and they form a long tile.19 With the same arguments
four further long tiles exist around the edge between zE′ and zE′ +ϕ3v6 and hence
we get the situation shown in figure 11 (right). For the sake of clarity just three
of the five long rhombs are shown. The same considerations can be made for all
other first neighbours of zE′ and theorem 3.3 is proved.

�

Directly from theorem 3.3 we obtain:

Theorem 3.4. The petals of any flower span a blossom of five rhombs.

17In (3.3) we investigate the tiling ME , homothetic to the fine tiling SME , cf. theorem 2.4.

Transferring results from ME to SME which are not invariant under similarity transformations

therefore needs to apply S and therefore v′ is now a direct (not indirect) neighbour of v.
18For the sake of brevity the first neighbour zE′ ± ϕ3vk is denoted by ±k for 1 ≤ k ≤ 6
19The 3D-tiling induces a 2D-tiling on the sphere S around each vertex. The three rhombs

R(1, 5), R(1, 6), R(5, 6) intersect S in three edges of the 2D-tiling bounding a triangle in S.

This is the intersection of S with a 3d-tile. Thus these three rhombs bound a common (long)
tile.
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Proof. In figure 11 we see: two neighbouring petals of any flower span a rhomb.
Because each flower has five petals we obtain a blossom of altogether five rhombs.

�

Figure 11. The long tiles around zE′ and zE′ + ϕ3v6 in the fine tiling
SME , the notation is according to footnote 18

Therefore an arbitrary old vertex zE′ of the coarse tiling ME′ is surrounded by
altogether 20 long tiles in the fine tiling SME : according to the theorems 3.1
and 3.2 the old vertex zE′ is a vertex of type ω12 in SME and all of its 12 first
neighbours are flowers. Each stalk of these flowers is surrounded by 5 long tiles,
see theorem 3.3, but three neighbouring stalks always have a long tile in common.

3.2. Subdivision along edges

3.2.1. Subdivision along edges near endpoints. Based on the results of 3.1 we
obtain the situation as shown in figure 12.

5 long tiles 5 long tiles

B B'O O'

Figure 12. Unfinished subdivision of an arbitrary coarse edge

Comments on figure 12:
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• A coarse edge and its endpoints, denoted by O and O′, are marked orange.
O and O′ are both old vertices, thus they are vertices of type ω12 in the fine
tiling SME , cf. theorem 3.1.

• The two blue marked points B and B′ are first neighbours of O and O′.
Concerning theorem 3.2 they are flowers and their flower stalks OB and
O′B′ are both surrounded by five long tiles, cf. theorem 3.3.

• The petals of B and B′ are marked red and the two blossoms spanned by them
are drawn above, cf. theorem 3.4. Note that each rhomb of these blossoms is
the face of one of the long tiles surrounding OB and O′B′.

Hence each coarse edge near its endpoints is surrounded by five long tiles in the
fine tiling SME .

3.2.2. Subdivision along edges near midpoints. We have to close the remaining
gap in figure 12. The drawn ten rhombs separate into two blossoms adjoining to
the first neighbours B and B′, cf. theorem 3.4. Because B and B′ are antipodal
points these blossoms are antipodal. Furthermore we have

|B −B′| = |O −O′| − 2ϕ3|v| = |v| − 2ϕ3|v| =
√

5ϕ3|v|
where by construction v ∈ {±v1, . . . ,±vn} is an edges of the coarse tiling and
ϕ3v an edge of the fine tiling SME . Therefore the ten rhombs in figure 12 form
a lense20: a convex equilateral polyhedron bounded by 20 golden rhombs with
22 vertices and 40 edges. The following theorem guarantees the existence of the
missing edges (the ten edges between the green points in figure 12):

Theorem 3.5. If two points in the icosahedral tilings differ by an admissible edge
vector then they are connected by an edge.

Proof. Let z1E and z2E be two points in an arbitrary tiling ME which differ by
an admissible edge vector, i.e.

z1E − z2E = v

with v ∈ {±v1, . . . ,±v6}. We want to prove that the edge between z1E and z2E

exists in fact.
For the inverse image point z1 = π−1

E (z1E) in the ambient space W we have
z1 ∈ (E +C6) ⊂ R6, cf. (2.10), and the admissible edge v corresponds to the unit
vector e = π−1

E (v) with e ∈ {±e1, . . . ,±e6}. Moving from z1 along e we reach
the point z1 + e = z∗. Because the orthogonal space F is irrational, i.e. it does
not contain any nonzero integer vector, no two different grid points in W can be
projected onto the same point in E. Therefore it is z∗ = z2 = π−1

E (z2E). But
with z1 and z2 also the line segment between these two points lies inside the strip
Σ = (E + C6) ⊂ R6 since the strip is convex. Hence in the tiling ME the edge
between zE1 and zE2 exists. �

Thus each coarse edge near its midpoint is surrounded by a lense, see figure 13.

