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ABSTRACT: The basic ideas of modern band theory and the functionality of state of
the art calculational schemes are illustrated with the augmented spherical wave (ASW)
method. Our description includes a short review of the underlying theory as well as a
derivation of the most important formulas. We explain some steps toward the
computational implementation and discuss aspects of practical application. Finally, the
capabilities offered by the ASW method are demonstrated by an investigation of the
electronic structure of FeS2, which belongs to the increasingly exciting class of pyrite-type
transition metal dichalcogenides. c© 2000 John Wiley & Sons, Inc. Int J Quant Chem 77:
1007–1031, 2000
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Introduction

F irst-principles investigations have been estab-
lished as an important branch of condensed

matter physics and solid state chemistry in the
past decades. In particular, the last 10 years of the
twentieth century have seen an increasing distri-
bution of density-functional-based computational
methods, which allow for a detailed understand-
ing of electronic, magnetic, and structural properties
of condensed matter. Nowadays these methods can
be easily applied to rather complex systems and
thus enable the investigation of “real materials.” For
this reason, band structure methods have left the
realm of only a few specialists and have become
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a standard tool of materials science in universities,
research institutes, and industry. Although this suc-
cess is strongly related to the incredible growth of
computer power and the advent of efficient com-
puter architectures, e.g., parallel machines, the base
was laid many years ago by a few very important
simplifications, which had a great influence on solid
state theory in general and on the progress made in
electronic structure calculations in particular.

First of all, modern solid state physics has bene-
fited much from Bloch’s 1929 theorem, which grew
out of early X-ray diffraction studies and allowed fo-
cusing on a small unit cell with only a few atoms in-
stead of the full solid with an order of 1023 atoms [1].
In this way it was possible for the first time to cast
the problem connected with the macroscopic crys-
tal into a tractable form. Only two years before,
Born and Oppenheimer had proposed the adiabatic
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approximation, which enables an effective decou-
pling of the electronic and lattice degrees of freedom
and, hence, allows the ionic dynamics to be ignored
in many cases, where only the electronic structure
was of interest [2]. One decade later, Slater invented
the so-called muffin-tin approximation, which laid
ground for a very efficient determination of basis
functions for use in a variational procedure [3]. The
introduction of density functional theory and the
local density approximation in the mid-sixties by
Hohenberg, Kohn, and Sham marked a milestone
[4, 5], that has been described in numerous text-
books (see, e.g., [6 – 14]) and, laying the basis for
modern materials science, was honored by award-
ing the 1998 Nobel Prize in Chemistry to Walter
Kohn. Other important steps were the foundation of
the pseudopotential methods by Herring, Phillips,
and others [15 – 17] as well as the concept of the
so-called linear methods introduced by Andersen in
the middle of the seventies [18, 19], which enabled
performing first-principles calculations for unit cells
of so far inaccessible size and, hence, furthered our
understanding of materials considerably. Finally,
Car and Parrinello, who introduced first-principles
molecular dynamics, made the simultaneous ab ini-
tio investigation of electronic and ionic properties
accessible [20].

Taken together, all these ideas laid the ground-
work, for modern electronic structure calculations,
but still gave enough freedom for the develop-
ment of different calculational schemes, which have
evolved in the last years. In the present contribu-
tion, we will explain the major ingredients (which
are common to most schemes) of the augmented
spherical wave (ASW) method, which, within the
framework of density functional theory and the lo-
cal density approximation, allows for both a concep-
tually simple and a fast calculation of the electronic
properties fo solids [21 – 23]. The ASW method has
been applied to a large variety of materials (see,
e.g., [22, 24, 25] and references therein) and, due to
its very small basis set size, is particularly useful for
large systems. (A full list of publications and theses
related to the augmented spherical wave method
can be accessed via the World Wide Web from the
home page of the author, http://www.physik.uni-
augsburg.de/∼eyert/.)

This article is organized as follows: After a short
overview on density functional theory-based elec-
tronic structure calculational schemes in the next
section, we proceed with a detailed description of
the ASW method in subsequent sections. Although
we will also touch on computational aspects of the

method, for more detailed information we refer the
reader to recent publications of the author [24, 26,
27]. In the last part of this article, the capabilities
of the method are elucidated via an application to
iron pyrite, which has been the subject of recent re-
newed interest. For a comprehensive overview on
uranium ternary intermetallic systems as studied by
ASW first-principles calculations, we refer, in addi-
tion, to the article by Matar [28] contained in this
volume.

Methods for Electronic
Structure Calculations

The practical virtue of density functional the-
ory stems, to a large part, from the second the-
orem of Hohenberg and Kohn, which established
a variational principle for the total ground state
energy [14]. This suggests expansion of the single-
particle wave function in a suitable set of basis
functions,

ψk(r) =
∑

i

ci(k)χki(r), (1)

and minimization of the total energy with respect to
the coefficients ci(k). For simplicity in writing, we
have included the band index, which labels differ-
ent states at a particular k point, in the k index.
Of course, the basis functions themselves may be
parametrically dependent and, hence, offer some
freedom for variation. However, for the present pur-
pose, we assume them to be fixed. The variation of
the total energy with respect to the coefficients is
easily written down as∑

ki

[
δE[ρ]
δc∗i (k)

+ E(k)
δ(N− ∫ ρ(r) d3r)

δc∗i (k)

]
δc∗i (k) = 0, (2)

where E[ρ] is the total energy provided by density
functional theory and the second term in square
brackets ensures conservation of the total electron
number. Since all the coefficients ci(k) are inde-
pendent of each other, the expression in square
brackets in Eq. (2) must vanish for each ci(k). We
combine Eq. (2) with the standard expressions for
the electron density, the kinetic energy, and the
exchange–correlation potential as supplied by den-
sity functional theory,

ρ(r) =
∑

k

∣∣ψk(r)
∣∣22(EF − E(k)

)
, (3)

T0[ρ] =
∑

k

〈
ψk(r)

∣∣−∇2
∣∣ψk(r)

〉
2
(
EF − E(k)

)
, (4)
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and

vxc(r) = δExc[ρ]
δρ(r)

, (5)

where the Heaviside step function 2(EF − E(k)) re-
stricts the sums to the occupied states, and arrive at
the secular equation∑

j

[〈
χki(r)

∣∣−1+ veff(r)
∣∣χkj(r)

〉
−E(k)

〈
χki(r)

∣∣χkj(r)
〉]

cj(k) = 0. (6)

Here we have used the Kohn–Sham expression of
the single particle Hamiltonian, which, in addition
to the kinetic energy operator, contains the effective
single-particle potential. So that the linear equation
system has nontrivial solutions, the determinant of
the secular matrix, i.e., of the matrix in square brack-
ets in Eq. (6), must vanish and the single-particle
energies arise as its roots.

Although the approach (1) is conceptually clear,
it still leaves some freedom for different choices
of basis functions in practice. Of course, the set
{χki(r)} is finite and thus we cannot expect it to be
complete. In addition, the basis functions are not
necessarily orthogonal. As a consequence, the actual
shape of the basis functions is an important factor,
which governs the size of the basis set, the Hilbert
space sampled by the variational procedure, and,
finally, the effort to solve the secular equation (6).
Obviously, a good choice consists of basis functions
χki(r), which resemble the final wave function ψk(r)
quite well. In this case, the latter would have a large
portion within the Hilbert space spanned by the
basis function for only a small set {χki(r)} and the
dimension of the secular matrix would be rather
small.

At a first glance, for crystals the canonical set of
basis functions seems to be a plane wave basis,

χkν(r) = ei(k+Kν )r, (7)

which offers the additional advantage of being or-
thogonal. However, plane waves are not really a
good choice for the following physical reasons.
Since the crystal potential arises from a superpo-
sition of atomic potentials, near the atomic cen-
ters the valence electrons are subject to the strong
bare nuclear Coulomb potential, which behaves like
−Ze2/r. In contrast, far away from the nuclei the
potential changes to −Zve2/r, where Zv is the va-
lence charge. This is due to electrostatic screening
by the core electrons. Finally, in the region between
the atoms the potential becomes rather flat because
of crystalline periodicity. Thus the wave function

shows large oscillations near the nuclei and is rather
smooth in the region far away from the atomic cores.
As a consequence, to describe such a wave function
by a plane wave basis, we would need a huge num-
ber of functions. Indeed, as Heine demonstrated,
this could well lead to a secular matrix with a rank
on the order 106 [29].

Obviously, the basis functions have to be adapted
to better account for the details of the crystal po-
tential. There exist mainly two approaches to do so,
one being the pseudopotential (PP) concept, which
traces back to Herring’s orthogonalized plane wave
(OPW) method [15] (see also [30, 31]). In the latter
scheme one starts out from plane waves as basis
functions, but orthogonalizes them to the core states
from the very beginning. We write

χkν(r) = |k+Kν〉 −
∑
|φc〉〈φc|k+Kν〉, (8)

where |Kν〉 and |φc〉 denote a plane wave and the
Bloch sum of the core states, respectively. Each or-
thogonalized plane wave consists of a long range
term and a part that shows strong oscillations in
the core regions. Hence, the appropriate shape near
the nuclei is built in and already a moderate num-
ber of OPWs are sufficient for a good description
of the wave function. Starting out from Herring’s
scheme, Phillips and Kleinman, as well as Anton-
cik later on, reformulated the orthogonalization to
the core states in terms of an additional potential
seen by the valence electrons and thereby they laid
the groundwork for pseudopotential theory [16, 17,
32], which, in subsequent years, was refined by
the introduction of norm-conserving pseudopoten-
tials (see, e.g., [33 – 35]). Recently, Vanderbilt de-
veloped ultrasoft pseudopotentials, which even al-
lowed treatment of transition metal atoms [36]. For
details, we refer the reader to the literature (see,
e.g., [29, 37 – 39] as well as references therein).

The second approach mentioned above is based
on Slater’s muffin-tin approximation (MTA) [3] (see
also [40]). In this approximation the crystal potential
is restricted to an idealized shape, i.e., it is assumed
to be spherically symmetric within (nonoverlap-
ping) muffin-tin spheres and constant in the remain-
ing, interstitial region. The wave function in the
latter region is well described by plane waves and
inside the muffin-tin spheres the radial Schrödinger
equation can be solved numerically with the actual
potential. By matching the radial functions contin-
uously to the plane waves at the sphere boundary,
we arrive at a single basis function, which, due to
the way it was constructed, is called an augmented
plane wave (APW). The APW method has been de-
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cribed in much detail in the book by Loucks, to
which the reader is referred [41].

The inaccuracy of the basis functions as con-
structed within the muffin-tin approximation is
cured to a large extent by the variational princi-
ple, which is used to determine the wave function.
To be specific, we may evaluate the basis functions
with the MTA, but may incorporate the full, unre-
stricted potential in the Hamiltonian entering the
secular matrix. Thereby we will arrive at a very ac-
curate, so-called full potential method, which even
allows for evaluation of elastic properties. This is
due to the fact that the muffin-tin potential consti-
tutes a good approximation to the full potential—a
fact that allowed only for Slater’s important step—
and thus the basis functions very much resemble the
final wave function.

