Research Interests

and Selection of publications

 

Artificial Atoms
       Low energy and spin structure

[1] J.H. Jefferson, W. Häusler, Quantum dots and artificial atoms,
   Molecular Physics Reports 17, 81 (1997)
[2] B. Reusch, W. Häusler, H. Grabert, Wigner Molecules in Quantum Dots,
   Phys. Rev. B 63, 113313 (2001)
[3] K. Jauregui, W. Häusler, B. Kramer,
   Wigner Molecules in Nanostructures, Europhys. Lett. 24, 581 (1993)
[4] W. Häusler, Strongly Correlated Confined Electrons,
   Advances in Solid State Physics 34, 171 (1994)
[5] C.E. Creffield, W. Häusler, J.H. Jefferson, S. Sarkar, Interacting electrons
   in polygonal quantum dots, Phys. Rev. B 59, 10719 (1999)
[6] R. Egger, W. Häusler, C.H. Mak, H. Grabert, Crossover from Fermi liquid to
   Wigner molecule behavior in quantum dots, Phys. Rev. Lett. 82, 3320 (1999)
[7] W. Häusler, B. Kramer, Interacting electrons in a
   one-dimensional quantum dot, Phys. Rev. B 47, 16353 (1993)
[8] B. Kramer, T. Brandes, W. Häusler, K. Jauregui, W. Pfaff, D. Weinmann,
   Interactions and Transport in Nanostructures,
   Semicond. Sci. Technol. 9, 1871 (1994)
[9] W. Häusler, Correlations in Quantum Dots, Z. Phys. B 99, 551 (1996)
[10] W. Häusler, Quantum dissipation and low energy excitations of strongly
   correlated identical particles with spin, Annalen der Physik 5, 401 (1996)
[11] J. Jefferson, W. Häusler, Effective charge-spin models for quantum dots,
   Phys. Rev. B 54, 4936 (1996)
[12] W. Häusler, Rotational levels in quantum dots,
   Europhys. Lett. 49, 231 (2000)
[13] W. Häusler, P. Hänggi, Spin conversion rates due to dipolar interactions
   in mono-isotopic quantum dots at vanishing spin-orbit coupling,
   Phys. Rev. B 73, 125329 (2006)
[14] W. Häusler, B. Kramer, Electron spin and low energy excitations in
   quantum dots and small rings, in `Quantum Dynamics of Submicron Structures',
   ed. by Hilda A. Cerdeira, Bernhard Kramer, Gerd Schön, NATO ASI Series E,
   Applied Sciences, Vol. 291, Kluwer, Dordrecht (1995)
[15] W. Häusler, Influence of spin on the persistent current of strongly
   interacting electrons, Physica B 222, 43 (1996)

       Linear and non-linear transport properties

[16] W. Pfaff, D. Weinmann, W. Häusler, B. Kramer, U. Weiss, Nonlinear
   Transport Properties of Quantum Dots, Z. Phys. B 96, 201 (1994)
[17] K. Jauregui, W. Häusler, D. Weinmann, B. Kramer, Signatures of electron
   correlations in the transport properties of quantum dots,
   Phys. Rev. B 53, 1713(R) (1996)
[18] D. Weinmann, W. Häusler, W. Pfaff, B. Kramer, U. Weiss,
   Spin Blockade in Non-linear Transport through Quantum Dots,
   Europhys. Lett. 26, 467 (1994)
[19] W. Häusler, K. Jauregui, D. Weinmann, T. Brandes, B. Kramer,
   Negative Differential Conductance in Non-Linear Transport of Quantum Dots,
   Physica B 194-196, 1325 (1994)
[20] D. Weinmann, W. Häusler, B. Kramer, Spin Blockade in Linear and
   Nonlinear Transport through Quantum Dots, Phys. Rev. Lett. 74, 984 (1995)
[21] D. Weinmann, W. Häusler, K. Jauregui, B. Kramer, Spin Blockades
   in electron transport, in `Quantum Dynamics of Submicron Structures',
   ed. by Hilda A. Cerdeira, Bernhard Kramer, Gerd Schön,
   NATO ASI Series E, Applied Sciences, Vol. 291, Kluwer, Dordrecht (1995)
[22] D. Weinmann, W. Häusler, B. Kramer, Transport Properties
   of Quantum Dots, Annalen der Physik 5, 652 (1996)