20See comments on figure 32 and remark 4.1 in the appendix.
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Figure 13. Subdivision of an arbitrary coarse edge. On the left, the
lense around the middle part of the coarse edge is shown, on the right
we see the lense together with the five long tiles adjoining to the lense
from left and right, see 3.2.1.

We prove in the appendix, see lemma 3, that each lense can be filled with five
long and five flat tiles and the filling is unique up to isometries of the lense. The
question remains if all of these ten congruent fillings are realized for each of the
lenses. The answer to this problem needs some more detailed knowledge, for this
purpose see [6].

3.3. Subdivision of the faces

Each face of the icosahedral tiling is a golden rhomb. Transferring the results from
3.2 to the four edges of a coarse rhomb we directly obtain the subdivision of a
coarse face in the fine tiling SME .

Figure 14. Subdivision of the face
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Comments on figure 14:

• Each of the four vertices of the coarse rhomb, marked orange, is surrounded
by 20 long tiles in fine tiling SME . The intersection of these long tiles with
the coarse rhomb depends on whether the two coarse edges at the old vertex
are direct or indirect neighbours in the icosahedron, cf. page 6.

– If the coarse edges are direct neighbours then the intersection is a golden
rhomb, more precisely a face of the fine tiling SME , orange marked.

– If the coarse edges are indirect neighbours then the intersection con-
tains the diagonal and has the shape of a certain parallelogram, yellow
marked, cf. figure 22 below

• Each coarse edge near its midpoint is surrounded by a lense, see 3.2.2. The
four green marked quadrangles are the intersections of these lenses with the
coarse rhomb.

• In the center of the coarse rhomb the four yellow marked rhombs just enclose
a further golden rhomb, purple marked21

3.4. Subdivision of the tiles

We obtain the situation as shown in figure 15. For both tiles the lenses 1 to 6 are
called inner lenses, accordingly the lenses 7 to 12 are also called outer lenses. Also
the corresponding edges will be named inner and outer edges, accordingly. The
following two questions remain:

1. Which of the 20 long tiles surrounding each old vertex, cf. 3.1, belong to the
coarse tiles?

2. What about the interior part of the coarse tiles (long and flat)?

Figure 15. Subdivision of the edges of an arbitrary coarse tile: left the
flat and right the long tile. For the sake of clarity the five long tiles
always adjoining to the lenses from left and right are not shown.

21The four edges enclosing a rhomb actually bound a face of the tiling since they are projected
from an admissible square in the lattice Z6, see proof of theorem 3.5.
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3.4.1. Subdivision of the flat tile.

Long tiles inside the coarse flat tile. The first question can be answered by con-
sidering the schematic representation of the vertices of the tiles, cf. figure 4. In
figure 16 we see the six vertices of an icosahedron lying in a common half space
(marked dark bold) and five antipodal vertices. Only the antipodal vertex of the
bold marked vertex in the center is invisible. Assuming that the bold marked
vertex in the center is an old vertex zE′ , figure 16 shows 15 of the 20 long tiles
surrounding zE′ .

Figure 16. 15 of the 20 possibilities to build a long tile in SME arising
from zE′ .

Theorem 3.6. At the two obtuse vertices always four whole long tiles and six half
long tiles (belonging to the fine tiling SME) lie inside the coarse flat tile. At the
six acute vertices always two half long tiles of the fine tiling SME lie inside the
coarse flat tile.

Figure 17. Left the schematic representation of an obtuse vertex of the
flat tile, right an acute vertex of the flat tile always together with 15
of the 20 possibilities to build a long tile seen from its acute vertex

Proof. Comments on figure 17:

• Three vertices of an icosahedron which together span a flat tile seen from its
obtuse vertex are marked red, three vertices of an icosahedron which together
span a flat tile seen from its acute vertex are marked green.

• Yellow marked are always 15 of the 20 possibilities to build a long tile seen
from its acute vertex.

• Therefore in the left figure the four triangles highlighted in yellow correspond
to long tiles at an obtuse vertex lying completely inside the coarse flat tile
and the six numbered triangles correspond to long tiles lying half inside the
coarse flat tile.
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• Similary, in the right figure the two triangles highlighted in yellow correspond
to long tiles at an acute vertex lying half inside the coarse flat tile.

�

The interior part. The two obtuse vertices of the coarse flat tile are close to each
other. This fact leads to the following result:

Theorem 3.7. The two obtuse vertices of the coarse flat tile are connected by a long
tile of the fine tiling SME.

Proof. In the appendix, lemma 4, we prove that the ratio of the long diagonal of
the long tile and the short diagonal of the flat tile corresponds to Φ3. Since the
deflation factor of the icosahedral tilings is also Φ3 the length of the short diagonal
of a coarse flat tile corresponds to the length of the long diagonal of a fine long tile.
According to 3.1 each old vertex of the coarse tiling ME′ is surrounded by 20 long
tiles in the fine tiling SME . One of them is pointing straight inward. Therefore the
two obtuse vertices of the coarse flat tile are connected by a long tile in SME . �

Remark 3.8. This long tile of the fine tiling SME connecting the two obtuse
vertices of the coarse flat tile is also called transversal tile.