Although the use of plane waves is a natural
consequence of Bloch’s theorem and, in addition,
offers the advantage of mathematical simplicity,
doubts come up if we prefer a chemist’s point of
view and put more emphasis on the single atoms
rather than the periodic array they form. In this
case we will opt for spherical waves, which are
products of spherical harmonics and spherical Han-
kel, Neumann, or Bessel functions, and, like plane
waves, solve Schrödinger’s equation with a con-
stant potential. By augmenting the spherical waves
with numerical solutions of the radial equation in-
side the muffin-tin spheres in the same manner as
in the APW method, we arrive at the Korringa–
Kohn–Rostoker (KKR) method, even though this
method was developed originally in a much differ-
ent way [42, 43] (see also [44 – 46]). Compared to
methods based on plane waves, spherical waves of-
fer the particular advantage of leading to a smaller
secular matix, usually an order of magnitude less.
Moreover, since spherical waves are much better
adapted to notions from atomic physics or chem-
istry, they allow for a more natural interpretation of
the results.

The radial solutions of Schrödinger’s equations
inside the muffin-tin spheres appearing in both the
APW and the KKR method are energy-dependent
functions and so are the basis functions. Although
they make calculations of very high accuracy fea-
sible, this means a great computational effort since
with energy-dependent basis functions the elec-
tronic energies E(k) can be accessed only via time-
consuming root tracing. In contrast, were it not for
the energy dependence, we would end up with the
generalized eigenproblem (6), which can be solved
much faster.

It was thus a great success when Andersen ob-
served that the energy dependence within the APW
and the KKR method actually is rather weak in
the energy region of interest for the valence elec-
trons [18, 19]. Using this as a starting point, An-
dersen modelled the weak energy dependence by
a Taylor series expansion, where only the first two
terms are kept. In doing so, he arrived at the so-
called linear methods. In particular, Andersen de-
vised the linear augmented plane wave (LAPW)
and the linear muffin-tin orbital (LMTO) methods
as linearized counterparts of the APW and the KKR
method (see, e.g., [47 – 52]). By combining Ander-
sen’s idea to linearize the energy dependence of
the wave function with the renormalized-atom de-
scription of solids as presented by Watson, Ehrenre-
ich, Hodges, and Gelatt [53 – 55], Williams, Kübler,
and Gelatt later developed the augmented spherical
wave (ASW) method [21], wich will be discussed in
detail below. Altogether, besides being much faster
than the classical schemes, the linear methods en-
abled, for the first time, calculations on much more
realistic and complex systems. In this way, Ander-
sen opened the door to an unexpected understand-
ing of the physical as well as the chemical properties
of condensed matter.

Another approach to circumvent the problem of
energy-dependent basis functions is provided by
the linear combination of atomic orbitals (LCAO)
methods, which uses products of spherical harmon-
ics and analytically known radial functions. Several
schemes along this line have been proposed, of
which we just mention the work of Wang and Call-
away [56] as well as of Eschrig [57].

Despite the great success of density functional
theory-based electronic structure calculations it was
not until the mid-eighties that a simultaneous min-
imization of the electronic and ionic energies could
be performed. Indeed, any band calculation scheme,
if accurate enough, in principle allows determina-
tion of the forces acting on the atoms,

Fµ = −∇RµE
({ψk, Rµ}

)
, (9)

which could be used to optimize the atomic po-
sitions. However, such an approach is not very
efficient since it requires in each step a renewed
self-consistent calculation of the electronic structure
before the atoms can be moved.

A substantial improvement was made by Car
and Parrinello, who introduced a new approach
to first-principles molecular dynamics by treating
the electronic wave functions as dynamical vari-
ables [20]. To do so, Car and Parrinello started out
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from the Lagrangian

L = µ̄
∑

k

∫
d3r

∣∣ψ̇k(r, t)
∣∣2

+ 1
2

∑
µ

Mµ

[
Ṙµ

]2 − E
({ψk, Rµ}

)
+
∑
kk′

{∫
d3rψ∗k(r, t)ψk′(r, t)− δkk′

}
λkk′ , (10)

where the overdot as usual denotes d/dt, and Mµ

and Rµ are the ionic masses and positions, respec-
tively. Moreover, µ̄ is a fictitious mass associated
with the electronic wave functions, which are as-
sumed to follow an artificial classical dynamics.
Note that the total energy in this context plays the
role of a potential term. Finally, the last term on the
right-hand side of Eq. (10) ensures orthonormality
of the electronic wave functions and is coupled via
a Langrange multiplier. Note again that the band in-
dex is included in the k index.

Following the laws of classical mechanics, we
easily derive from the Lagrangian (10) the equations
of motions for the electronic wave functions,

µ̄ψ̈k(r, t) = −[−1+ veff(r)
]
ψk(r, t)

+
∑

k′
λkk′ψk′ (r, t), (11)

and for the ionic motion

MµR̈µ = −∇RµE
({ψk, Rµ}

)
. (12)

Note that in the stationary state the left-hand side of
Eq. (11) vanishes, while the right-hand side reduces
to the usual Kohn–Sham equation except for a pos-
sible unitary transformation.

The last decade has witnessed numerous work
to implement and improve different first-principles
molecular dynamics schemes, the discussion of
which again would be far beyond the scope of
this article (recent references are, for instance, [58,
59]). Nevertheless, the idea of Car and Parrinello,
in addition to leading to first-principles molecular
dynamics, had a large influence also on the elec-
tronic problem by itself since it revealed a way to
determine the electronic wave function by direct
minimization instead of solving the secular equa-
tion. This likewise marked a starting point for new
developments [58].

After this more general overview, we will focus in
the following sections on the augmented spherical
wave (ASW) method, which combines the advan-
tages of a linear method with the benefits of the
minimal basis set arising from the use of spherical

waves. It thus offers the aforementioned advantages
to allow for investigations of rather complex com-
pounds as well as a rather simple interpretation
of the calculated electronic properties in terms of
atomic orbitals.

Our discussion of the ASW method proceeds
along the following lines: We start out by defin-
ing the ASW basis functions. After this, an efficient
way to evaluate the elements of the secular ma-
trix is given. From the solution of the thus defined
eigenproblem, we get the expansion coefficients of
the wave function (1) in terms of the basis func-
tions. This in turn enables calculation of the charge
density, magnetization, total energy, and effective
single-particle potential, which latter closes the self-
consistency cycle.

Construction of Augmented Spherical
Wave Basis Functions

The standard augmented spherical wave method
relies on Slater’s MTA, which replaces the full crys-
tal potential by its spherical symmetric average
within nonoverlapping atomic spheres. In the re-
maining interstitial region the potential is flat and,
hence, approximated by a constant, the muffin-tin
zero vMTZ. The effective single-particle potential en-
tering Schrödinger’s equation,[−1+ vσ (r)− ε]ψσ (ε, r) = 0, (13)

thus has the form

vMT
σ (r) = vMTZ2I +

∑
µi

vMT
iσ (rµi)2µi, (14)

where vσ (r) denotes the spin-dependent, effective
single-particle potential, σ is the spin index, and
ψσ (ε, r) a spinor component of the wave function.
In Eq. (14) we used the definitions

rµi := r−Rµi and Rµi := Rµ + τ i, (15)

where Rµ is a lattice vector and τi is the position
of the nucleus i within the unit cell. The step func-
tions 2I and 2µi limit the range of the functions
attached to them to the interstitial region and the
atomic sphere of radius Si centered at site Rµi, re-
spectively.

Within the MTA the choice of the atomic sphere
radii is restricted by the requirement that the
spheres must not overlap. A somehow different
standpoint is taken by the atomic sphere approxi-
mation (ASA), which requires the sum of the atomic
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sphere volumes to equal the cell volume, i.e.,∑
i

�i :=
∑

i

4π
3

S3
i

!=�c. (16)

Here �i and �c denote the volumes of the atomic
sphere i and the unit cell, respectively. Due to this re-
striction, only the ratios of the sphere radii may still
be varied. The atomic sphere approximation was
invented by Andersen to formally eliminate the in-
terstitial region. This was a natural consequence of
the linearization of the energy dependence of the
wave function, which keeps the first two terms of
the respective Taylor expansion within the atomic
spheres, while, in combination with the ASA, even
the linear term may be omitted in the interstitial re-
gion. In the following discussion, we will opt for the
ASA, but still want to develop the theory on very
general grounds as long as possible. Thus we keep
the muffin-tin form (14) for the potential without
fixing the radii of the atomic spheres.

Using the muffin-tin form of the effective single-
particle potential, we construct the basis functions
in the following way: First Schrödinger’s equation
is solved separately in the atomic spheres and the
interstitial region. The resulting partial waves are
then matched continuously and differentiably at
the sphere boundaries to form a single basis func-
tion, an augmented spherical wave. Hence, the basis
functions must obey Schrödinger’s equation with
the muffin-tin potential (14),[−1+ vMT

σ (r)− ε]φσ (ε, r) = 0, (17)

separately in the interstitial and the atomic spheres.
In the interstitial region we combine Eqs. (14)

and (17) and arrive at Helmholtz’s equation[−1− κ2]φσ (κ2, r) = 0 (18)

with

κ2 = ε − vMTZ. (19)

As already outlined before, the ASW method uses
the spherical wave solutions of this differential
equation, which are atom-centered products of
spherical harmonics and radial functions. The latter
are solutions of the free particle radial Schrödinger
equation for energy κ2 and, hence, are well known
as spherical Bessel, Neumann, or Hankel functions.
Note that the singularities of the latter two functions
do not come into play here since we are interested in
solutions for the interstitial region only.

In contrast to the KKR method, the energy de-
pendence of the wave function is suppressed in the
ASW method, which uses radial functions for only

a fixed value of κ2. This value should be somewhere
in the region of interest, usually between−1 Ry and
+1 Ry. While in the KKR method spherical Neu-
mann functions are chosen as the interstitial part
of the basis functions, the ASW method employs
spherical Neumann and Hankel functions for pos-
itive and negative values of κ2, respectively. The
interstitial energy κ2 usually is set to−0.015 Ry. Still,
the albeit small limitations due to the energy lin-
earization may be cured by employing a so-called
multiple-κ set, which takes envelope functions with
two or three different values of the interstitial en-
ergy into account. Although this is not necessary
within the ASA, it will be important for MTA-based
full potential methods. For this reason we include
the energy parameter in the subsequent descrip-
tion. Nevertheless, since usually only negative κ2

are considered, we will from now on concentrate on
the negative energy case and, hence, on the use of
Hankel-type envelope functions.

To be specific, we define the interstitial part of the
ASW basis function by

H∞Lκσ (rµi)2I := Hi
Lκ(rµi) := HLκ(rµi)2I, (20)

where HLκ is the envelope function given by

HLκ(rµi) := iκ l+1h(1)
l (κrµi)YL(r̂µi). (21)

In somewhat lax notation the latter, too, is some-
times referred to as the Hankel function. In Eq. (21),
h(1)

l (κrµi) denotes the spherical Hankel function
in the notation of Abramowitz and Stegun [60,
Chap. 10]. The index L = (l, m) is composed of the
angular momentum and magnetic quantum num-
bers, YL(r̂µi) denotes a spherical (or cubic) harmonic,
and the prefactors finally serve the purpose of can-
celling the leading κ dimension and making the
radial functions real for negative energies κ2.

Next, we turn to the regions inside the atomic
spheres, where the potential shows all the intra-
atomic details and, hence, solving Schrödinger’s
equation is much more complicated. However, the
reduction of the full crystal potential to its spherical
symmetric average inside the atomic spheres due to
the muffin-tin approximation allows for a separa-
tion of Schrödinger’s equation into an angular and
a radial part. The latter furthermore is subject to the
conditions of continuous and differentiable match-
ing to the interstitial basis function.

