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Calculated Electronic Properties

Moruzzi, Janak, Williams (IBM, 1978)
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Energy band structures from screened HF exchange

Si, AIP, AlAs, GaP, and GaAs
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Formalism Definitions and Theorems
Approximations

ot

Key Players
Hamiltonian (within Born-Oppenheimer approximation)
H = Helkin + Hel—el + Hext
he _, 1 e? 1
= Z [—%V,} 2477602”:% Y +ZVeXt(r|)
! i !
where
l e Z,Z, e Z,
2 Vex (1) = 3 Areg ; R, —R,| 4neo 2.2 R, — T,
: n#v
p: ions with charge Z,,, i: electrons ##

Volker@Eyert.de From Quantum Mechanics to Materials Design



Formalism Definitions and Theorems
Approximations

Key Players

Electron Density Operator

N
p)y =) o(r—ri) =) xalr)xs(raias
i=1

af
Xo. Single particle state

-
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Formalism Definitions and Theorems
Approximations

Key Players

Electron Density Operator
N
Ay =Y 8(r—ri) = xa(xs(ratas
i=1

af

Xo. Single particle state

Electron Density
p(r) = (V|p(r) Z |Xa(r)

|W): many-body wave function, n,: occupation number

Normalization: N = [ d3r p(r) #ﬁ
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Formalism Definitions and Theorems
Approximations

Key Players

Universal Functional (independent of ionic positions!)

F = (V|Hel kin + Hel—el | V)

Functional due to External Potential:

(W[Hext|W) = <W‘Zvext(r)5(r—ri)\w>

= / d3r Vext (r)p(r)
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Formalism Definitions and Theorems
Approximations
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Formalism Definitions and Theorems
Approximations

Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential vex (r) is determined, apart from a trivial
constant, by the electronic ground state density p(r).

2nd Theorem

The total energy functional E [p] has a minimum equal to the
ground state energy at the ground state density.

| A\
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Formalism Definitions and Theorems
Approximations

Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential vex (r) is determined, apart from a trivial
constant, by the electronic ground state density p(r).

2nd Theorem

The total energy functional E [p] has a minimum equal to the
ground state energy at the ground state density.

Nota bene

Both theorems are formulated for the ground state!

@ Zero temperature!

@ No excitations! ##
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Formalism Definitions and Theorems
Approximations

Hohenberg and Kohn, 1964: Theorems

Ground state |Vy) (from minimizing (Wo|H|Wg)):

1 2
Vext () 22 (o) <2 po(r)
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Formalism Definitions and Theorems
Approximations

Hohenberg and Kohn, 1964: Theorems

Ground state |Vy) (from minimizing (Wo|H|Wg)):

1 2
Vext () 22 (o) <2 po(r)

1st Theorem

1 2
Vext (1)< [Wo) < o (1)

4
x
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Formalism Definitions and Theorems
Approximations

Levy, Lieb, 1979-1983: Constrained Search

Percus-Levy partition
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Formalism Definitions and Theorems
Approximations

Levy, Lieb, 1979-1983: Constrained Search

Variational principle

Eob = inf(VIH|V
o = MiVHIY)

= |i$1;<w|Hel,kin + Hel—el + Hext| V)

= 0l '+H—\U+/d3rv r r]
(1) [lweS(p)( [Het kin + Hei—el[V) ext (M)p(r)

=: ;i?rf) [FLL[p] = /d3r vext(r)p(r)] = fi)?rf)E[p]

S(p): set of all wave functions leading to density p
FLL[p]: Levy-Lieb functional, universal (independent of Hext) ##
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Formalism Definitions and Theorems
Approximations

Levy, Lieb, 1979-1983: Constrained Search

Levy-Lieb functional

F = inf  (W|Hg ki Hej_el |V
LL[/)] |\U)Igs(p)< ‘ el kin T el el|V)

/P

_ Gl +% e’ /ds /ds,pr)p

Areg Ir—r/|

. .
Functionals

@ Kinetic energy funct.: T [p] not known!
@ Exchange-correlation energy funct.: Wyc[p] not known! ##
@ Hartree energy funct.: 3 fd3 a3 20e)

=T
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Formalism Definitions and Theorems
Approximations