With the help of the transversal tile the question of the interior part of the coarse
flat tile can be finally answered, see figure 18. We obtain:

Theorem 3.9. The interior part of the coarse flat tile is filled by 7 whole and 12
half long tiles as well as 6 whole flat tiles of the fine tiling SME.

Proof.

Figure 18. Inner part of
the coarse flat tile

Figure 19. Long tiles A,B
adjacent to transversal tile
T at edge e are connected
by a flat tile F (projection
plane e⊥)

Comments on figure 18:
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• The two orange vertices in the center (the second one is underneath) are
the two obtuse vertices of the coarse flat tile, the blue vertices are their first
neighbours in the direction of the edges of the coarse flat tile.

• The edges of the transversal tile in the center are marked blue and orange.
The six blue marked edges are all flower stalks. In view of theorem 3.3,22

we obtain six long tiles, which adjoin to the six faces of the transversal tile
and lie completely inside the coarse flat tile, and twelve long tiles lying just
half inside the coarse flat tile. For the sake of clarity the half-tiles are not
shown in figure 18 we obtain six long tiles, which adjoin to the six faces of
the transversal tile and lie completely inside the coarse flat tile, and twelve
long tiles lying just half inside the coarse flat tile.

• There are two triples of long tiles adjacent to the 3+3 faces of the transversal
tile T (3 on each end). Two tiles A,B belonging to different triples and
sharing an edge e, one of the 6 “outer” (middle) edges of T , are connected
by a flat tile, see figure 19 which is a projection into the plane perpendicular
to e.

�

Hence the subdivision of the coarse flat tile is known and we can calculate the
number of fine tiles subdividing the coarse flat tile. Note that this is not a subdi-
vison by whole tiles but by parts of tiles (in fact by tenths) since some fine tiles
are cut into pieces by the walls of the coarse tile. However, recollecting the pieces
we obtain the following integers (in fact Fibonacci numbers):

Theorem 3.10. Any flat tile of the coarse tiling ME′ is filled altogether by 34 long
and 21 flat tiles of the fine tiling SME, more precisely, by 340 tenths of a long tile
and 210 tenths of a flat tile.

Proof. Each of the inner lenses takes part of the coarse flat tile by the ratio 2
5 ,

each of the outer lenses by the ratio 1
10 . This is seen by projecting the coarse tile

into the plane perpendicular to the edge carrying the lense. The projection of a
flat tile into the plane perpendicular to any of its edges is always a rhomb with
angles 1

10 · 2π and 2
5 · 2π, see figure 19. Thus the coarse tile cuts out a fraction of

1
10 from the lenses sitting on an outer edge and 2

5 from those on the inner edges.
Therefore denoting the long tiles by L and the flat tiles by F we obtain for the
number of tiles, using the theorems 3.6, 3.9 and Lemma 3 of the Appendix:

6

(
2· 1

2
L

)
︸ ︷︷ ︸
acute vertices

+

(
7+

12

2

)
L+ 6F︸ ︷︷ ︸

interior part

+ 6

(
1

10
(5L+5F )

)
︸ ︷︷ ︸

outer lenses

+ 6

(
2

5
(5L+5F )

)
︸ ︷︷ ︸

inner lenses

= 34L+21F.

22Each stalk is surrounded by five long tiles: the transversal tile and four further long tiles. Two
of these are directly adjacent to the transversal tile and lie completely inside the coarse flat

tile; in fact, each of those belong to two different flower stalks. The other two long tiles lie just

half inside the coarse tile. Hence altogether we obtain six whole long tiles and twelve half long
tiles inside the coarse flat tile.
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�

3.4.2. Subdivision of the long tile.

Long tiles inside the coarse long tile. Also in this case we first want to examine
which of the 20 long tiles of the fine tiling SME surrounding each old vertex lie
inside the coarse long tile.

Theorem 3.11. At the six obtuse vertices always one whole long tile and four half
long tiles (belonging to the fine tiling SME) lie inside the coarse long tile. At the
two acute vertices always one whole long tile of the fine tiling SME lies inside the
coarse long tile.

Proof.

Figure 20. Left the schematic representation of an obtuse vertex of the
long tile, right an acute vertex of the long tile always together with 15
of the 20 possibilities to build a long tile seen from its acute vertex

Comments on figure 20:

• Three vertices of an icosahedron which together span a long tile seen from
its obtuse vertex are marked purple, three vertices of an icosahedron which
together span a long tile seen from its acute vertex are marked orange.

• Yellow marked are always 15 of the 20 possibilities to build a long tile seen
from its acute vertex.

• Therefore in the left figure the triangle highlighted in yellow corresponds to
a long tile at an obtuse vertex lying completely inside the coarse long tile
and the four numbered triangles correspond to long tiles lying half inside the
coarse long tile.

• Similarly, in the right figure the triangle highlighted in yellow corresponds to
a long tile at an acute vertex lying completely inside the coarse long tile.

�
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The interior part. The question of filling the interior part must be answered in
two steps. We first examine the shape of the interior part.