We first concentrate on that single atomic sphere
where the spherical wave is centered. In this so-
called on-center sphere we use the spherical sym-
metry and arrive at the following intraatomic basis
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function, the augmented Hankel function:

H∞Lκσ (rµi)2µi := H̃Lκσ (rµi) := h̃lκσ (rµi)YL(r̂µi)2µi.
(22)

Its radial part obeys the radial Schrödinger equation[
− 1

rµi

∂2

∂r2
µi

rµi + l(l+ 1)
r2
µi

+ vMT
iσ (rµi)− E(H)

lκ iσ

]
× h̃lκσ (rµi) = 0. (23)

The numerical solution of this differential equation
as well as the determination of the Hankel energy
E(H)

lκ iσ is subject to three boundary conditions, namely
the regularity of the radial function h̃lκσ (rµi) at its
origin as well as the continuous and differentiable
matching at the sphere boundary,[(

∂

∂rµi

)n(
h̃lσ (rµi)− iκ l+1h(1)

l (κrµi)
)]

rµi = Si

= 0,

n = 0, 1. (24)

Note that, for simplicity in writing, we have omitted
the principal quantum number in Eq. (23). This is
motivated by the observation that in many cases it
is sufficient to take into account only one valence
state per atom and angular momentum, and that all
the lower lying core states do not extend beyond the
atomic sphere.

By now we have augmented the spherical wave
inside the on-center sphere. In all other atomic
spheres of the crystal, which are centered at Rνj 6=
Rµi and referred to as the off-center spheres, the
situation is different. Inside these spheres, the en-
velope function lacks spherical symmetry relative
to the center of the respective sphere, Rνj. For this
reason we first apply the expansion theorem for the
envelope functions, which allows us to expand the
Hankel function defined in Eq. (21) and centered at
site Rµi in terms of Bessel functions centered at Rνj,

HLκ(rµi) =
∑

L′
JL′κ(rνj)BL′Lκ (Rνj −Rµi). (25)

It is valid for all vectors r, which fulfil |rνj| < |Rνj −
Rµi|, and thus for all r lying within a sphere of radius
equal to the distance between the two centers and
centered at Rνj. The Bessel function

JL′κ (rνj) := κ−l′ jl′ (κrνj)YL′ (r̂νj), (26)

like the Hankel function given by Eq. (21), is a so-
lution of Helmholtz’s Eq. (18). jl′ (κrνj) denotes a
spherical Bessel function and the prefactor again
was introduced to cancel the leading κ dimension
and to make the radial part real for any value of κ2.

The expansion coefficients entering Eq. (25) are
the so-called structure constants, which are related
to those of the KKR method. Their calculation as
well as the proof of the expansion theorem has been
given in full detail in [22, 23]. Here we present only
the result

BL′Lκ (Rνj −Rµi) = 4π
∑
L′′

il−l′−l′′κ l+l′−l′′cLL′L′′

×HL′′κ(Rνj −Rµi), (27)

which is valid for Rνj 6= Rµi and where

cLL′L′′ =
∫

d2r̂ Y∗L(r̂)YL′ (r̂)YL′′ (r̂) (28)

denotes the Gaunt coefficient.
With the expansion theorem (25) at hand we are

ready to augment the spherical wave in the off-
center spheres since the Bessel functions given by
Eq. (26) are centered at the corresponding atomic
sites and thus reflect the spherical symmetry rela-
tive to these sites. The basis function in the off-center
sphere centered at Rνj is thus written in terms of
augmented Bessel functions

J̃L′κσ (rνj) := ̃l′κσ (rνj)YL′ (r̂νj)2νj. (29)

Their radial parts have to obey the radial Schrö-
dinger equation[
− 1

rνj

∂2

∂r2
νj

rνj + l′(l′ + 1)
r2
νj

+ vMT
jσ (rνj)− E(J)

l′κ jσ

]
× ̃l′κσ (rνj) = 0. (30)

As for the augmented Hankel function, the numer-
ical solution of this differential equation as well as
the determination of the Bessel energy E(J)

l′κ jσ is sub-
ject to the conditions of the regularity of the radial
function ̃l′κσ (rνj) at the origin and the continuous
and differentiable matching at the sphere boundary,[(

∂

∂rνj

)n(
̃l′κσ (rνj)− κ−l′ jl′ (κrνj)

)]
rνj = Sj

= 0,

n = 0, 1. (31)

The principal quantum number required for solv-
ing (30) is again fixed by our selection of valence
states for the corresponding atom just in the same
manner as for the augmented Hankel function dis-
cussed above. In passing we note that the radial
equations (23) and (30) are identical and, hence, the
difference between the augmented functions h̃lκσ

and ̃lκσ and the energies E(H)
lκ iσ and E(J)

lκ iσ is only
due to the different boundary conditions given by
Eqs. (24) and (31). With the augmented Bessel func-
tion at hand we arrive at the following expression
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for the basis function centered at Rµi inside the off-
center sphere centered at Rνj:

H∞Lκσ (rµi)2νj =
∑

L′
J̃L′κσ (rνj)BL′Lκ (Rνj −Rµi). (32)

Note that the expansion coefficients in Eqs. (25)
and (32) are the same. This is due to the identity of
HLκ and H̃Lκσ as well as JLκ and J̃Lκσ at the sphere
boundary.

Combining finally Eqs. (20), (22), and (32), we
construct the full basis function, the augmented
spherical wave

H∞Lκσ (rµi) = Hi
Lκ(rµi)+ H̃Lκσ (rµi)

+
∑
L′νj

(1− δµνδij)J̃L′κσ (rνj)BL′Lκ (Rνj − Rµi), (33)

which is completely specified by its center, Rµi, the
composite angular momentum index L = (l, m),
and the spin index σ . In addition, the augmented
spherical wave is continuous and differentiable in
all space. Since the ASW basis functions arise from
solutions of Schrödinger’s equation in the respec-
tive portions of space, each of these functions is well
adapted to the actual problem and already a rela-
tively small number of basis functions are needed
for the expansion of the final wave function. Typ-
ically 9 states (s, p, d) per atom are sufficient; for
atoms with f electrons we end up with 16 states.
This should be contrasted with methods using (aug-
mented) plane waves, where usually hundreds of
basis functions per atom are needed.

As concerns the angular momentum indices that
accompany each function, we distinguish three sets
of partial waves, namely lower, intermediate, and
higher waves. While the lower waves enter the sec-
ular matrix, the intermediate waves are used only
in the expansion in (augmented) Bessel functions.
All the remaining partial waves by definition belong
to the set of higher waves. In practice, Hankel func-
tions and the low l Bessel functions form the set of
lower partial waves, where angular momenta range
from 0 to llow. The latter usually is 2 or 3 depend-
ing on the atom at hand. The set of intermediate
waves comprises all Bessel functions with angular
momenta ranging from llow+ 1 to lint. Hence, the in-
dex L of the Hankel functions in Eq. (33) would run
up to Llow = (llow, m) ant the index L′ of the Bessel
function would run up to Lint = (lint, m). As will be-
come obvious later on, it is usually sufficient to set
lint = llow + 1.

In a last step we take into account crystal trans-
lational symmetry and use only Bloch sums of basis

functions,

D∞Lκσ (ri, k) :=
∑
µ

eikRµH∞Lκσ (rµi), (34)

where

ri = r− τi (35)

and the symbol D is conventional. Note that we will
refer to both functions (33) and (34) as basis func-
tions, but the actual meaning will always be clear
from the context.

To prepare for forthcoming sections, we define,
in addition, the Bloch sum of the envelope func-
tion (20) by

DLκ(ri, k) :=
∑
µ

(
1− δµ0δ(ri)

)
eikRµHLκ(rµi). (36)

Its interstitial part in complete analogy with Eq. (20)
then reads as

Di
Lκ (ri, k) :=

∑
µ

eikRµHi
Lκ(rµi) = DLκ(ri, k)2I. (37)

Moreover, we define the Bloch summed structure
constants

BL′Lκ(τj − τi, k)

:=
∑
µ

(1− δµνδij)eikRµBL′Lκ (τj − τi − Rµ)

= 4π
∑
L′′

il−l′−l′′κ l+l′−l′′cLL′L′′DL′′κ(τj − τi, k), (38)

where we have used the identities (27) and (36) in
the second step. Hence, for the Bloch summed basis
function, we get

D∞Lκσ (ri, k) = Di
Lκ(ri, k)+ H̃Lκσ (ri)

+
∑
L′j

J̃L′κσ (rj)BL′Lκ (τj − τi, k). (39)

The wave function entering the variational pro-
cedure may now be written as a linear combination
of the just defined Bloch sums,

ψkσ (r) =
∑
Lκ i

cLκ iσ (k)D∞Lκσ (ri, k), (40)

which is the ASW analogue of the more general
equation (1). The coefficients cLκ iσ (k) arise via the
variational principle from the secular equation (6),
the explicit construction of which is the subject of
the following section.

However, before setting up the secular matrix,
we still have to determine the core states. Within
the ASW method we are going beyond the so-called
frozen core approximation, which uses core states
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that arise from a purely atomic calculation without
letting them respond to the changes of the valence
states, but evaluate the core states from the same
radial Schrödinger equation used for the valence
states, Eq. (23) or (30), which contain the actual in-
traatomic potential. Hence the core states feel any
changes in the potential due to the valence states
and rearrange their shape when the band calcula-
tion is iterated to self-consistency. This process is
usually referred to as an all electron calculation.

Denoting the radial part of the core states by
ϕlinli

(Elinli
, rµi), where nli is the principal quantum

number, we write down the radial Schrödinger
equation[
− 1

rµi

∂2

∂r2
µi

rµi + l(l+ 1)
r2
µi

+ vMT
iσ (rµi)− Elinli

]
×ϕlinli

(Elinli
, rµi) = 0. (41)

The major difference in the valence states is due to
the boundary conditions for the core states, which
are still subject to the regularity of the radial func-
tion at the origin. Yet, in contrast to the valence
states, both value and slope at the sphere boundary
must vanish since the core states do not take part in
the chemical bonding and thus are confined to their
respective atomic spheres.

Methods using augmentation for the construc-
tion of basis functions offer the special advantage
that the valence states by construction are orthogo-
nal to the core states and thus an explicit orthogo-
nalization need not be done. This is due to the fact
that the radial parts of the basis functions, i.e., of
the augmented Hankel and Bessel functions, obey
the same radial Schrödinger equation as the radial
parts of the core states. For this reason the radial
overlap integral vanishes, as can be easily proven by
expressing the integral in terms of the Wronskian of
the valence and core radial functions.

The Secular Matrix

While setting up the secular matrix we will,
again for simplicity in writing, resort to the so-
called scalar–relativistic approximation and omit
spin–orbit coupling. Within the local density ap-
proximation for the spin-polarized electron gas the
Hamiltonian is thus diagonal in spin space,

Hσ = Hσσ = −1+ veff,σ (r) (42)

with the potential already given in Eq. (13). Defining
a bra and ket notation

|Lκ i〉∞ := D∞Lκσ (ri, k) (43)

for the Bloch summed basis functions and using the
expansion (40) of the wave function in terms of basis
functions, we then arrive at the secular equation∑
L′κ2m

cL′κ2jσ (k)
[∞〈Lκ1i|Hσ |L′κ2j〉∞c

−E∞〈Lκ1i|L′κ2j〉∞c
] = 0, (44)

where the matrix elements are real space integrals
extending over the unit cell. This linear equation
system determines the band energies E = Eσ (k)
as well as the expansion coefficients cLκ1iσ (k) of the
wave function in terms of the basis functions.