Thomas, Fermi, 1927: Early Theory

Approximations

@ ignore exchange-correlation energy functional:

Wiyc [P] ; 0

@ approximate kinetic energy functional:
5 3 n? -
Tl =Cr [ ¢ (o)}, Cr =35 (3n2)°

Failures

© atomic shell structure missing
— periodic table can not be described ##

@ no-binding theorem (Teller, 1962)

\
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Formalism Definitions and Theorems
Approximations

Kohn and Sham, 1965: Single-Particle Equations

© use different splitting of the functional G[p]

T [o] + Wae[p] = G[p] = Tolo] + Exclo]

@ reintroduce single-particle wave functions

Imagine: non-interacting electrons with same density

@ Density: p(r) = >0 |xa(r) 2
@ Kinetic energy funct.:

@ Exchange-correlation energy funct.: Exc[p] not known! Mﬁ
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Formalism Definitions and Theorems
Approximations

Kohn and Sham, 1965: Single-Particle Equations

Euler-Lagrange Equations (Kohn-Sham Equations)

5X:;(r) - EaXa(r) = _ﬁv + Vet (r) — &a on(r) =0

@ Effective potential: Vesr (1) := Vext (r) + VH(r) + Vxc(r)
@ Exchange-correlation potential: not known!

0Exc[p]

Vye(r) = 5

@ ,Single-particle energies":
e« (Lagrange-parameters, orthonormalization) ##
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Formalism Definitions and Theorems
Approximations

Kohn and Sham, 1965: Local Density Approximation

Be Specific!

@ Approximate exchange-correlation energy functional

Exclil = [ #(0)sc(p)Cr

@ Exchange-correlation energy density ex:(p(r))

@ depends on local density only!
@ is calculated from homogeneous, interacting electron gas

@ Exchange-correlation potential

we(p0) = [ pesc(o)}]
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Formalism Definitions and Theorems
Approximations

Kohn and Sham, 1965: Local Density Approximation

Homogeneous, Interacting Electron Gas

@ Split

exc(p) = ex(p) +ec(p)

@ Exchange energy density ex(p)
(exact for homogeneous electron gas)

3 e? 1
ex(p) = T4 47r60(3772/))3
1 e? 1
vx(p) = —;FEO(&TZP)S

@ Correlation energy density e¢(p)
Calculate and parametrize
@ RPA (Hedin, Lundqyvist; von Barth, Hedin) ##
@ QMC (Ceperley, Alder; Vosko, Wilk, Nusair; Perdew, Wang)
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Formalism Definitions and Theorems
Approximations

Kohn and Sham, 1965: Local Density Approximation

Limitations and Beyond

@ LDA exact for homogeneous electron gas (within QMC)
@ Spatial variation of p ignored
— include Vp(r), ...
— Generalized Gradient Approximation (GGA)
@ Cancellation of self-interaction in Viariree (2(r)) and vy (p(r))
violated for p = p(r)
— Self-Interaction Correction (SIC)
— Exact Exchange (EXX),
Optimized Effective Potential (OEP)
— Screened Exchange (SX)
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Applications

Iron Pyrite: FeS,

@ Pa3 (T®)
® a=5.4160A

@ “NacCl structure”
sublattices occupied by
@ iron atoms
@ sulfur pairs

@ sulfur pairs || (111) axes
@ xg =0.38484
@ rotated FeSg octahedra
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Applications

FeS,: Equilibrium Volume and Bulk Modulus
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Applications

FeS,: From Atoms to the Solid
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Applications

FeS,: Structure Optimization
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Applications

Phase Stability in Silicon
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Applications

LTO(I)-Phonon in Silicon
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@ phonon frequency: fcac = 15.34 THZ (fexp = 15.53 THZ) J##
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Applications

Dielectric Function of Al,O3

Imaginary Part

FLAPW, Hosseini et al., 2005
FPLMTO, Ahuja et al., 2004

FPASW
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Applications

Dielectric Function of Al,O3
Real Part

FLAPW, Hosseini et al., 2005
FPLMTO, Ahuja et al., 2004
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Applications

Hydrogen site energetics in LaNisH, and LaCosH,

Enthalpy of hydride formation in LaNisH,

AH{LaNigH, ) (eWihydrogen atom)
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agrees with
@ neutron data