Figure 21. Left the connection between three of the inner lenses, right
the outer lenses of the long tile rotated by 90◦ and isolated from the
rest of the tile

Comments on figure 21:

• The inner lenses 1,2,3 and 4,5,6 pairwise share a rhomb. For example: lense 2
has a rhomb (marked green) in common with lense 1 and lense 3. Lense 1 and
lense 3 also share a rhomb, but being perpendicular to the viewing direction
we just see the edge marked yellow, see left figure.

• The outer lenses of the long tile form a ring of lenses, see right figure. Each
outer lense shares a rhomb with both of its neighbour lenses, marked green.

Considering the results from 3.1 to 3.3 we obtain:

Theorem 3.12. The interior part of the coarse long tile has the shape of two inter-
secting rhombic triacontahedra intersecting in a flat tile of the fine tiling SME.

Proof. We investigate the cross section along the long diagonal of the coarse long
tile, perpendicular to one of the faces:
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Figure 22. The cross section of the interior part

Comments on figure 22:

• The “edges” AB and CD are both long diagonals of a coarse rhomb, while
AC and BD are edges of a coarse rhomb

• The four orange marked vertices of the cross section are old vertices
• The yellow parallelograms and the orange rhombs are the long tiles surround-

ing any old vertex, the lenses are marked green
• The drawn rhombs and lenses enclose a pink marked gap. It has the shape of

two intersecting rhombic triacontahedra intersecting in a flat tile of the fine
tiling SME , marked purple, cf. footnote 21

�

In a second step we ask: which tiles of the fine tiling SME fill these intersecting
rhombic triacontahedra? For a better understanding we first have to get in touch

Figure 23. Minilense 23

with another convex equilateral polyhedron. We call it minilense and it is bounded
by 12 golden rhombs with 14 vertices and 24 edges, see figure 23. With the help
of the minilenses it is possible to construct an invariant structure inside the two
intersecting rhombic triacontahedra of the coarse long tile.

Theorem 3.13. The interior part of the coarse long tile is subdivided by an invariant
structure consisting of seven flat and eight long tiles and six minilenses in the fine
tiling SME.

23By courtesy of Paul Hildebrandt, Zoometool Inc.
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Proof. The considerations made in 3.1 and 3.2 have been too coarse in some sense:
in order to investigate what happens to an arbitrary coarse long tile under deflation
we actually don’t have to work with the whole window V .

Excursus 1
Let zE be a point of an arbitrary tiling ME in the projection space E and assume
that zE is an acute vertex of a long tile with edge vectors vi, vj , vk.24 Therefore
besides zE also the seven remaining vertices of that long tile must belong to the
tiling ME , i.e. the points zE +v for v ∈ {vi, vj , vk, vi+vj , vi+vk, vj +vk, vi+vj +
vk}. According to the equivalences in (2.10) and (2.11) we observe the following
conditions for the corresponding point zF in the orthogonal space F :

(i) zF ∈ V
(ii) zF + w ∈ V for w ∈ {wi, wj , wk, wi + wj , wi + wk, wj + wk, wi + wj + wk}

Let Ω(i,j,k) be the part of the window V satisfying the conditions (i) and (ii).
Then we obtain

zF ∈ Ω(i,j,k) ⇐⇒ from zE arises a long tile by vi, vj , vk (3.5)

Ω(i,j,k) itself has the shape of a long tile, see lemma 5 in the appendix. According
to the 20 possibilities of choosing three pairwise direct icosahedral neighbours,
cf. footnote 24, there are altogether 20 congruent regions inside the window V
realizing a long tile from its acute vertex. Each of these regions is also called
region of type Ω.25

Figure 24. From left to right three illustrations of the region of type Ω:
perspective, projection and cross section

From excursus 1 it follows: let zE′ be an old vertex of the coarse tiling ME′ and
assume that from zE′ arises a coarse long tile from its acute vertex by the basic
vectors vi and vj as well as vk. Then it holds true

zF ′ ∈ Ω(i,j,k) (3.6)

24In that case vi, vj , vk are pairwise direct icosahedral neighbours. Altogether there are 20 pos-
sible combinations for three pairwise direct neighbours in the icosahedron.

25Of course the same considerations can be made for the long tile seen from its obtuse vertex

and the flat tile seen from its acute or obtuse vertex. The corresponding regions in the window
V always have the same shapes as the tiles we are starting from, cf. lemma 5 in the appendix.
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for the corresponding point zF ′ in the orthogonal space F and Ω(i,j,k) is the part
of V we have to work with. Hence concerning the question what happens to the
long tile under deflation the following steps are neccessary:

1. Apply the deflation map T to the region Ω(i,j,k)

2. Find the region of the window V in which the image of Ω(i,j,k) under T lies
3. Apply S to the results of step 2, cf. footnote 17

Figure 25. Illustration of the steps 1 to 3, where Ω(i,j,k) is marked orange

Figure 25 illustrates the steps 1 to 3: applying T to Ω(i,j,k) (left) means to reduce

it by the factor ϕ3 (middle) and the reduction lies inside a certain red marked
region (right). In order to figure out what it is about this region it is necessary
to investigate more about the window V and its different regions. All in all we
register

zF ′ ∈ ϕ3(Ω(i,j,k)) ⊂ red marked region (3.7)

Excursus 2
Again let zE be part of an arbitrary tiling ME . In the sequel of the considerations
made in excursus 1 we can ask: where in the window V does zF have to lie so that
from zE arise two long tiles in a row by the basic vectors vi, vj , vk, as shown in
figure 26? We call such a tile also double tile.