To determine the elements of both the Hamil-
tonian and the overlap matrix we define, in addi-
tion, a bra and ket notation for the Bloch summed
envelope functions

|Lκ i〉 := DLκσ (ri, k) (45)

and write the general element of the Hamiltonian
matrix as

∞〈Lκ1i|Hσ |L′κ2j〉∞c
= 〈Lκ1i|−1|L′κ2j〉c +

∑
m

[∞〈Lκ1i|Hσ |L′κ2j〉∞m
−〈Lκ1i|−1|L′κ2j〉m

]
. (46)

Here the index m denotes integration over the
atomic sphere centered at τm. Furthermore, matrix
elements containing −1 are to be taken with the
nonaugmented envelope functions.

To evaluate the integral (46) we use the fact that
in the respective regions of integration the functions
entering are eigenfunctions of either the full Hamil-
tonian Hσ or the free electron Hamiltonian −1. The
integrals with these operators thus reduce to over-
lap integrals times the respective eigenenergies, i.e.,

〈Lκ1i|−1|L′κ2j〉c = κ2
2 〈Lκ1i|L′κ2j〉c. (47)

Using Eq. (39) for the Bloch summed basis function,
we write down the integrals over the atomic spheres
with the full Hamiltonian as
∞〈Lκ1i|Hσ |L′κ2j〉∞m
= δimE(H)

lκ2jσ

〈
H̃Lκ1σ

∣∣H̃L′κ2σ

〉
mδLL′δmj

+ δimE(J)
l′′κ2mσ

〈
H̃Lκ1σ

∣∣J̃L′′κ2σ

〉
mδLL′′BL′′L′κ2 (τm − τj, k)

+B∗L′′Lκ1
(τm − τi, k)E(H)

l′κ2mσ δL′′L′
〈
J̃L′′κ1σ

∣∣H̃L′κ2σ

〉
mδmj

+
∑
L′′

∑
L′′′

B∗L′′Lκ1
(τm − τi, k)E(J)

l′′′κ2mσ

× 〈J̃L′′κ1σ

∣∣J̃L′′′κ2σ

〉
mδL′′L′′′BL′′′L′κ2 (τm − τj, k)
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= δimE(H)
lκ2jσ

〈
H̃Lκ1σ

∣∣H̃Lκ2σ

〉
mδLL′δmj

+ δimE(J)
lκ2mσ

〈
H̃Lκ1σ

∣∣J̃Lκ2σ

〉
mBLL′κ2 (τm − τj, k)

+B∗L′Lκ1
(τm − τi, k)E(H)

l′κ2mσ

〈
J̃L′κ1σ

∣∣H̃L′κ2σ

〉
mδmj

+
∑
L′′

B∗L′′Lκ1
(τm − τi, k)E(J)

l′′κ2mσ

〈
J̃L′′κ1σ

∣∣J̃L′′κ2σ

〉
m

×BL′′L′κ2 (τm − τj, k). (48)

Here we distinguish three different types of inte-
grals, namely one-, two-, and three-center integrals,
depending on the number of sites involved in the in-
tegral. One-center integrals contain only augmented
Hankel functions, two-center integrals contain both
a Hankel and Bessel function, and three-center inte-
grals contain only Bessel functions. Note that the in-
tegrals over products of augmented Hankel and/or
Bessel functions reduce to radial integrals due to the
orthonormality of the spherical harmonics. Whereas
those radial integrals, which contain only one type
of function for κ2

1 = κ2
2 , are calculated numerically,

the mixed integrals 〈H̃Lκ1σ |H̃Lκ2σ 〉m, 〈H̃Lκ1σ |J̃Lκ2σ 〉m,
and 〈J̃Lκ1σ |J̃Lκ2σ 〉m are expressed in terms of the Han-
kel and Bessel energies as well as the Wronskians of
the respective unaugmented functions taken at the
sphere boundary.

While due to the orthonormality of the spherical
harmonics, the limitation to the low l Bessel func-
tions is exact in the case of two-center integrals, the
three-center integrals still contain an, in principle,
infinite summation over L′′. However, in the for-
mulation (46) of the general matrix element, three-
center integrals enter only in the square bracket
term on the right-hand side together with the cor-
responding integrals built with the envelope func-
tions. Since for high angular momenta the muffin-
tin potential in the Hamiltonian Hσ is dominated
by the centrifugal term, the augmented functions
become identical to the envelope functions and the
difference of the two terms in square brackets van-
ishes. It is thus well justified to omit the difference
of three-center terms already for quite low angular
momenta. In practice the highest l value used for the
three-center integrals, i.e., lint, is set to llow + 1.

The second term in the square bracket on the
right-hand side of Eq. (46), i.e., those integrals
over the atomic spheres, which contain envelope
rather than augmented functions, simply result
from Eq. (48) by replacing the Hankel and Bessel
energies with κ2

2 and the augmented functions with

the envelope functions. Hence

〈Lκ1i| −1|L′κ2j〉m
= δimκ

2
2 〈HLκ1σ |HLκ2σ 〉mδLL′δmj

+ δimκ
2
2 〈HLκ1σ |JLκ2σ 〉mBLL′κ2(τm − τj, k)

+B∗L′Lκ1
(τm − τi, k)κ2

2〈JL′κ1σ |HL′κ2σ 〉mδmj

+
∑
L′′

B∗L′′Lκ1
(τm − τi, k)κ2

2 〈JL′′κ1σ |JL′′κ2σ 〉m

×BL′′L′κ2 (τm − τj, k). (49)

The radial integrals appearing in Eq. (49) are cal-
culated using standard identities for the spherical
Hankel and Bessel functions: see, e.g., [21, 23].

Next we turn to the first integral in Eq. (46),
which extends over the whole unit cell and, accord-
ing to Eq. (47), can be reduced to the calculation
of the corresponding overlap integral. In addition,
this term can be combined with the second term in
square brackets in Eq. (46). In case both basis func-
tions entering the matrix element are centered at the
same site, we end up with just the radial integral
〈HLκ1 |HLκ2〉′j extending from the sphere boundary
out to infinity. In contrast, if the functions are cen-
tered at diiferent sites, we can express the overlap
integral in terms of structure constants divided by
the difference of the κ2 values or, in case of equal in-
terstitial energies, in terms of the energy derivative
of the structure constant. For details of the evalu-
ation, we refer the reader to the original work by
Williams, Kübler, and Gelatt as well as to the thesis
of the author [21, 23]. We are thus able to write down
the general matrix element of the Hamiltonian as

∞〈Lκ1i|Hσ |L′κ2j〉∞c
= [E(H)

lκ2jσ

〈
H̃Lκ1σ

∣∣H̃Lκ2σ

〉
j + κ2

2 〈HLκ1 |HLκ2〉′j
]
δLL′δij

+ κ2
2

κ2
2 − κ2

1

[
BLL′κ2 (τi − τj, k)− B∗L′Lκ1

(τj − τi, k)
]

× (1− δ(κ2
1 − κ2

2

))
+ κ2

2 ḂLL′κ1 (τi − τj, k)δ
(
κ2

1 − κ2
2

)
+ [E(J)

lκ2iσ

〈
H̃Lκ1σ

∣∣J̃Lκ2σ

〉
i − κ2

2 〈HLκ1 |JLκ2〉i
]

×BLL′κ2 (τi − τj, k)

+B∗L′Lκ1
(τj − τi, k)

[
E(H)

l′κ2jσ

〈
J̃L′κ1σ

∣∣H̃L′κ2σ

〉
j

− κ2
2 〈JL′κ1 |HL′κ2〉j

]
+
∑

m

∑
L′′

B∗L′′Lκ1
(τm − τi, k)
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× [E(J)
l′′κ2mσ

〈
J̃L′′κ1σ

∣∣J̃L′′κ2σ

〉
m − κ2

2 〈JL′′κ1|JL′′κ2〉m
]

×BL′′L′κ2(τm − τj, k). (50)

Still we have to calculate the matrix elements of
the overlap matrix. They are defined in accordance
with Eq. (46) by
∞〈Lκ1i|L′κ2j〉∞c = 〈Lκ1i|L′κ2j〉c

+
∑

m

[∞〈Lκ1i|L′κ2j〉∞m − 〈Lκ1i|L′κ2j〉m
]
. (51)

The evaluation of these matrix elements is greatly
facilitated by the fact that all the functions entering
are eigenfunctions of either the full Hamiltonian Hσ

or else free electron Hamiltonian −1, which fact, as
already mentioned, allows us to reduce the integrals
to be built with the partial waves to overlap inte-
grals times the respective eigenvalue. Hence, using
the just calculated matrix elements of the Hamil-
tonian matrix and replacing all energies in Eq. (50)
that appear in a numerator with unity, we get for the
general matrix element of the overlap matrix
∞〈Lκ1i|L′κ2j〉∞c
= [〈H̃Lκ1σ

∣∣H̃Lκ2σ

〉
j + 〈HLκ1|HLκ2〉′j

]
δLL′δij

+ 1
κ2

2 − κ2
1

[
BLL′κ2 (τi − τj, k)− B∗L′Lκ1

(τj − τi, k)
]

× (1− δ(κ2
1 − κ2

2

))
+ ḂLL′κ1(τi − τj, k)δ

(
κ2

1 − κ2
2

)
+ [〈H̃Lκ1σ

∣∣J̃Lκ2σ

〉
i − 〈HLκ1 |JLκ2〉i

]
BLL′κ2 (τi − τj, k)

+B∗L′Lκ1
(τj − τi, k)

[〈
J̃L′κ1σ

∣∣H̃L′κ2σ

〉
j − 〈JL′κ1|HL′κ2〉j

]
+
∑

m

∑
L′′

B∗L′′Lκ1
(τm − τi, k)

× [〈J̃L′′κ1σ

∣∣J̃L′′κ2σ

〉
m − 〈JL′′κ1 |JL′′κ2〉m

]
×BL′′L′κ2 (τm − τj, k). (52)

The present formulation for the elements of the
secular matrix offers several advantages: (i) We have
separated structural information from intraatomic
information by writing each term as a structure con-
stant times intraatomic radial integrals. The latter
need to be calculated only once in an iteration be-
fore the time-consuming loop over k points starts.
(ii) As can be read off from Eqs. (50) and (52),
the intraatomic contributions depend exclusively
on integrals over envelope functions, which can be
performed analytically: the Hankel and Bessel en-
ergies E(H)

lκ iσ and E(J)
lκ iσ and the Hankel and Bessel

integrals S(H)
lκ iσ = 〈H̃Lκσ |H̃Lκσ 〉i and S(J)

lκ iσ = 〈J̃Lκσ |J̃Lκσ 〉i.
Hence, except for the crystal structure information,
the secular matrix is completely specified by only

four numbers per basis state that contain all in-
formation about the shape of the crystal potential.
Finally, Eqs. (50) and (52) allow for a very efficient
computation, which includes both a high degree of
vectorization and low memory costs due to the min-
imal basis set.

