Research Interests
and Selection of publications
Artificial Atoms
[1] J.H. Jefferson, W. Häusler, Quantum dots and artificial atoms, Molecular Physics Reports 17, 81 (1997)
[2] B. Reusch, W. Häusler, H. Grabert, Wigner Molecules in Quantum Dots, Phys. Rev. B 63, 113313 (2001)
[3] K. Jauregui, W. Häusler, B. Kramer, Wigner Molecules in Nanostructures, Europhys. Lett. 24, 581 (1993)
[4] W. Häusler, Strongly Correlated Confined Electrons, Advances in Solid State Physics 34, 171 (1994)
[5] C.E. Creffield, W. Häusler, J.H. Jefferson, S. Sarkar, Interacting electrons in polygonal quantum dots, Phys. Rev. B 59, 10719 (1999)
[6] R. Egger, W. Häusler, C.H. Mak, H. Grabert, Crossover from Fermi liquid to Wigner molecule behavior in quantum dots, Phys. Rev. Lett. 82, 3320 (1999)
[7] W. Häusler, B. Kramer, Interacting electrons in a one-dimensional quantum dot, Phys. Rev. B 47, 16353 (1993)
[8] B. Kramer, T. Brandes, W. Häusler, K. Jauregui, W. Pfaff, D. Weinmann, Interactions and Transport in Nanostructures, Semicond. Sci. Technol. 9, 1871 (1994)
[9] W. Häusler, Correlations in Quantum Dots, Z. Phys. B 99, 551 (1996)
[10] W. Häusler, Quantum dissipation and low energy excitations of strongly correlated identical particles with spin, Annalen der Physik 5, 401 (1996)
[11] J. Jefferson, W. Häusler, Effective charge-spin models for quantum dots, Phys. Rev. B 54, 4936 (1996)
[12] W. Häusler, Rotational levels in quantum dots, Europhys. Lett. 49, 231 (2000)
[13] W. Häusler, P. Hänggi, Spin conversion rates due to dipolar interactions in mono-isotopic quantum dots at vanishing spin-orbit coupling, Phys. Rev. B 73, 125329 (2006)
[14] W. Häusler, B. Kramer, Electron spin and low energy excitations in quantum dots and small rings, in `Quantum Dynamics of Submicron Structures', ed. by Hilda A. Cerdeira, Bernhard Kramer, Gerd Schön, NATO ASI Series E, Applied Sciences, Vol. 291, Kluwer, Dordrecht (1995)
[15] W. Häusler, Influence of spin on the persistent current of strongly interacting electrons, Physica B 222, 43 (1996)Linear and non-linear transport properties
[16] W. Pfaff, D. Weinmann, W. Häusler, B. Kramer, U. Weiss, Nonlinear Transport Properties of Quantum Dots, Z. Phys. B 96, 201 (1994)
[17] K. Jauregui, W. Häusler, D. Weinmann, B. Kramer, Signatures of electron correlations in the transport properties of quantum dots, Phys. Rev. B 53, 1713(R) (1996)
[18] D. Weinmann, W. Häusler, W. Pfaff, B. Kramer, U. Weiss, Spin Blockade in Non-linear Transport through Quantum Dots, Europhys. Lett. 26, 467 (1994)
[19] W. Häusler, K. Jauregui, D. Weinmann, T. Brandes, B. Kramer, Negative Differential Conductance in Non-Linear Transport of Quantum Dots, Physica B 194-196, 1325 (1994)
[20] D. Weinmann, W. Häusler, B. Kramer, Spin Blockade in Linear and Nonlinear Transport through Quantum Dots, Phys. Rev. Lett. 74, 984 (1995)
[21] D. Weinmann, W. Häusler, K. Jauregui, B. Kramer, Spin Blockades in electron transport, in `Quantum Dynamics of Submicron Structures', ed. by Hilda A. Cerdeira, Bernhard Kramer, Gerd Schön, NATO ASI Series E, Applied Sciences, Vol. 291, Kluwer, Dordrecht (1995)
[22] D. Weinmann, W. Häusler, B. Kramer, Transport Properties of Quantum Dots, Annalen der Physik 5, 652 (1996)Graphen structures
[23] T.K. Ghosh, A. De Martino, W. Häusler, L. Dell'Anna, R. Egger, Conductance quantization and snake states in graphene magnetic waveguides, Phys. Rev. B 77, 081404(R) (2008)
[24] W. Häusler, A. De Martino, T.K. Ghosh, R. Egger, Tomonaga-Luttinger liquid parameters of magnetic waveguides in graphene, Phys. Rev. B 78, 165402 (2008)
[25] W. Häusler, R. Egger, Artificial atoms in interacting graphene quantum dots, Phys. Rev. B 80, 161402(R) (2009)
[26] S.E. Savel'ev, W. Häusler, P. Hänggi, Josephson-like currents in graphene for arbitrary time-dependent potential barriers, Eur. Phys. J. B 86, 433 (2013)
[27] S.E. Savel'ev, W. Häusler, P. Hänggi, Current resonances in graphene with time-dependent potential barriers, Phys. Rev. Lett. 109, 226602 (2012)