Figure 26. From zE arises a double tile by vi, vj , vk

According to the equivalences in (2.10) and (2.11) as well as the results from
excursus 1 in the orthogonal space F the condition for the existence of such a



Icosahedral Tiling 27

double tile spanned by vi, vj , vk in the projection space E is

zF ∈ Ω(i,j,k) and zF + wi + wj + wk︸ ︷︷ ︸
:= d

∈ Ω(i,j,k) (3.8)

That gives us a simple construction guide for the wanted region in V , which we
denote by Γ(i,j,k):

Γ(i,j,k) = Ω(i,j,k) ∩
(
Ω(i,j,k) − d

)
(3.9)

It is Γ(i,j,k) ⊂ Ω(i,j,k) and also Γ(i,j,k) itself has the shape of a (somewhat smaller)
long tile. Corresponding to the 20 congruent regions of type Ω there are also 20
congruent regions of type Γ.

Figure 27. Construction of the region of type Γ

Summing up excursus 2 we obtain

zF ∈ Γ(i,j,k) ⇐⇒ from zE arises a double tile by vi, vj , vk (3.10)

Based on this knowledge we can return to figure 25. The so far unknown red marked
region corresponds to the region denoted by Γ(−i,−j,−k) and therefore (3.7) means

zF ′ ∈ Γ(−i,−j,−k)

i.e. from zE′ arises a double tile by the basic vectors −vi and −vj as well as −vk.
Applying S to this results, cf. step 3, it follows that in the fine tiling SME from
zE′ arises a double tile by the basic vectors ϕ3vi and ϕ3vj as well as ϕ3vk. Thus
we can complete figure 22:

Figure 28. The two double tiles existing in the fine tiling SME on the
two acute vertices of the coarse long tile are marked yellow.
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By restricting ourselves to the left rhombic triacontahedron of figure 28 and consid-
ering theorem 3.5 we obtain the invariant structure shown in figure 29. It consists
of four long tiles and four flat tiles as well as three minilenses.

Figure 29. Structure of the left triacontahedron inside the coarse long tile

Comments on figure 29:

• In both parts of the figure (left and right), the left triacontahedron inside the
long coarse tile (as shown in figure 28) is projected to the plane perpendicular
to the long diagonal of the coarse tile. This projection is a regular hexagon.

– Left: View from the acute vertex (marked with A in figure 28) of the
second tile of the “doubled tile” (second long tile in Figure 28) in the
direction of the long diagonal up to the obtuse vertex (marked with O
in figure 28) of the connecting flat tile,

– Right: View from O in figure 28) in the opposite direction,
• Left: At each of the three faces of the “doubled” tile (dashed lines) adjacent

to A a long tile is adjoined. Any two of these long tiles having only an edge
in common are connected by a flat tile, like in figure 19.

• Right: The vertex O is an obtuse vertex of the flat tile connecting the two
triacontahedra. At each of the three faces of that tile (marked with dashed
lines) a minilense is adjoined. Each of these three minilenses shares a face
with the “doubled” tile.

The same considerations hold for the right rhombic triacontahedron of figure 28
and therefore we obtain an invariant structure inside the coarse long tile, which
consists of altogether seven flat tiles and eight long tiles as well as six minilenses.

�
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Figure 30. The three minilenses inside the left rhombic triacontahedron
of figure 28: marked blue and grey, left figure, and black, right figure

Hence the subdivision of the coarse long tile is known. We prove in the appendix,
see lemma 2, that each minilense can be filled with two long and two flat tiles
and the filling is unique up to isometries of the minilense. Therefore we can also
calculate the number of fine tiles “subdividing” the coarse long tile.

Theorem 3.14. An arbitrary long tile of the coarse tiling ME′ is filled with alto-
gether 55 long tiles and 34 flat tiles of the fine tiling SME, more precisely, of 550
tenths of a long tile and 340 tenths of a flat tile.

Proof. Each of the outer lenses belonging to the ring of lenses takes part of the
coarse long tile by the ratio 3

10 , each of the inner lenses by the ratio 2
10 . This is

seen by projecting the coarse tile into the plane perpendicular to the edge carrying
the lense. The projection of a long tile into the plane perpendicular to any of its
edges is always a rhomb with angles 2

10 · 2π and 3
10 · 2π, see figure 19. Thus the

coarse tile cuts out a fraction of 3
10 from the lenses sitting on an outer edge and 2

10
from those on the inner edges. Therefore denoting again the long tiles by L and
the flat tiles by F we obtain for the number of tiles, using theorems 3.11, 3.13 and
lemmas 2, 3:

6 · (L+ 4 · 1

2
L)︸ ︷︷ ︸

obtuse vertices

+ 2L︸︷︷︸
acute vertices

+ 8L+ 7F + 6 · (2L+ 2F )︸ ︷︷ ︸
interior part

+

6 ·
( 3

10
(5L+ 5F )

)
︸ ︷︷ ︸

outer lenses

+ 6 ·
( 2

10
(5L+ 5F )

)
︸ ︷︷ ︸

inner lenses

= 55L+ 34F .

