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COMMENT

Numerical calculation of thermal noise-voltage in a
Josephson junction of finite capacitance
Vinay Ambegaokar

In the paper by the late J. Kurkijärvi
and myself (KA) [1] a molecular dy-
namics method is used to simulate
the thermal agitation of the phase
variable in a current carrying Joseph-
son junction. Since the method is
general and may be useful in other
contexts, it is briefly described with
some new details added.

Consider a classical particle
of mass M , position X , and mo-
mentum P performing a one-
dimensional thermal Brownian mo-
tion in a potential U . The process
may be described by the Langevin
equations

Ẋ = P/M ; Ṗ =−dU

d x
−ηP +L(t ), (1)

where dots indicate derivatives with
respect to the time t , and the sym-
bols not yet defined are η the aver-
age dissipation and L(t ) the fluctuat-
ing force. It is known that to lead to
thermal equilibrium at temperature
T (in energy units) the fluctuating
force must have the autocorrelation
function 〈L(t )L(t ′)〉 = 2ηM Tδ(t − t ′),
where the brackets indicate an ap-
propriate average.

The basic idea of the method in-
troduced in KA is to simulate the
fluctuating force L(t ) by random im-
pulses describing elastic collisions
with an ideal gas of light particles
of mass m, assumed to be always
in equilibrium. From the collision
dynamics one calculates that ran-

dom impulses 2pi drawn from a
set distributed according to g (p) =
(|p|/2mT )exp(−p2/2mT ), − ∞ <
p <∞, occurring at random time in-
tervals ti from a set distributed ac-
cording to f (t ) = νexp(−νt ), 0 < t <
∞, are required. With a given choice
of m � M , ν must be chosen to sat-
isfy ν = ηM /4m, this being the rela-
tion between the mean frequency of
impact ν and the damping constant
η.

Although the algorithm outlined
in the last paragraph follows so di-
rectly from the physically motivated
model that it cannot be wrong, it is
worth verifying that the autocorrela-
tion function of L(t ) so produced is
indeed correct.

In the model

L(t ) =
∞∑

i=1
2piδ(t −Ti ), Ti =

∑

j≤i
t j .

It follows that

〈L(t )L(t ′)〉 = 〈4p2
1〉

×〈
δ(t − t1)+δ(t − t1 − t2)

+δ(t − t1 − t2 − t3)

+δ(t − t1 − t2 − t3 − t4)+ . . .
〉

×δ(t − t ′). (2)

The fact that 〈pi p j 〉 = 0, for i �= j ,
has been used to keep only diago-
nal terms in a double sum. In Eq. (2),
the first term (the average squared
impulse) is independent of its index

and of time: it has been taken out of
the time-average. Its value from the
given distribution is 8mT .

The average of the sum of δ-
functions is ν. This can be seen
both intuitively and formally. The in-
tuitive argument is that, since the
mean time interval between the δ-
functions is ν−1, the integral of the
average over a time N/ν is N .

The average can also be done ex-
actly term by term. The first term is
simply

〈δ(t − t1)〉

=
∫∞

0
d t1 ν e−νt1δ(t − t1) = ν e−νt .

(3)

For the last term shown the average
is

A4 ≡ 〈δ(t − t1 − t2 − t3 − t4)〉

=
∫∞

0
d t2

∫∞

0
d t3

∫∞

0

×d t4 ν4e−νtΘ(t − t2 − t3 − t4)

=
∫t

0
d t2

∫t−t2

0
d t3

∫t−t2−t3

0

×d t4 ν4e−νt

= 1

3!
ν4 t 3 e−νt . (4)

Above, the first equality comes from
using the δ-function to collapse the
t1 integral, the step function Θ im-
posing the requirement that t1 be
positive.
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[The average A4 may also be eval-
uated using Fourier transforms and
a contour integration:

A4 =
∫+∞

−∞
dω

2π
e−iωt

[ ν

ω+ iν

]4

=−iν4 1

3!

d3

dω3 e−iωt |ω=−iν

= ν
1

3!
(νt )3e−νt .] (5)

As illustrated, the successive
terms in the sum of δ-functions,
when averaged over the random
time intervals, produce an infinite
series for exp(νt ) which exactly com-

pensates for and removes the de-
caying exponential in Eq. (3)! The
intuitive argument that the average
of the sum of δ-functions is equal to
ν is thus formally verified.

Inserting these evaluations into
Eq. (2) one obtains

〈L(t )L(t ′)〉 = 8mTνδ(t − t ′)

= 2ηM Tδ(t − t ′). (6)

Note that in the final result the
mass m of the bath particles no
longer appears, but that the temper-
ature of the bath has been communi-
cated to the Brownian particle.
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