Electronic Charge Density
and Magnetization

Because the electronic wave function is an out-
growth of the secular equation at hand, we are able
to calculate the electronic charge density as well as
the magnetization. They arise as the sum and dif-
ference of the spin-dependent charge densities and
are made of contributions from both the valence and
core electrons. However, since the latter form closed
shells, they do not contribute to the magnetization.

Concentrating on the valence electrons first, we
write for the charge density

ρval(r) = ρval↑(r)+ ρval↓(r) (53)

and for the magnetization

mval(r) = ρval↑(r)− ρval↓(r). (54)

Within the framework of density functional the-
ory, the spin-dependent charge densities entering
Eqs. (53) and (54) are given by

ρval,σ (r) =
∑

k

∣∣ψkσ (r)
∣∣22(EF − Eσ (k)

)
. (55)

Here we have implied the use of Fermi statistics by
summing over the occupied states up to the Fermi
energy EF. The wave function is that defined by
Eq. (40) with the coefficients determined by the so-
lution of the eigenproblem (44).

Following the notions of density functional the-
ory, we have to combine Eqs. (55) and (40) with
the expression (39) for the ASW basis function and
calculate the spin-dependent charge density. How-
ever, within the standard ASW method there exists
an alternative procedure: First recall that we started
out from a muffin-tin potential. For this reason, the
potential to be extracted later on from the charge
density likewise must be a muffin-tin potential since
density functional theory poses a self-consistent
field problem. Hence we may already reduce the
charge density to its muffin-tin form. Within this
so-called shape approximation, we thus concentrate
on the spherical symmetric spin-dependent charge
density within the atomic spheres. In addition, we
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strictly enforce the ASA, i.e., we ignore the intersti-
tial region completely and treat the atomic spheres
as nonoverlapping. However, the spherical sym-
metric charge density may likewise be extracted
from the electronic density of states, which offers the
additional advantage of an increased accuracy since
within the Rayleigh–Ritz variational procedure, the
eigenenergies are determined to a higher accuracy
than the eigenfunctions [19, 21, 47].

To start with, we write down the charge density
in the form it would have in the more accurate KKR
method [22, 42, 43]:

ρval,iσ (ri) = 1
4π

∫ EF

−∞
dE

∑
l

ρliσ (E)R2
lσ (E, ri). (56)

The functions Rlσ (E, ri) are normalized regular solu-
tions of the radial Schrödinger equation (23) to en-
ergy E, and ρliσ (E) denotes the density of states de-
composed according to angular momentum, atomic
site, and spin.

Within the ASW method, an equivalent analysis
of the total density of states can be achieved by de-
composing the norm of the wave function, which
follows directly from the expansion (40) of the wave
functions in terms of the basis functions∫
�c

d3r
∣∣ψkσ (r)

∣∣2 =∑
Lκ1i

∑
L′κ2j

c∗Lκ1iσ (k)cL′κ2jσ (k)

×∞〈Lκ1i|L′κ2j〉∞c . (57)

Inserting the expression (52) for the overlap integral
and using the definition

aLκ iσ (k) =
∑
L′j

cL′κ jσ (k)BLL′κ(τi − τj, k), (58)

we get∫
�c

d3r
∣∣ψkσ (r)

∣∣2
=
∑

Lκ1κ2i

[
c∗Lκ1iσ (k)cLκ2iσ (k)

[〈
H̃Lκ1σ

∣∣H̃Lκ2σ

〉
i

+〈HLκ1 |HLκ2

〉′
i

]
+ c∗Lκ1iσ (k)

∑
L′j

cL′κ2jσ (k)
1

κ2
2 − κ2

1

× [BLL′κ2 (τi − τj, k)− B∗L′Lκ1
(τj − τi, k)

]
× (1− δ(κ2

1 − κ2
2

))
+ c∗Lκ1iσ (k)

∑
L′j

cL′κ2jσ (k)ḂLL′κ1 (τi − τj, k)

× δ(κ2
1 − κ2

2

)
+ c∗Lκ1iσ (k)aLκ2iσ (k)

[〈
H̃Lκ1σ

∣∣J̃Lκ2σ

〉
i − 〈HLκ1 |JLκ2〉i

]

+ a∗Lκ1iσ (k)cLκ2iσ (k)
[〈

J̃Lκ1σ

∣∣H̃Lκ2σ

〉
i − 〈JLκ1 |HLκ2〉i

]
+ a∗Lκ1iσ (k)aLκ2iσ (k)

[〈
J̃Lκ1σ

∣∣J̃Lκ2σ

〉
i − 〈JLκ1 |JLκ2〉i

]]
.

(59)

As already mentioned in the previous sections, Han-
kel and Bessel functions are included up to llow and
lint, respectively. Equation (59) is the exact represen-
tation of the norm, which, however, does not allow
for a decomposition into partial densities of states
due to the double sum in the second and third term
on the right-hand side. These terms originate from
the so-called “combined correction,” i.e., from the
difference of the first term and the third term (in
square brackets) on the right-hand side of Eq. (46).
Since we already opted for the ASA in the present
context, these terms cancel out from the norm and
we write down instead the norm as calculated with
the ASA:∫

�c

d3r
∣∣ψkσ (r)

∣∣2
=
∑

Lκ1κ2i

[
c∗Lκ1iσ (k)cLκ2iσ (k)

〈
H̃Lκ1σ

∣∣H̃Lκ2σ

〉
i

+ c∗Lκ1iσ (k)aLκ2iσ (k)
〈
H̃Lκ1σ

∣∣J̃Lκ2σ

〉
i

+ a∗Lκ1iσ (k)cLκ2iσ (k)
〈
J̃Lκ1σ

∣∣H̃Lκ2σ

〉
i

+ a∗Lκ1iσ (k)aLκ2iσ (k)
〈
J̃Lκ1σ

∣∣J̃Lκ2σ

〉
i

]
+1σ (k)

=:
∑

li

qliσ (k)

!= 1. (60)

Here we have added a quantity 1σ (k), which ac-
counts for the exactly known but small difference
between the expressions (59) and (60). However,
since this quantity makes only a small contribution
to the norm, it is omitted in practice and the result-
ing deviation of the norm from unity is cured by
a renormalization of the remaining terms. As indi-
cated in the second to last line of Eq. (60), we thus
arrive at the desired unique decomposition of the
norm, which allows us to calculate partial densities
of states,

ρliσ (E) :=
∑

k

δ
(
E− Eσ (k)

)
qliσ (k). (61)

Still, the linear methods offer another advantage
for calculating the electronic densities of states in
terms of its moments, which are defined by

M(k)
liσ =

∫ EF

−∞
dE Ekρliσ (E), k = 0, 1, 2. (62)
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If the energy dependence of the radial wave func-
tion were perfectly linear, the partial density of
states would be completely specified by its first
three moments. Yet, deviations from the linear be-
havior do exist, but since they are small, it suffices
to include, in addition, the fourth moment. We are
then able to define a new density of states

ρ̄liσ (E) :=
2∑

α = 1

δ
(
E− E(α)

liσ

)
Q(α)

liσ , (63)

where the two energies E(α)
liσ and the charges Q(α)

liσ are
subject to the condition that they yield the same first
four moments as the true charge density does,

2∑
α = 1

(
E(α)

liσ

)kQ(α)
liσ

!=
∫ EF

−∞
dE Ekρliσ (E),

k = 0, 1, 2, 3. (64)

With the true density of states replaced by the ex-
pression (63), we arrive at the representation of the
spin-dependent charge density,

ρval,iσ (ri) = 1
4π

∑
l

2∑
α = 1

Q(α)
liσR2

lσ

(
E(α)

liσ , ri
)

=
∑

l

ρval,liσ (ri), (65)

which does not require the full energy dependence
of the radial Schrödinger equation solution, but only
solutions at two different energies.

The previous results reveal an additional “sym-
metry” of the standard ASW method. Obviously,
the intraatomic charge density is completely spec-
ified by only two energies E(α)

liσ and charges Q(α)
liσ .

This should likewise be related to the four quantities
per orbital that entered the secular matrix, namely
the Hankel and Bessel energies and integrals. The
whole iteration process can thus be cut into two
parts. The band calculation starts from the Han-
kel and Bessel energies and integrals, and returns
the above energies E(α)

liσ and charges Q(α)
liσ . In case

of the intraatomic calculation, things are reversed.
This finally allows for an additional speed up of the
method, which will be outlined in more detail in the
following section.

Finally, we complement the valence charge den-
sity with the core charge density, which is given by

ρcore(r) =
∑

i

ρcore(ri)

=
∑
inli

lm

ϕ2
linli

(Elinli
, ri)
∣∣YL

(
r̂i
)∣∣2

=
∑
inli

l

2l+ 1
4π

ϕ2
linli

(Elinli
, ri)

=
∑

i

ρcore(ri), (66)

with the core state wave functions ϕlinli
(Elinli

, ri) and
energies Elinli

arising from the radial Schrödinger
equation (41) subject to the conditions of vanishing
value and slope at the sphere boundary.

The Effective Potential

To close the self-consistency cycle, we still have
to calculate the effective potential as seen by the
electrons. Within density functional theory and the
local density approximation, which in an approxi-
mate manner cast the full many body problem into a
single-particle self-consistent field problem, the po-
tential arises as the sum of the external, Hartree,
and exchange–correlation potentials [4, 5, 7, 22, 61].
While the external potential is just the Coulomb po-
tential originating from the nuclei and possibly ex-
ternal electromagnetic fields, the Hartree potential
embodies the classical contribution to the electron–
electron Coulomb interaction, the nonclassical parts
of which are contained in the exchange–correlation
potential.

For practical calculations it is useful to combine
the charge density of the electrons as calculated in
the previous section with the charge density of the
nuclei:

ρnucl(r) = −
∑

i

δ(ri)Zi. (67)

The classical potential due to the resulting total
charge density then contains both the external and
the Hartree potential. It can be written as

vcc(r) = 2
∫

d3r′
ρel(r′)
|r− r′| − 2

∑
µi

Zi

|r−Rµi|

= 2
∑
µi

∫
�i

d3r′µi

ρel(r′µi)

|rµi − r′
µi|
− 2

∑
µi

Zi

|rµi| , (68)

where the prefactor 2 is due to our choice of atomic
units. Next we assume the position r to lie in the
atomic sphere centered at site Rνj. Using the iden-
tity [62]

1
|r− r′| =

∑
L

4
2l+ 1

rl
<

rl+1
>

Y∗L(r̂)YL
(
r̂′
)
, (69)
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we transform Eq. (68) to the expression

vcc(r)||rνj|≤Sj = 8π
1

rνj

∫ rνj

0
dr′νj r

′2
νjρel(r′νj)

+ 8π
∫ Si

rνj

dr′νj r′νjρel(r′νj)− 2
Zi

|rνj|
+ 2

∑
µi

(1− δµνδij)
Qi − Zi

|rµi| , (70)

which is based on the shape approximation cho-
sen in the previous section, i.e., on the assumption
of spherical symmetric charge densities confined
to atomic spheres. With the shape approximation
in mind, we may furthermore treat all the charges
within the atomic spheres as point charges,

Qi = 4π
∫ Si

0
dr′µi r

′2
µiρel(r′µi). (71)

As well known a spherical symmetric charge den-
sity within a sphere acts like a point charge at the
center of the sphere. Taken together with the nuclear
charges, these “electronic point charges” generate
the Madelung potential, which is represented by
the last term in Eq. (70). Actually this treatment is
not fully correct because it neglects the overlap of
atomic spheres. In the atomic sphere approxima-
tion there is a finite overlap of the atomic spheres,
which leads to errors when the interatomic interac-
tions between electronic charges are treated in the
way just described. Obviously this error is smaller
in closed packed solids since there the overlap can
be minimized [63, 64]. For open structures it has
become standard practice to insert so-called empty
spheres into the unit cell, which, together with the
physical spheres, enable an artificial close packing
and, hence, allow the sphere overlap to be mini-
mized. Nevertheless, in practice it remains a chal-
lenge to find (i) optimal empty sphere positions and
(ii) optimal radii for all spheres. To achieve an ef-
ficient solution of the aforementioned problem, we
recently devised the sphere geometry optimization
(SGO) algorithm [27], which is capable of handling
even complicated crystal structures and has proven
to be very fast. In short, the SGO method is based on
the observation that the full crystal potential is well
approximated by the overlapping free atom poten-
tial of the constituent atoms [65] and thus could be
used for the selection of empty sphere positions and
sphere radii before the self-consistent calculation is
actually started [66].