�
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4. Conclusion

In this paper, we have analyzed the icosahedral tiling: a certain class of tilings of
euclidean 3-space where all edges are icosahedral vertex vectors, vectors from the
center to a vertex of the regular icosahedron (also called basic vectors). We have
constructed this class of tilings by projecting a subset of the regular 6-dimensional
lattice Z6 ⊂ R6 onto a certain 3-dimensional affine subspace E. In fact, the sym-
metry group G of the icosahedron acts in a canonical way on R6 by integer ma-
trices, and over the reals, this representation decomposes into two 3-dimensional
irreducible subrepresentations, where the subspace E is parallel to one of these
submodules. The group G acts on the unit cube C6 ⊂ R6 with C = (− 1

2 ,
1
2 ), and

this action has precisely two orbits on the set of 3-dimenisonal subcubes; their
projections to E form the two tiles: a long one and a flat one. Further we have
constructed an integer invertible matrix S on R6 commuting with the group action
which is expanding on the submodule F perpendicular to E. This matrix causes
what is called deflation: the subdivision of the tiling by a similar tiling whose edge
length is smaller by the factor 1/Φ3 where Φ = (1 +

√
5)/2 is the golden ratio.

We observed that any vertex of the old (coarse) tiling is the common tip of 20
long tiles of the new (fine) tiling. This determines the subdivision of all coarse
edges and 2-faces, using that any two vertices differing by an icosahedral vertex
vector are actually joined by an edge. With some more effort, the subdivision of
the tiles can also be determined, up to some small areas (lenses and minilenses)
whose fillings may differ just by local isometries (however, the actual fillings of
these areas are not independent from each other as explained in [6]). Thus the
local structure of the tiling is everywhere the same which might be of importance
for the application to quasicrystals: each atom joining the quasicrystal knows its
place. As a consequence we see that the coarse long tile is filled with 55 long and
34 flat tiles of the fine tiling while for the coarse flat tile these numbers are 34 and
21; however, some of the filling tiles are decomposed into smaller fractions.

Our main references on aperiodic tilings have been [4],[13],[17]. We wish to men-
tion in particular the work of Ogawa (see [17],[18]) who already found an invariant
local structure (not complete) for this tiling, and using this he already computed
the above numbers for the subdivision of the tiles. But we also like to mention
the contribution of Coxeter (cf. [21]) who investigated the five isozonohedra all
of which play a prominent role in our investigation. Last not least, it is hard to
imagine how this paper could have been written without the help of the Zometool
construction kit. Even the theoretical idea of a system of rods which is invariant
under certain orthogonal projections was extremely helpful for us. Therefore we
gratefully dedicate this paper to Paul Hildebrandt, founder and creative head of
Zometool Inc. We encourage the reader to build the subdivisions using the Zoom-
tool rods since mere photographs of the three-dimensional situations are hard to
understand. We also would be happy to show our own models to the interested
reader.
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Appendix

In this appendix we will give some details of the geometry of the icosahedron and
the isozonohedra which are used in the paper.

Convexity and homothety

Lemma 1. Consider a convex set K ⊂ Rn and a homothetic map h with scale factor
0 < t < 1 and fixed point y ∈ K. Then K is invariant under h, i.e. h(K) ⊂ K.

Proof. Without loss of generality we can choose the fixed point y as origin. Then
the homothetic map h becomes h = t · I where I is the identity and 0 < t < 1.
Let x be a point inside K then tx is a point inside the reduced polyhedron tK.
Since we have 0 < t < 1 the point tx lies on the line segment [0x] and therefore
tx is inside K, because K is a convex set. Hence we obtain h(K) ⊂ K. �

Minilense and lense

Lemma 2. For the minilense there are precisely two fillings. They are congruent
and consist of two long and two flat tiles.

Proof. By fixing one of the 14 vertices of the minilense, marked orange in figure
31 (left) we consider possible tiles adjoining to this vertex inside the minilense.

Figure 31. The filling of the minilense

Comments on figure 31:

• Possibility 1: there is an edge adjoining to the orange vertex, see middle figure.
Considering theorem 3.5 the three green marked edges exist. But hence the
filling of the minilense is completed: two long tiles and a flat tile adjoin to
the orange vertex, a further flat tile adjoins to these three tiles inside the
minilense.

• Possibility 2: there is no interior edge adjoining to the orange vertex, see
right figure. Then a flat tile adjoins to the orange vertex, also marked orange.
Considering theorem 3.5 the green marked edge exists and hence we obtain
a further flat tile as well as to long tiles inside the minilense.