[28] D.F. Urban, D. Bercioux, M. Wimmer, W. Häusler, Barrier transmission of Dirac-like pseudospin-one particles, Phys. Rev. B 84, 115136 (2011)
Many-body effects in reduced dimensions
[29] C.E. Creffield, W. Häusler, A.H. MacDonald, Spin and Charge Luttinger-Liquid Parameters of the One-Dimensional Electron Gas, Europhys. Lett. 53, 221 (2001)
[30] W. Häusler, L. Kecke, A.H. MacDonald, Tomonaga-Luttinger parameters for quantum wires, Phys. Rev. B 65, 085104 (2002)
[31] W. Häusler, A.H. MacDonald, Tunneling exponents in realistic quantum wires using the mean field approximation, J. Phys. Soc. Jpn. Suppl. A 72, 195 (2003)
[32] L. Kecke, W. Häusler, Ladder approximation to spin velocities in quantum wires, Phys. Rev. B 69, 085103 (2004)
[33] O.A. Starykh, D.L. Maslov, W. Häusler, L.I. Glazman, Gapped phases of quantum wires, Proceedings of the WEH Workshop on Interactions and Quantum Transport Properties of Lower Dimensional Systems, ed. by T. Brandes, Springer (2000)
[34] M. Steiner, W. Häusler, Non-linear current through a barrier in 1D wires with finite-range interactions, Solid State Comm. 104, 799 (1997)Spin properties
[35] W. Häusler, Rashba precession in quantum wires with interaction, Phys. Rev. B 63, 121310(R) (2001)
[36] W. Häusler, Rashba spin splitting in different quantum channels, Physica E 18, 337 (2003)
[37] W. Häusler, Rashba precession in quantum wires, Journal of Superconductivity, Incorporating novel magnetism 16, 309 (2003)
[38] W. Häusler, Dephasing in Rashba spin precession along multichannel quantum wires and nanotubes, Phys. Rev. B 70, 115313 (2004)Topological magnetic structures
[39] M. Stier, W. Häusler, T. Posske, G. Gurski, M. Thorwart, Skyrmion-Antiskyrmion pair creation by in-plane currents, Phys. Rev. Lett. 118, 267203 (2017)
[40] M. Stier, R. Strobel, S. Krause, W. Häusler, M. Thorwart, Role of impurity clusters for the current-driven motion of magnetic skyrmions, Phys. Rev. B 103, 054420 (2021)
[41] M. Lau, W. Häusler, M. Thorwart, Spin wave driven skyrmions in a bipartite antiferromagnetic lattice, Phys. Rev. B 109, 014435 (2024)Optical properties
[42] M. Widmann, U. Merkt, M. Cortés, W. Häusler, K. Eberl, Cyclotron resonance of interacting quantum Hall droplets, Physica B 249-251, 762 (1998)Cold quantum gases
[43] L. Kecke, H. Grabert, W. Häusler, Charge and Spin Dynamics of Interacting Fermions in a One-Dimensional Harmonic Trap, Phys. Rev. Lett. 94, 176802 (2005)
[44] D. Bercioux, D.F. Urban, H. Grabert, W. Häusler, Massless Dirac-Weyl fermions in a Τ3 optical lattice, Phys. Rev. A 80, 063603 (2009)Flat band and quantum Hall systems
[45] W. Häusler, Flat-band conductivity properties at long-range Coulomb interactions, Phys. Rev. B 91, 041102(R) (2015)
[46] L. Cohnitz, W. Häusler, A. Zazunov, R. Egger, Interaction-induced conductance from zero modes in a clean magnetic graphene waveguide, Phys. Rev. B 92, 085422 (2015)
[47] L. Cohnitz, A. De Martino, W. Häusler, R. Egger, Proximity-induced superconductivity in Landau-quantized graphene monolayers, Phys. Rev. B 96, 140506(R) (2017)
[48] L. Cohnitz, A. De Martino, W. Häusler, R. Egger, Chiral interface States in graphene p-n junctions, Phys. Rev. B 94, 165443 (2016)
[49] W. Häusler, R. Egger, Kontrollierte Schlangenlinien, Physik Journal, Juni 2015, Seite 18 .
Rotational tunneling of molecules
[50] W. Häusler, Theory of spinconversion in XH3 - systems, Z. Phys. B 81, 265 (1990)
[51] G. Diezemann, W. Häusler, Symmetry Species Conversion in CD3 Systems, J. Phys.: Condens. Matter 5, 6121 (1993)
[52] G. Diezemann, W. Häusler,Symmetry Species Conversion in CD3 Systems, Physica B 202, 246 (1994)
[53] G. Diezemann, W. Häusler, Symmetry species exchange in rotational tunnelling systems, Physica B 226, 189 (1996)
[54] K. Orth, P. Schellenberg, J. Friedrich, W. Häusler, Symmetry Species Conversion in Rotational Tunneling Systems observed by Hole Burning: High Resolution Spectroscopy of Dimethyl-s-tetrazine, J. Luminescence 56, 99 (1993)
Wolfgang Häusler
Wolfgang.Haeusler "at" physik.uni-augsburg.de
Zurück zur Theoretischen Physik I
Zurück zum Institut für Physik
Zurück zur Universität Augsburg