       Graphen structures

[23] T.K. Ghosh, A. De Martino, W. Häusler, L. Dell'Anna, R. Egger,
   Conductance quantization and snake states in graphene magnetic waveguides,
   Phys. Rev. B 77, 081404(R) (2008)
[24] L. Cohnitz, W. Häusler, A. Zazunov, R. Egger,
   Interaction-induced conductance from zero modes in a clean magnetic graphene
   waveguide, Phys. Rev. B 92, 085422 (2015)
[25] W. Häusler, A. De Martino, T.K. Ghosh, R. Egger,
   Tomonaga-Luttinger liquid parameters of magnetic waveguides in graphene,
   Phys. Rev. B 78, 165402 (2008)
[26] W. Häusler, R. Egger,
   Artificial atoms in interacting graphene quantum dots,
   Phys. Rev. B 80, 161402(R) (2009)
[27] S.E. Savel'ev, W. Häusler, P. Hänggi,
   Josephson-like currents in graphene for arbitrary time-dependent
   potential barriers, Eur. Phys. J. B 86, 433 (2013)
[28] S.E. Savel'ev, W. Häusler, P. Hänggi,
   Current resonances in graphene with time-dependent potential
   barriers, Phys. Rev. Lett. 109, 226602 (2012)
[29] L. Cohnitz, A. De Martino, W. Häusler, R. Egger,
   Chiral interface states in graphene p-n junctions,
   Phys. Rev. B 94, 165443 (2016)
[29a] L. Cohnitz, A. De Martino, W. Häusler, R. Egger, Proximity-induced
   superconductivity in Landau-quantized graphene monolayers,
   Phys. Rev. B 96, 140506(R) (2017)
[30] D.F. Urban, D. Bercioux, M. Wimmer, W. Häusler, Barrier transmission
   of Dirac-like pseudospin-one particles, Phys. Rev. B 84, 115136 (2011)

 

Many-body effects in reduced dimensions
       Tomonaga-Luttinger liquid desciption of quantum wires

[31] C.E. Creffield, W. Häusler, A.H. MacDonald,
   Spin and Charge Luttinger-Liquid Parameters of the
   One-Dimensional Electron Gas, Europhys. Lett. 53, 221 (2001)
[32] W. Häusler, L. Kecke, A.H. MacDonald, Tomonaga-Luttinger parameters
   for quantum wires, Phys. Rev. B 65, 085104 (2002)
[33] W. Häusler, A.H. MacDonald, Tunneling exponents in realistic quantum
   wires using the mean field approximation,
   J. Phys. Soc. Jpn. Suppl. A 72, 195 (2003)
[34] L. Kecke, W. Häusler, Ladder approximation to spin velocities
   in quantum wires, Phys. Rev. B 69, 085103 (2004)
[35] O.A. Starykh, D.L. Maslov, W. Häusler, L.I. Glazman,
   Gapped phases of quantum  wires, Proceedings of the WEH Workshop
   on Interactions and Quantum Transport Properties of
   Lower Dimensional Systems, ed. by T. Brandes, Springer (2000)
[36] M. Steiner, W. Häusler, Non-linear current through a barrier in 1D wires
   with finite-range interactions, Solid State Comm. 104, 799 (1997)

       Spin properties

[37] W. Häusler, Rashba precession in quantum wires
   with interaction, Phys. Rev. B 63, 121310(R) (2001)
[38] W. Häusler, Rashba spin splitting in different
   quantum channels, Physica E 18, 337 (2003)
[39] W. Häusler, Rashba precession in quantum wires, Journal of
   Superconductivity, Incorporating novel magnetism 16, 309 (2003)
[40] W. Häusler, Dephasing in Rashba spin precession along multichannel
   quantum wires and nanotubes, Phys. Rev. B 70, 115313 (2004)

       Topological magnetic structures

[41] M. Stier, W. Häusler, T. Posske, G. Gurski, M. Thorwart,
   Skyrmion-Antiskyrmion pair creation by in-plane currents,
   Phys. Rev. Lett. 118, 267203 (2017)

       Optical properties

[42] M. Widmann, U. Merkt, M. Cortés, W. Häusler, K. Eberl,
   Cyclotron resonance of interacting quantum Hall droplets,
   Physica B 249-251, 762 (1998)

       Quantum gases

[43] L. Kecke, H. Grabert, W. Häusler, Charge and Spin Dynamics of Interacting
   Fermions in a One-Dimensional Harmonic Trap, Phys. Rev. Lett. 94, 176802 (2005)
[44] D. Bercioux, D.F. Urban, H. Grabert, W. Häusler, Massless Dirac-Weyl
   fermions in a Τ3 optical lattice, Phys. Rev. A 80, 063603 (2009)

       Flat band systems

[45] W. Häusler, Flat-band conductivity properties
   at long-range Coulomb interactions, Phys. Rev. B 91, 041102(R) (2015)

 

Rotational tunneling of molecules
       Spinconversion and -diffusion

[46] W. Häusler, Theory of spinconversion in XH3 - systems,
   Z. Phys. B 81, 265 (1990)
[47] G. Diezemann, W. Häusler, Symmetry Species Conversion in CD3 Systems,
   J. Phys.: Condens. Matter 5, 6121 (1993)
[48] G. Diezemann, W. Häusler,Symmetry Species Conversion in CD3 Systems,
   Physica B 202, 246 (1994)
[49] G. Diezemann, W. Häusler, Symmetry species exchange in rotational
   tunnelling systems, Physica B 226, 189 (1996)
[50] K. Orth, P. Schellenberg, J. Friedrich, W. Häusler, Symmetry Species
   Conversion in Rotational Tunneling Systems observed by Hole Burning: High
   Resolution Spectroscopy of Dimethyl-s-tetrazine, J. Luminescence 56, 99 (1993)

 

                                      Wolfgang Häusler
                                      Wolfgang.Haeusler "at" physik.uni-augsburg.de


Zurück zur Theoretischen Physik I
Zurück zum Institut für Physik
Zurück zur Universität Augsburg