@ calorimetry:
AHmin =
—(32/37)kd/molH;

Herbst, Hector,
APL 85, 3465 (2004)
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Applications

Hydrogen site energetics in LaNisH, and LaCosH,

Enthalpy of hydride formation in LaCosHp,

AHpin = —45.6kJ/molH,
for H at 4e4h

aH{LaCoH,) (eVihydragen atom)
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agrees with
@ neutron data

@ calorimetry:
AHmin =
—45.2kJ/molH,

Herbst, Hector,
APL 85, 3465 (2004)
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Problems of the Past

Si Ge

Si bandgap Ge bandgap
@ exp: 1.11eV @ exp: 0.67eV [)
@ GGA: 0.57eV @ GGA: 0.09eV
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Applications

Critical review of the Local Density Approximation

Limitations and Beyond

@ Self-interaction cancellation in Vyariree + Vx Violated

@ Repair using exact Hartree-Fock exchange functional

— class of hybrid functionals
e PBEO 3
EPBEO EHF EPBE EPBE

g™ Tzt

o HSEO03, HSE06

1 3
S HF ,sr, PBE ,sr, PBE,Ir,
EHE E Sr,u_|_ E Sr,u_|_E rp+E(I:DBE

4 4

based on decomposition of Coulomb kernel

1 erfc(ur) — erf(ur)
F_S()—FL() T ##
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Critical review of the Local Density Approximation

Limitations and Beyond
@ Self-interaction cancellation in Vyariree + Vx Violated

@ Repair using exact Hartree-Fock exchange functional
— class of hybrid functionals

Si bandgap

@ exp: 1.11eV
@ GGA: 0.57eV
@ HSE: 1.15eV
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Critical review of the Local Density Approximation

Limitations and Beyond
@ Self-interaction cancellation in Vyariree + Vx Violated

@ Repair using exact Hartree-Fock exchange functional
— class of hybrid functionals

Ge bandgap

@ exp: 0.67eV
@ GGA: 0.09eV
@ HSE: 0.66eV
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Critical review of the Local Density Approximation

10
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8
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(E-Ey) (eV)

SrTiO3 Bandgap
GGA: =~ 1.6¢eV, exp.: 3.2eV
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Critical review of the Local Density Approximation

GGA
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SrTiO3 Bandgap
GGA: =~ 1.6eV, HSE: =~ 3.1eV, exp.: 3.2eV Mﬁ
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Applications

DOS (1/eV)

(E-Ey) (eV)

LaAlO3; Bandgap
GGA: =~ 3.5¢eV, exp.: 5.6eV ##
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Applications
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Applications

Critical review of the Local Density Approximation

Calculated vs. experimental bandgaps
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Applications

Industrial Applications

Computational Materials Engineering

Automotive

Energy & Power
Generation

Aerospace
Steel & Metal Alloys
Glass & Ceramics

e ©

Electronics
Display & Lighting
Chemical &
Petrochemical

@ Drilling & Mining

© © ¢ 6 6 ¢
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Applications

Summary

Density Functional Theory

@ exact (1) mapping of full many-body problem to an effective
single-particle problem
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Applications

Summary

Density Functional Theory

@ exact (1) mapping of full many-body problem to an effective
single-particle problem

Local Density Approximation
@ approximative treatment of exchange (!) and correlation
@ considerable improvement: exact treatment of exchange
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Applications

Summary

Density Functional Theory

@ exact (1) mapping of full many-body problem to an effective
single-particle problem

Local Density Approximation

@ approximative treatment of exchange (!) and correlation
@ considerable improvement: exact treatment of exchange

'

Applications

@ very good agreement DFT/EXxp. in numerous cases

@ theory meets industry
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Applications

Summary

Density Functional Theory

@ exact (1) mapping of full many-body problem to an effective
single-particle problem

Local Density Approximation

@ approximative treatment of exchange (!) and correlation
@ considerable improvement: exact treatment of exchange

'

Applications

@ very good agreement DFT/EXxp. in numerous cases

@ theory meets industry

-

Further Reading w
@ V. Eyert and U. Eckern, Phiuz 31, 276 (2000)
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