These two possibilities of filling the minilense are symmetric to the plane perpen-
dicular to the central rhomb in figure 31. �
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Lemma 3. For the lense there are precisely ten fillings. They are pairwise congruent
and consist of five long and five flat tiles.

Proof. Two of the 22 vertices of each lense are flowers, cf. figure 12 and figure 13.
At one of these flowers we start filling the lense.

Figure 32. The filling of the lense

Comments on figure 32:

• We start at the blue marked flower vertex denoted by B. The vertex at the
end of the flower stalk, an old vertex, is marked orange and the points of the
blossom spanned by the petals of B are marked red and green, cf. figure 12

• Up to a fivefold rotational symmetry we can only span a long tile and two
flat tiles using the petals, cf. figure 4. In the left figure the long tile is in the
middle, left and right a flat tile always adjoins.

• Only the three black marked points lie inside the lense, all colored marked
points are part of the shell of the lense, cf. figure 12. Hence in view of theorem
3.5 three further tiles exist: two long tiles, adjoining to the flat and the long
tiles built by the petals, and a flat tile between these two long tiles. One
vertex of this flat tile is the second flower vertex of the lense, denoted by B′

and marked blue, see right figure.
• Therefore we obtain a structure consisting of altogether three long and three

flat tiles. The rest of the interior part of the lense is a minilense, cf. figure
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31. In the right figure the rhombs belonging to the lower part of shell of the
minilense are marked orange.

• Note that the two flower vertices B and B′ are antipodal points. Therefore
the blossom spanned by the petals of B is antipodal to the blossom spanned
by the petals of B′.

Because the minilense can be filled in two congruent ways, see figure 31, there are
altogether ten fillings of the lense, being pairwise congruent. �

Lemma 4. The ratio between the long diagonal of the long tile and the short
diagonal of the flat tile corresponds to Φ3.

Proof. The diagonals of both tiles are the projections of the diagonals of a 3-
dimensional subcube C3 of the 6-dimensional unit cube C6 onto E. In general the

Figure 33. Diagonal of a three-dimensional cube

diagonals of any 3-cube split up into three parts, in figure 33 denoted by P1, P2,
P3. Since the projection preserves proportions it is sufficient to investigate

P1L

P1S

where P1L denotes the P1-part of the long diagonal of the long tile and P1S the
P1-part of the short diagonal of the flat tile.
In the following we consider the long tile spanned by the pairwise direct neighbours
3,4,6 and the flat tile spanned by the pairwise indirect neighbours -1,2,5, see figure
34, left. Note that 3,4,6 and -1,2,5 lie in two parallel planes. Furthermore we assume
that the two golden rectangles spanned by the vertices ±3,±5 (marked blue) and
±4,±6 (marked green) have edge length 2 and 2Φ. Hence we obtain

P1L

P1S
=
|OP |
|OP ′|

=
|OS|
|OS′|

=
Φ

Φ− 2ϕ
=

Φ

1− ϕ
=

Φ

ϕ2
= Φ3

because |OS′| = |OS| − (|SS′′| + |S′′S′|) and |SS′′| = |S′′S′| = Φ − 1 = ϕ, see
figure 34, right.
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Figure 34. Icosahedron and its golden rectangles

�

Locus of deflation

Lemma 5. The region Ω ⊂ V to where a given vertex of any admissible long tile
is projected has again the shape of a long tile. Vice versa, if πF (z) ∈ Ω for some
z ∈ Z6, then πE(z) is a vertex of an admissible long tile. The analogous statements
hold for a flat tile.

Proof. The unit cube C6 is the Cartesian product of two 3-dimensional subcubes:
C6 = C3

1 × C3
2 ⊂ R3

1 × R3
2 where C3

1 ⊂ Span (e1, e2, e3), C3
2 ⊂ Span (e4, e5, e6) and

e1, . . . , e6 denote the basis vectors of the ambient space W ∼= R6 permuted by the
icosahedral group G like the oriented diagonals of the icosahedron, cf. page 4. The
subcubes C3

1 and C3
2 are inequivalent under G, see appendix B below, and hence

project to different types of tiles onto the projection space E. Further, we know by
figure 1: if the E-projection πE of a 3-dimensional subcube is a long tile, then its
F -projection πF is a flat tile, and vice versa. A subset A ⊂ R6 is called admissible
if A ⊂ Σ with Σ = E + C6 or equivalently if πF (A) ⊂ V = πF (C6), see (2.9) and
(2.10).
In particular, the 3-dimensional subcube Xy := C3

1×{y} with y ∈ R3
2 is admissible

if and only if y ∈ C3
2 . We have C6 =

⋃
y∈C3

2
Xy with Xy = C3

1 × {y} and thus

Σ =
⋃

y∈C3
2
Xy +E. If Xyo

⊂ Σ for some yo ∈ R3
2, then there is some y ∈ C3

2 with

y − yo ∈ E. But E ∩ R3
2 = {0} and hence yo = y ∈ C3

2 .
Choose any x ∈ C3

1 . Let Yx = {x} × C3
2 . Then we obtain

πF (Xy) ⊂ V = πF (C6) ⇐⇒ πF (x, y) ∈ πF (Yx)

because πF (Xy) ⊂ V ⇐⇒ y ∈ C3
2 ⇐⇒ (x, y) ∈ Yx ⇐⇒ πF (x, y) ∈ πF (Yx).