Still we can substantially simplify the Madelung
term in Eq. (70) by enforcing the muffin-tin shape
of the potential again. Due to the spherical sym-

metry of the potential within the atomic spheres,
which suppresses the angular degrees of freedom,
the Madelung potential, e.g., in the sphere at site Rνj

can in no way depend on the position rνj within that
sphere. For that reason the Madelung potential re-
duces to

vMad,j = 2
∑
µi

(1− δ0µδij)
Qi − Zi

|τ j − τ i − Rµ| , (72)

which is just a constant shift of the energy scale
within each atomic sphere. Using the identity

HLκ (τ j − τ i −Rµ)|l= 0, κ→0 = 1√
4π

1
|τ j − τ i − Rµ| ,

(73)
we can express the lattice sum in Eq. (72) in terms of
the Bloch summed Hankel functions (36) for k = 0
and get for the Madelung potential

vMad,j = 2
∑
µi

(1− δ0µδij)
√

4πHLκ(τ j − τ i − Rµ)

×(Qi − Zi)|l= 0, κ→0

= 2
∑

i

√
4πDLκ(τ j − τ i, 0)(Qi − Zi)|l= 0, κ→0.

(74)

Note that those parts of the Bloch summed Hankel
function DLκ that do not depend on the vector τ j−τ i

cancel out due to charge neutrality of the unit cell,∑
i

(Qi − Zi)
!= 0. (75)

Next we evaluate the exchange–correlation po-
tential as supplied by the local density approxima-
tion, which is a spin-dependent local function of the
spin-dependent electronic charge densities [5 – 8, 22,
61]. We thus write

vxc,σ (r) = vxc,σ
[
ρel,σ (r), ρel,−σ (r)

]
=
∑

i

vxc,iσ
[
ρel,σ (ri), ρel,−σ (ri)

]
=
∑

i

vxc,iσ (ri). (76)

The actual parametrization of the exchange–
correlation potential is taken from Hedin and
Lundqvist, von Barth and Hedin as well as Moruzzi,
Janak, and Williams [22, 67 – 69].

Finally, combining Eqs. (70), (74), and (76), we
arrive at the result for the effective single-particle
potential,

vσ (r) = vcc(r)+ vxc,σ (r)
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=
∑

i

[
vcc,i(ri)+ vxc,iσ (ri)+ vMad,i

]
=
∑

i

vσ (ri), (77)

where

vcc,i(ri) = 8π
1
ri

∫ ri

0
dr′i r′i

2ρel(r′i)

+ 8π
∫ Si

ri

dr′i r′iρel(r′i)− 2
Zi

|ri| . (78)

Hence, in the same manner as the charge density, the
potential is made of intraatomic contributions from
all spheres.

Actually, we have closed the self-consistency cy-
cle at this point, since the just derived potential
can be inserted into Schrödinger’s equations (23)
and (30), which allows for the calculation of new
augmented Hankel and Bessel functions. Never-
theless, there is an additional bonus of the ASW
method due to the previous separation of the
Madelung potential, which causes only a constant
shift within each atomic sphere and, hence, leads to
an effective decoupling of all the intraatomic prob-
lems. We are thus able to calculate the intraatomic
potential according to Eq. (77) without taking the
Madelung term into account. After this step, instead
of feeding the potential directly into the follow-
ing band calculation, we may again insert it into
the Schrödinger equation to calculate new radial
functions and a new charge density, and thereby
establish an intraatomic self-consistency cycle. This
allows for a potential that is self-consistently cal-
culated within each atom before all these atomic
potentials are combined for the following step of the
band iteration.

To be specific, following the flow diagram given
in Figure 1, we start from the energies E(α)

liσ and
charges Q(α)

liσ resulting from the momentum analy-
sis of the partial densities of states. The energies are
then transformed to the local energy scale by

Ē(α)
liσ = E(α)

liσ − vMad,i. (79)

After this we solve the radial Schrödinger equation[
− 1

ri

∂2

∂r2
i

ri + l(l+ 1)
r2

i

+ vcc,i(ri)+ vxc,iσ (ri)− Ē(α)
liσ

]
×Rlσ

(
Ē(α)

liσ , ri
) = 0, (80)

where Rlσ (Ē(α)
liσ , ri) is a real and regular function nor-

malized to ∫ Si

0
dri r2

i

∣∣Rlσ
(
Ē(α)

liσ , ri
)∣∣2 = Q(α)

liσ . (81)

FIGURE 1. Flow diagram of the intraatomic
calculations of the standard ASW method. Input and
output variables are highlighted by dashed and solid
boxes, respectively.

Next, from the solution of the radial equation (80),
we take the logarithmic derivatives at the sphere
boundary,

D(α)
liσ = ri

[
Rlσ
(
Ē(α)

liσ , ri
)]−1 ∂

∂ri
Rlσ
(
Ē(α)

liσ , ri
)∣∣

ri = Si
, (82)

and thus arrive at a set of four new quantities per
basis state, namely the logarithmic derivatives D(α)

liσ

and the charges Q(α)
liσ . As experience has shown, the

logarithmic derivatives are superior to the energies
E(α)

liσ since they allow for a more stable acceleration of
the iteration process toward self-consistency. In the
course of this acceleration process, the logarithmic
derivatives and the charges of the actual iteration
as well as previous ones are used to make a good
choice for use in the following iteration. There exist
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several methods to accelerate the iteration processes
in electronic structure calculations, which have been
reviewed recently [26]. In addition to this more nu-
merical advantage of the logarithmic derivatives,
they allow for a better illustration of the afore-
mentioned interplay between intraatomic and band
calculations. This has been used already in the con-
cept of “renormalized atoms,” which corresponds
to atomic calculations subject to boundary condi-
tions that reflect the influence of the surrounding
atoms [21, 53 – 55]. It is this concept, which, accord-
ing to Williams, Kübler, and Gelatt, influenced the
development of the ASW method to a large de-
gree [21].

With the logarithmic derivatives at hand we
may finally enter the intraatomic iteration cycle
as sketched in Figure 1. After self-consistency has
been achieved, the muffin-tin potential is used in a
last step with the radial Schrödinger equations (23)
and (30) to evaluate the Hankel and Bessel energies
E(H)

lκ iσ and E(J)
lκ iσ as well as the Hankel and Bessel inte-

grals S(H)
lκ iσ and S(J)

lκ iσ . The latter quantities then enter
the subsequent band calculation.

The Total Energy

Although it is outside the self-consistency cycle,
the total energy gives important information about
binding properties, bulk moduli, elastic constants
or the stability of different magnetic structures. It
is usually written as a sum over all single-particle
core and valence state energies minus the so-called
double counting terms [7, 22, 61]. Adding the contri-
bution arising from the energy due to the Coulomb
interaction of the nuclei with each other, which is
not covered by density functional theory, we write

ET = E
[
ρel,σ (r), ρel,−σ (r)

]
=
∑
kσ

Eσ (k)2
(
EF − Eσ (k)

)+ ∑
inli

lmσ

Elinli

− 1
N

∫ ∫
d3r d3r′

ρel(r)ρel(r′)
|r− r′|

− 1
N

∑
σ

∫
d3r vxc,σ (r)ρel,σ (r)

+
∑
σ

Exc,σ
[
ρel,σ (r), ρel,−σ (r)

]
+ 1

N

∑
µν

∑
ij

(1− δµνδij)
ZiZj

|Rνj −Rµi| . (83)

Here all integrations extend over the whole crystal.
As for the construction of the exchange–correlation

potential in the preceding section, we use the local
density approximation for the exchange–correlation
energy functional [22]

Exc,σ
[
ρel,σ (r), ρel,−σ (r)

]
= 1

N

∫
d3r εxc,σ

[
ρel,σ (r), ρel,−σ (r)

]
ρel,σ (r). (84)

According to this approximation, the function εxc,σ
is a local function of the spin-dependent charge den-
sities. In complete analogy to Eq. (76), we thus note

εxc,σ (r) = εxc,σ
[
ρel,σ (r), ρel,−σ (r)

]
=
∑

i

εxc,iσ
[
ρel,σ (ri), ρel,−σ (ri)

]
=
∑

i

εxc,iσ (ri). (85)

Again we use the explicit parametrization given by
Hedin and Lundqvist, von Barth and Hedin as well
as Moruzzi, Janak, and Williams [22, 67 – 69].

As for the effective single-particle potential, we
will derive in the following a formulation of the to-
tal energy that allows for a simple evaluation and
interpretation of the results in terms of atomic con-
tributions and a Madelung energy,

ET =
∑

i

ET,i + EMad. (86)

The band energy contribution to the total energy,
which is the first term on the right-hand side of
Eq. (83), may be simplified with the help of defin-
ition (61) of the partial densities of states as well as
the alternative representation (63) arising from the
momentum analysis. We thus note∑

kσ

Eσ (k)2
(
EF − Eσ (k)

)
=
∑
σ

∫ EF

−∞
dE

∑
k

Eσ (k)δ
(
E− Eσ (k)

)
=
∑
liσ

∫ EF

−∞
dE Eρliσ (E)

=
∑
liσ

2∑
α = 1

E(α)
liσQ(α)

liσ . (87)

With the help of Eq. (79) we can still split off the local
Madelung potential. Defining an analogous energy
shift for the core states by

Ēlinli
:= Elinli

− vMad,i, (88)

we get∑
kσ

Eσ (k)2
(
EF − Eσ (k)

)+ ∑
inli

lmσ

Elinli
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=
∑
liσ

[
2∑

α = 1

Ē(α)
liσQ(α)

liσ + (2l+ 1)
∑
nli

Ēlinli

]

+
∑

i

vMad,i

[∑
lσ

2∑
α = 1

Q(α)
liσ + 2

∑
nli

l

(2l+ 1)

]
,

(89)

where the last term in square brackets on the right-
hand side is the total electronic charge inside the
atomic sphere at site τ i, which was defined as Qi in
Eq. (71). From Eqs. (65) and (66), we have, in addi-
tion, ∑

lσ

2∑
α = 1

Q(α)
liσ = 4π

∑
σ

∫ Si

0
ρval,iσ (ri) (90)

and

2
∑
nil

(2l+ 1) = 4π
∑
σ

∫ Si

0
ρcore,i(ri). (91)

Combining now Eqs. (89)–(91) we arrive at the fol-
lowing expression for the sum of the single-particle
energies:∑

kσ

Eσ (k)2
(
EF − Eσ (k)

)+ ∑
inilmσ

Elini

=
∑
liσ

[
2∑

α = 1

Ē(α)
liσQ(α)

liσ + (2l+ 1)
∑

ni

Ēlini

]
+
∑

i

vMad,iQi. (92)

Next we turn to the third term on the right-hand
side of Eq. (83), which is the so-called double count-
ing term. As a consequence of our previous option
for the ASA and the neglect of the interstitial region
of the crystal, the integrals appearing in the dou-
ble counting term can be decomposed into a sum of
integrals over the atomic spheres. In the same man-
ner as for the construction of the Hartree potential,
the latter integrals may be replaced by point charges
located at the sphere centers whenever the twofold
integral runs over different spheres. We thus note

1
N

∫ ∫
d3r d3r′

ρel(r)ρel(r′)
|r− r′|

= 1
N

∑
µν

∑
ij

∫
�i

∫
�j

d3rµi d3r′νj

ρel,i(ri)ρel,j(r′j)

|rµi − r′νj|

=
∑

i

∫
�i

∫
�i

d3ri d3r′i
ρel,i(ri)ρel,i(r′i)
|ri − r′i|

+ 1
N

∑
µν

∑
ij

(1− δµνδij)
QiQj

|Rµi −Rνj| . (93)

Again we point out that strictly speaking this treat-
ment is erroneous since the atomic spheres do over-
lap.

