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Full counting statistics in mesoscopic fermion and boson
systems
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Figure 1 Two examples demonstrating the
use of the counting statistics concept. In
a quantum point contact (a) electrons im-
pinge on a barrier in a constriction, some
are reflected and some transmitted in a ran-
dommanner. Thenumberof incoming elec-
trons M in a time interval t can be under-
stood in a energy diagram (b). The number
is related to the energy window spanned
by the applied bias voltage eV and given
by M = eV t /h. As the particles are inde-
pendent the statistics of the total transmit-
ted number is binomial. In a similar way
we can discuss the spatial fluctuations of

the particle density, e.g. in cloud of ultra
cold atoms, depicted symbolically in (c). By
considering a cell or a bin defining a cer-
tain spatial region, the particle number in
it is a stochastic quantity and follows from
someprobability distribution. Suchadistri-
bution (d) typically centered around some
mean value represents the complete infor-
mation on the system available by particle
number measurements and, hence, this is
called the full counting statistics. (Figs. a
and b modified from Physik Journal 4, 75–
80 (2005); Figs. c and d modified from [7]).

Quantum mechanics is an inher-
ently stochastic description of phys-
ical systems. In particular, the out-
come of a measurement is proba-
bilistic and many repetitions of the
same experiment reveal fluctuations
of the observable. It is important to
recall that this is the case although
the state of the systems is fully de-
termined and described by a deter-
ministic time evolution. Of course,
an uncertainty in the state prepara-
tion, e.g., due to a large number of
degrees of freedom also leads to fluc-
tuations, but these are less funda-
mental from a quantum perspective
(of course they are of importance in
all practical systems, which are, e.g.,
at a finite temperature). The quan-
tum fluctuations, which remain after
all sources of uncertainty have been
eliminated, are of central interest in
the mesoscopic physics of ultracold
electrons and atoms.

One of the most important quan-
tities in quantum transport pro-
cesses is the current through a quan-
tum point contact, a small constric-
tion connecting two large fermionic
reservoirs with an electric potential
difference V . Assuming the transmis-
sion probability to be T , one finds for
the average transferred charge 〈Q〉 in
a time period t at zero temperature
〈Q〉 = e2V T t /h. Here, e is the elec-
tron charge and h denotes Planck’s
constant. It is also straightforward
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to calculate the fluctuations of the
transferred charge [1, 2]

〈ΔQ2〉 = e3|V |T (1−T )t /h

= (1−T )|〈Q〉|.

These formulas have a simple inter-
pretation as average and variance
of an underlying binomial statistics.
For uncorrelated particles one would
obtain 〈ΔQ2〉cl = |〈Q〉|, which fol-
lows in the limit of small transmis-
sion T � 1. The vanishing fluc-
tuations for T → 1 are a conse-
quence of the Fermi statistics of elec-
trons. It should be emphasized that
the fluctuations just discussed are
pure quantum fluctuations because
they result from the particles having
evolved into a superposition state of
being on each side of the contact si-
multaneously.

Obviously, average and variance
alone do not determine the full prob-
ability distribution of the transferred
charge. For mesoscopic systems, this
full counting statistics was first ad-
dressed by Levitov and Lesovik [3].
They also made the interesting ob-
servation that, in order to calculate
the statistics of the accumulated cur-
rent, one has to consistently account
for the quantum mechanical mea-
surement process. For simple quan-
tum point contacts they confirmed
that the statistics is binomial. Later,
Nazarov and coworkers put this on a
more solid ground and showed that
the charge counting statistics can,
in general, be related to the time-
evolution of the state of the current
detector [4]. However, an interesting
conceptual question in that context
arises since the interpretation of the
counting statistics in terms of a prob-
ability is not guaranteed to work. In
fact, it was found that in the case
of a contact between superconduc-
tors, the counting statistics appar-

ently leads to the puzzling result of
seemingly negative probabilities [5].

In their paper, Rammer and She-
lankov [6] give a pedagogical intro-
duction to the interpretation prob-
lem and describe their solution to
this problem. By introducing a par-
ticle tagging with the help of a spa-
tially selective gauge transformation
which does not disturb the quantum
dynamics, they are able to extract the
statistics of the charge number in the
selected space region. Whether or
not the resulting generating function
can be interpreted as a probability
of charge transfer events depends on
initial coherences, viz. whether a par-
ticle is in a superposition of being in
the selected region and outside. This
alternative derivation of the Levitov-
Lesovik formula for the charge trans-
fer statistics is very elegant. It also
clarifies the limitations of its applica-
bility and explains why its naive ap-
plication to superconducting junc-
tions cannot be straightforwardly in-
terpreted as a charge transfer proba-
bility. Furthermore, the formalism of
Rammer and Shelankov can be ap-
plied to track a quantum measure-
ment in real time, e.g., by a spin
coupled to the charge transfer. They
observe the emergence of two time
scales. On the shorter time scale, the
off-diagonal charge state decays and,
consequently, the problem of inter-
preting the counting statistics be-
comes insubstantial. After a longer
time scale, the charge distributions
have been separated and one can say
the spin state has been measured.
Finally, Rammer and Shelankov ap-
ply their formalism to number fluc-
tuations in interfering Bose-Einstein
condensates [7]. It is straightforward
to generalize their counting gauge
transformation to a local cell inside a
cloud of ultracold atoms. It naturally
reproduces the experimental obser-

vation that in each snapshot of two
independent Bose-Einstein conden-
sates an interference pattern is ob-
served, the phase of which is, how-
ever, random.

Summarizing, one can say that
the field of full counting statistics
has already brought up many sur-
prises. The connection to quantum
measurement theory opens up a new
perspective, also in the light of coher-
ently controlling quantum systems.
Many more surprises are likely to
come up on a fundamental level, and
quantum measurements and their
counting statistics may become rele-
vant for high-level applications like,
e.g., quantum feedback.

Key words. Quantum noise, full counting
statistics.

Wolfgang Belzig
Department of Physics, University of
Konstanz, 78457 Konstanz, Germany,
E-mail: Wolfgang.Belzig@uni-konstanz.de

References

[1] Ya. M. Blanter and M. Büttiker,
Phys. Rep. 336, 1 (2000).

[2] Quantum Noise in Mesoscopic
Physics, in: Proceedings of the
NATO Advanced Research Work-
shop, held in Delft, The Nether-
lands from 2 to 4 June 2002, edited
by Yu. V. Nazarov (Kluwer, Dor-
drecht, 2003).

[3] L. S. Levitov and G. B. Lesovik,
JETP Lett. 58, 230 (1993);
H. W. Lee and G. B. Lesovik, J.
Math. Phys. 37, 4345 (1996).

[4] Y. V. Nazarov and M. Kindermann,
Eur. J. Phys. B 35, 413 (2003).

[5] W. Belzig and Y. V. Nazarov, Phys.
Rev. Lett. 87, 197006 (2001).

[6] J. Rammer and A. Shelankov, Ann.
Phys. (Berlin) 3–4, 163–174 (2012).

[7] W. Belzig, C. Schroll, and
C. Bruder, Phys. Rev. A 75, 063611
(2007).

© 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A69