Now a tile T = πE(Xy) is admissible iff T ′ = πF (Xy) ⊂ V . If T is a long tile, then
T ′ is flat. When T has vertex πE(x, y), admissability means that πF (x, y) ∈ T ′′ =
πF (Yx), and since T ′ = πF (Xy) was flat, Ω = T ′′ is a long tile. A similar argument
holds for the flat tile. �
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Coxeter’s Golden Isozonohedra

According to H.M.S. Coxeter a zonohedron is as a convex polyhedron each of whose
faces is centrally symmetrical, see [3]. If its faces are all golden rhombs then a
zonohedron is called golden isozonohedron, cf. [3],[21]. Altogether there are five
golden isozonohedra. In Coxeter’s notation: the rhombic triacontahedron K30, the
rhombic icosahedron F20 and the rhombic dodecahedron B12, denoted according
to their discoverers Kepler, Fedorov and Bilinski, as well as the long and the flat
tile, denoted by A6 and O6, where A stands for acute and O for oblate. The index
specifies the number of faces, see figure 35, from left to right. They all occur in
the icosahedral tilings: the two hexahedra are the two sorts of tiles, dodecahedron
and icosahedron are the minilense and the lense, and the triacontahedron is the
shape of the window. We want to show that these bodies are projections of the
6-dimensional cube and its subcubes onto our 3-dimensional subspace E ⊂ R6.
Essentially, this has been observed already by Kowalewski [14] in 1938.

Figure 35. The five golden isozonohedra 26

Lemma 6. K30 = πE(C6), F20 = πE(C5), B12 = πE(C4), O6 = πE(C3
1 ) and

A6 = πE(C3
2 ). The faces of these bodies are golden rhombs congruent to πE(C2).

Proof. The icosahedral group G ∼= A5 × Z2 leaves C6 ⊂ R6 invariant. It acts
transitively on the set of faces of C6 with dimension or codimension one since it
acts transitively on the oriented icosahedric diagonals corresponding to the vectors
±ei, i = 1, . . . , 6, the unit normals of the codimenison-one faces. Further any two
of the 6 diagonals are neighbours, hence the group G acts also transitively on the
pair of diagonals, i.e. on the subsets {±ei,±ej} for i 6= j. Each of these subsets
determines a class of parallel faces of C6 with dimension or codimension two. But
G acts no longer transitively on the triples of diagonals. In fact, there are precisely
two different configurations: the diagonal vectors may form a chain, an isosceles
but not equilateral triangle, like those corresponding to e1, e2, e3 or else an equilat-
eral triangle, like the ones corresponding to e4, e5, e6. Thus we obtain precisely two
subcubes C3

1 , C
3
2 with dimension or codimension 3 which are inequivalent under

G.
Since convexity is preserved under orthogonal projections, πE(Ck) are convex

26By courtesy of Paul Hildebrandt, Zometool Inc.
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bodies, where k = 3, 4, 5, 6. We have already seen, cf. page 6, that πE(C2) is a
golden rhomb. The 2-dimensional boundary of πE(Ck) consists of projections of
2-dimensional cubes C2, hence these bodies are bounded by golden rhombs. There
are

(
k
2

)
classes of parallel 2-dimensional faces in Ck. Every class contributes to the

boundary of πE(Ck): if we consider a 2-face C2 = Ck∩P for some 2-plane P ⊂ Rk

and its projection πE(P ) ⊂ E, the hyperplane (P +F )∩Rk is also projected to P .
Then a parallel hypersurface (P ′ + F ) ∩ Rk (where P ′ and P are parallel) will be
a support hypersurface of Ck, and the corresponding face Ck ∩ P ′ is projected to
the boundary of πE(Ck). In fact, since Ck as well as πE(Ck) are invariant under
the antipodal map −I, each 2-face appears (at least) twice, up to parallelity. But
by convexity it cannot appear more than twice: the boundary of πE(Ck) cannot
contain more than two parallel 2-faces since the plane of a 2-face in the boundary
of πE(Ck) is a support plane, and obviously there are not more than two parallel

support planes for a convex body in 3-space. Thus πE(Ck) has 2
(
k
2

)
= k(k − 1)

2-faces which is the right number: 30 for k = 6, 20 for k = 5, 12 for k = 4 and 6
for k = 3. �

Remark 4.1. Because of v1 +v2 +v3 +v4 +v5 =
√

5 v6, see footnote 5, the diameter
of F20 = πE(C5) (the lense) is

√
5 |v| and the diameter of K30 = πE(C6) (the

window) is
√

5 |v|+ |v| = 2Φ |v| where |v| is the edge length.
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