Still we have to check the fourth and fifth terms
on the right-hand side of Eq. (83), which correspond
to the exchange–correlation energy. Since in the lo-
cal density approximation the integrals appearing
in these terms likewise decompose into a sum of in-
tegrals over atomic spheres, we get

Exc,σ
[
ρel,σ (r), ρel,−σ (r)

]− 1
N

∫
d3r vxc,σ (r)ρel,σ (r)

=
∑

i

∫
�i

d3ri
[
εxc,iσ (ri)− vxc,iσ (ri)

]
ρel,iσ (ri). (94)

Comparing now Eqs. (92)–(94) to the original ex-
pression (83) as well as the definition (72) of the
Madelung potential, we have arrived at a formu-
lation of the total energy that consists of a single
sum over atoms and a double sum running over
all atoms of the crystal. The latter, however, will
be shown to arise exclusively from the electrosta-
tic interaction of point charges located at the atomic
sites and can be identified with the Madelung en-
ergy as contained in Eq. (86). Hence we complement
Eq. (86) with the results

ET,i =
∑

lσ

[
2∑

α = 1

Ē(α)
liσ Q(α)

liσ + (2l+ 1)
∑

ni

Ēlini

]

−
∫
�i

∫
�i

d3ri d3r′i
ρel,i(ri)ρel,i(r′i)
|ri − r′i|

+
∑
σ

∫
�i

d3ri
[
εxc,iσ (ri)− vxc,iσ (ri)

]
ρel,iσ (ri) (95)

and

EMad = 1
2

∑
i

vMad,iQi + 1
2

∑
j

vMad,jQj

−
∑
µ

∑
ij

(1− δµ0δij)
QiQj

|τ j − τ i −Rµ|

+
∑
µ

∑
ij

(1− δµ0δij)
ZiZj

|τ j − τ i −Rµ| . (96)

In the last step we have used the translational
invariance of the lattice. Finally, using the defini-
tion (72) of the Madelung potential, we get the result
for the Madelung energy,

EMad =
∑
µ

∑
ij

(1− δµ0δij)
(Qi − Zi)(Qj − Zj)
|τ j − τ i −Rµ|

= 1
2

∑
i

vMad,i(Qi − Zi), (97)
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which concludes our description of the standard
ASW method.

The Electronic Structure of FeS2

As an illustration of the capabilities offered by
the augmented spherical wave method, we present
some results of our recent work on iron pyrite
[70, 71]. In general, the pyrite-type transition metal
disulfides MS2, with M = Fe, Co, Ni, Cu, Zn,
Ru, have long attracted scientific and technologi-
cal interest because of a broad range of electronic,
magnetic, and optical properties (see, e.g., [72 – 78]).
Among these compounds are semiconductors like
the van Vleck paramagnet FeS2 and the wide-band
gap diamagnet ZnS2. In contrast, CoS2 is a ferro-
magnetic metal (TC ≈ 130 K) whereas CuS2 be-
comes superconducting [73, 79 – 81]. Much interest
has also been focused on the antiferromagnetic in-
sulator NiS2, which undergoes two magnetic phase
transitions at TN1 ≈ 54 K and TN2 ≈ 31 K [73,
80 – 83], and has been interpreted in terms of the
Mott–Hubbard-type picture for highly correlated
electron systems [77, 81]. In general, the changing
influence of electron correlations across the series,
which is related to the successive filling of the eg

manifold of the crystal field split d bands, remains
a central issue. A systematic study is favored by the
fact that the sulfides from FeS2 to CuS2 and the se-
lenides of Co and Ni form solid solutions [81, 84].
As a consequence, the occupation of the eg band can
be continuously varied, thus allowing for the con-
struction of comprehensive phase diagrams [81].

Much interest has focused on iron pyrite FeS2 for
its promising capabilities as a material for photo-
voltaic applications [85]. This is, of course, related
to its high quantum efficiency (>90%) and high ab-
sorption coefficient (≥105 cm−1 for hν > 1.3 eV),
but also benefits from the nontoxity of the con-
stituents [86, 87]. Yet, the rather small value of the
optical band gap of 0.9–0.95 eV prohibits optimal
use of the solar spectrum. For this reason, many
studies have been aimed at increasing the band gap,
e.g., by alloying with other materials.

Our investigation of FeS2 was motivated by the
recent observation of a considerable increase of the
optical band gap (by about 0.07 eV) when only a
very small amount (< 5 × 1020 cm−3) of Zn was
implanted into FeS2 [71]. The absence of any indi-
cations of additional phases and the fact that Zn
and Fe are frequently associated in minerals led us
to conclude that the Zn atoms homogeneously sub-

stitute for Fe atoms. The aforementioned concentra-
tion then corresponds to a Zn content of ≈2% and
an average Zn–Zn distance of about 15 Å. In view
of this small concentration, as well as the fact that
ZnS2 is a wide-gap semiconductor with 3d states
located well below the valence band maximum,
an explanation of this gap widening exclusively
in terms of the electronic states seemed unlikely.
Since Zn has a larger atomic radius as compared
to iron, we proposed instead a mechanism based
on crystal structure distortions caused by the in-
corporation of Zn impurities into iron pyrite and
a considerable electron–lattice interaction [70]. The
latter would transform the structural deviations into
the observed changes of the electronic structure.
To get more support for these ideas as well as to
get, in general, deeper insight into the electronic
structure of FeS2, we initiated a comprehensive first-
principles study.

CRYSTAL STRUCTURE

At room temperature, FeS2 crystallizes in the
pyrite structure, which is based on a simple cubic
lattice with space group Pa3̄ (T6

h) [87 – 89] and lat-
tice constant a = 5.4160 [89]. The crystal structure
is displayed in Figure 2. The positions of the atoms
and the crystal structure parameter are listed in Ta-
ble I, where the Wyckoff positions (4a) and (8c) are
special cases of the general position (24d): ±(x, y, z),
±( 1

2−x,−y, 1
2+z),±(−x, 1

2+y, 1
2−z),±( 1

2+x, 1
2−y,−z)

(and cyclic permutations of x, y, and z).
The pyrite crystal structure is best described in

terms of the NaCl structure with the sublattices

FIGURE 2. Crystal structure of FeS2. Iron and sulfur
atoms are printed in black and light gray, respectively.
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TABLE I
Crystal structure parameters of pyrite FeS2 (from
Ref. [89]).

Atom Wyckoff positions Parameter x

Fe (4a)
S (8c) 0.38484

occupied by iron atoms and the centers of grav-
ity of sulfur atom pairs, respectively. These sulfur
dumbbells are oriented along the 〈111〉 axes. Their
bond length of 2.161 Å is still shorter than the Fe–
S distance of 2.265 Å. While the sulfur atoms are
tetrahedrally coordinated by one sulfur and three
iron atoms, the six nearest neighbor sulfur atoms
at each iron site form slightly distorted octahedra.
Due to the deformations of the octahedra, the local
symmetry at these sites is reduced from cubic (Oh)
to trigonal (C3i). The distorted FeS6 octahedra are
interlinked by common corners and, due to the
formation of the 〈111〉 sulfur pairs, have rotated
away from the Cartesian axes by about 23◦. For a
two-dimensional crystal, the situation is sketched in
Figure 3. Obviously, the formation of the 〈111〉 sulfur
pairs does not destroy the square planar coordina-
tion of the iron atoms. Instead, the squares built by
the sulfur atoms just shrink and rotate. Since the
orientation of the dumbbells conforms with the cu-
bic point group, the underlying Bravais lattice is no
longer face-centered, but simple cubic, and the unit

FIGURE 3. Two-dimensional analogue of the pyrite
structure. Large and small filled circles designate iron
and sulfur atoms, respectively. Small open circles mark
the ideal positions of the rock salt structure.

FIGURE 4. First Brillouin zone of the simple cubic
lattice.

cell comprises four formula units. Yet, as we will see
below, some features of the electronic structure may
still be understood in terms of the face-centered cu-
bic (fcc) lattice.

According to Bradley and Cracknell the space
group Pa3̄ (T6

h) is exceptional among the 230 space
groups because it is the only one that is neither an
invariant subgroup of a larger space group based
on the simple cubic Bravais lattice nor a member
of a pair of isomorphic space groups [90]. For this
reason, the irreducible wedge of the first Brillouin
zone as given in Figure 4 is twice as big as that of
the more familiar monoatomic case and we have to
distinguish the high symmetry points X = (0, 1

2 , 0)
and X′ = ( 1

2 , 0, 0).

COMPUTATIONAL ASPECTS

As already discussed, the open structure of FeS2
calls for inclusion of empty spheres to model the full
crystal potential and to minimize the overlap of the
atomic spheres. We used the aforementioned sphere
geometry optimization algorithm [27] to find opti-
mal empty sphere positions as well as radii of all
spheres. As a result, by inserting 32 empty spheres
into the simple cubic unit cell of FeS2, we were
able to keep the linear overlap of any two physi-
cal spheres below 10% and the overlap of any pair
of physical and empty spheres below 18%. The po-
sitions of the empty spheres are listed in Table II.
In addition to the empty sphere positions, the al-
gorithm proposed the following sphere radii: Fe,
2.243aB; S, 2.223aB; E1, 1.630aB; E2, 1.543aB.

The basis set used for the present calculations
comprises Fe 4s, 4p, and 3d orbitals, S 3s, 3p,
and 3d orbitals, and 1s, 2p orbitals of the empty
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TABLE II
Empty sphere positions for pyrite FeS2.

Parameters

Atom Wyckoff positions x y z

E1 (8c) 0.1935
E2 (24d) 0.4446 0.1373 0.1980

spheres. In addition, 4f states of Fe and S as well as
empty sphere 3d states were included as interme-
diate waves, hence, as tails of the aforementioned
orbitals. Finally, the Brillouin zone sampling was
done using an increasing number of k points, which
range from 11, 24, 76 to 176 points within the irre-
ducible wedge.

