Universität Augsburg - Institut für Physik
Computational Physics
Contents
- numerical accuracy, errors, and limitations
- linear algebraic equations
- interpolation and extrapolation
- differentiation and integration
- evaluation of functions
- special functions (Bessel functions, spherical harmonics)
- random numbers
- eigensystems
- root finding, nonlinear equation systems
- optimization (genetic algorithms, simulated annealing)
- spectral analysis (Fourier transform)
- modelling of data
- ordinary differential equations
- integral equations (maximum entropy method)
- partial differential equations
- finite element methods
- Monte-Carlo techniques
- lattice summation techniques (Ewald method, fast multipole method)
- Brillouin zone integration techniques
Requirements: Basic courses in mathematics;
a programming language (Fortran95, C)
Literature
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in FORTRAN:
The Art of Scientific Computing
(Cambridge University Press,
Cambridge, 1992).
-
T. Pang,
An
Introduction to Computational Physics
(Cambridge University Press,
Cambridge, 1997).
-
R. H. Silsbee and J. Dräger,
Simulations
for Solid State Physics: An Interactive Resource for Students and
Teachers
(Cambridge University Press,
Cambridge, 1997).
-
D. E. Goldberg,
Genetic
Algorithms in Search, Optimization, and Machine Learning
(Addison-Wesley, Reading, 1989).
Additional Literature
Weblinks
Time and Location
- Tuesday, Wednesday, Thursday, 12:30-14:00,
Lecture room 1003, Hörsaalzentrum Physik,
Universitätsstraße 1
Begin: Tuesday, 18.10.2005
- In addition: Blockcourse: 13.02.2006-17.02.2006
9:00-12:00 and 13:00-14:30 ,
Lecture room 1003, Hörsaalzentrum Physik,
Universitätsstraße 1
Exercises:
Additional Information
Volker Eyert's Homepage