CALCULATIONS USING THE EXPERIMENTAL
CRYSTAL STRUCTURE

To first approximation, the electronic structure
of FeS2 may be discussed in terms of a molecular
orbital picture, where the formation of (S2)2− pairs
leads to five occupied sulfur states per pair. In con-
trast, the remaining antibonding pσ ∗ band will be
located above the insulating gap. Accordingly, iron
turns out to be in a 3d6 configuration and has a
low spin (t2g)6(eg)0 state in octahedral coordination.
Since the distortion of the FeS6 octahedral lowers
the symmetry of the crystal field at the iron site
from cubic (Oh) to trigonal (C3i), the t2g levels are
further split into a low lying twofold degenerate eπg
level and a higher a1g singlet [91, 92]; for clarity the
original eg level is then designated as the eσg state.
Nevertheless, since the deviations from octahedral
symmetry are rather small, we still expect that the
crystal field splitting is dominated by its cubic part.

We show in Figure 5 the calculated band struc-
ture of FeS2 along selected high symmetry lines
within the first Brillouin zone of the simple cubic
lattice, Figure 4. The corresponding dominant par-
tial densities of states. (DOS) per formula unit are
given in Figure 6. All other states of Fe and S that
are not included in Figure 6 play only a negligible
role in the given energy interval. To account for the
aforementioned nearly cubic crystal field splitting,
we have furthermore split the Fe 3d partial DOS into
the t2g and eg manifolds. Note, however, that, due to
the tilting of the FeS6 octahedra by 23◦, we had to
rotate the frame of reference before performing the
projection onto the partial 3d states.

FIGURE 5. Electronic bands of FeS2 along selected
symmetry lines within the first Brillouin zone of the
simple cubic lattice, Figure 4. Here and in the following
figures, energies are given relative to the valence band
maximum EV .

In Figures 5 and 6 we identify three groups of
bands. In the energy range from −7.3 to −1.5 eV
we find a group of 20 bands that derive from hy-
bridized Fe 3d and S 3p orbitals with larger con-
tributions from the latter. Bands are most easily
counted along the line M–R, where they are four-
fold degenerate. Just below the valence band maxi-
mum a group of 12 bands appears, which originates
mainly from iron 3d t2g states with a small admix-
ture from sulfur 3p states. In the following discus-
sion we will designate these two groups of bands
as the lower and upper valence bands, respectively.
The conduction band likewise comprises 12 bands.

FIGURE 6. Partial densities of states (DOS) of FeS2
per formula unit. The selection of orbitals is relative to a
rotated reference frame (see text).
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FIGURE 7. Partial S 3p densities of states (DOS) of
FeS2. The selection of orbitals is relative to a rotated
reference frame (see text).

They are of Fe 3d eg and S 3p character with the rela-
tive contributions gradually changing as the energy
increases. In particular, the S 3p states show up in
the pronounced double peak at ≈3.5 eV. While the
t2g bands appear mainly in the upper valence band
without any substantial bonding–antibonding split-
ting, the eg levels, which, forming σ bonds, have a
much larger overlap with the S 3p orbitals, experi-
ence a considerable splitting into bonding and an-
tibonding states with the main peaks at ≈ −3.5 and
2 eV, respectively. The indirect optical band gap sep-
arating occupied and unoccupied states amounts to
≈0.95 eV, which is in very good agreement with
the experimental values ranging from 0.9 to 0.95 eV
as deduced from optical and conductivity measure-
ments [85]. From the band structure as well as from
a scan through the first Brillouin zone on a mesh of
30× 30× 30 points we are able to locate the valence

band maximum at the point (0.0, 0.0, 0.4136), hence,
in the vicinity of the X point. In contrast, the con-
duction band minimum is found at the 0 point.

The partial densities of states arising from the sin-
gle 3p components of those two sulfur atoms, which
are near the center of the cubic unit cell, are shown
in Figure 7, where we have now rotated the frame of
reference such that the local z axis lies parallel to the
〈111〉 line connecting both sulfur atoms. The 3pz par-
tial DOS show distinct deviations from the 3px and
3py curves and, in particular, dominate the unoccu-
pied, hence, antibonding S 3p states. This becomes
obvious from the characteristic double peak of the
3pz DOS at about 3.5 eV. The bonding counterpart is
found at −6.75 eV, whereas the 3px and 3py curves
dominate in the energy range between ≈−4 and
≈−1.5 eV. Hence, among the three sulfur 3p bands,
the pz, states show the largest bonding–antibonding
splitting. This is not suprising since the 3pz states
form σ bonds between the two sulfur atoms of a
pair, whereas the 3px and 3py orbitals experience
a much smaller overlap via S—S π bonds. How-
ever, the lowest edge of the conduction band is still
exclusively due to the 3pz orbitals without any con-
tributions from the other two 3p or the Fe 3d eg

orbitals. This fact becomes even more obvious from
Figure 8, where we display the near-gap electronic
bands in a special representation. In both parts of
this figure, each band at each k point is given a bar,
the length of which is a measure of the contribution
from a specified orbital. In particular, we observe a
dominating influence of the Fe 3d states to the up-
per valence band, while these bands have no bars
indicative of S 3p states. For the conduction bands
we observe strong Fe 3d contributions in the energy
window from ≈1.5 to 3.0 eV, whereas for energies
above this range and especially at the lowest edge of

FIGURE 8. Weighted electronic bands of FeS2. The width of the bars given for each band indicates the contribution
due to the (a) Fe 3d and (b) S 3p orbitals, respectively.
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the conduction bands, S 3p dominate. The change of
band character from Fe 3d to S 3p can be clearly ob-
served in the lowest conduction band along the line
R–0. At 0 this band is exclusively due to S 3p states,
but due to hybridization with the Fe 3d states, it
changes character on the way to the R point. In
the middle between both points the band at 2.5 eV
takes over the S 3p character and keeps it until the
R point is reached at about 3.7 eV. From a different
point of view we interpret the band starting at 0 at
≈1.0 eV and dispersing almost linearly to 3.7 eV at
the R point as the S 3p band, which hybridizes with
the dispersionless eg bands in the energy region be-
tween 1.5 and 2.5 eV, half way between 0 and R. The
situation is not unlike that in elementary Cu, where
the lowest s-like band hybridizes with the 3d states
just below the Fermi energy but again assumes the
original 4s character above EF [24]. Finally, we arrive
at the rather surprising conclusion that the optical
band gap separates Fe 3d t2g and S 3pz orbitals and,
hence, although it is strongly influenced by the crys-
tal field splitting, cannot be described exclusively
in terms of it. In contrast, the different orbital com-
positions of the valence band maximum and the
conduction band minimum provide a natural expla-
nation for the high optical absorption.

ROLE OF CRYSTALLINE DISTORTIONS

We have still not yet paid much attention to the
factors that might influence the optical band gap. In-
deed, it would be desirable to identify mechanisms
that change the size or the indirect nature of the gap
or modify the composition of the near-gap states.
More insight into such mechanisms would finally
allow us to address the question of why incorpo-
ration of small amounts of Zn into FeS2 leads to
the experimentally observed widening of the optical
band gap [71].

Since it is unlikely that the changes of the elec-
tronic structure of FeS2 when Zn is substituted for Fe
can be explained solely from the differences in the
electronic configurations we studied, in particular,
the sensitivity of the electronic structure to symme-
try conserving deviations from the measured crystal
structure. Obviously, such an investigation not only
serves as a necessary prerequisite for a solution of
the aforementioned problem, but is an interesting
topic in itself.

In a first step, we simulated the application of ex-
ternal pressure by performing a fully self-consistent
calculation with the lattice constant reduced by 5%.
As a result, there are two main effects: (i) Hydrosta-

tic pressure leads to a broadening of all bands with-
out noticeable reorderings of the electronic states.
At the same time, there is a corresponding reduc-
tion of the total and partial DOS. (ii) The main
peaks of the lower valence and the conduction band
experience rather large shifts to lower and higher
energies, respectively. For the lowest and highest
peaks, the shifts are even as large as about 1 eV.
In particular, the pronounced S 3pz dominated dou-
ble peaks at about −6.75 and 3.5 eV move to ≈−7.5
and ≈4.4 eV, respectively. These findings can be un-
derstood from the fact that application of isotropic
pressure increases both the crystal field and the
bonding–antibonding splitting of the bands and
thus leads to an overall spreading of the band struc-
ture. Nevertheless, since the resulting band shifts
add to the aforementioned band broadenings, the
size of the optical band gap remains essentially un-
changed.

The situation is different when the internal sulfur
x parameter is varied. We performed fully self-
consistent calculations using the (hypothetical) val-
ues x− = 0.38084 and x+ = 0.38884, respectively. As
a result, we observed a large shift of the optical band
gap of about 0.67 eV on going from x− to x+, hence,
moving the sulfur atoms by less than 1% of the lat-
tice constant. This change of the band gap is due to a
large shift of the conduction band minimum (CBM)
relative to the centers of gravity of both the valence
and conduction band, which stay essentially inert.
There is, however, a noticeable shift of the sulfur
3pz dominated double peak at about 3.5 eV, which
moves by approximately 0.5 eV. As a consequence,
the total width of the conduction band is reduced.

Variation of the x parameter thus almost entirely
affects the S 3p, especially the 3pz states. Their re-
sponse to the changes of the crystal structure is
twofold: (i) An increase of the sulfur x parame-
ter leads to a closer coupling of the sulfur pairs
and, hence, to a larger bonding–antibonding split-
ting. This is revealed by the shifts of the 3pz dou-
ble peaks. (ii) The increase of the x parameter,
while shortening the sulfur–sulfur bonds, reduces
the hopping across the lattice. For this reason the
dispersion of both the S 3pz bonding and antibond-
ing bands decreases, which causes the upshift of the
CBM. The sulfur sublattice should thus be discussed
in terms of a molecular S2 crystal.

Finally, we are able to sketch a scenario for the
substitution of Zn atoms for Fe: Due to the larger
atomic radius of Zn as compared to Fe, each Zn
impurity will push apart its six nearest neighbor
sulfur atoms. Since, as known from Raman exper-
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iments [93], the S—S bond is rather soft, this causes
a compression of the S2 molecules and thus the just
outlined strong upshift of the antibonding S 3pz,
bands. In addition, since the sulfur states at the
lower edge of the conduction band arise from dis-
persion across the simple cubic lattice, they are
strongly affected by only small disturbances of the
crystal structure. Hence, we expect a strong shift of
the conduction band minimum already for a small
amount of Zn impurities, which is indeed observed
in experiment.

Conclusion

The central issue of the present contribution
was a description of modern schemes for electronic
structure calculations with the augmented spherical
wave (ASW) method. To lay ground for a thor-
ough understanding of the formalism, we started
out with a short review of the basics of modern
band theory as well as the most important meth-
ods for electronic structure calculations currently in
use. In doing so, we emphasized the fundamental
ideas common to most methods and reduced the
differences between them to different idealizations
of the single-particle potential used for the construc-
tion of basis functions (pseudopotential, muffin-tin
approximation) as well as to the size of the basis
set needed for an accurate prescription of the wave
function.

The description of the ASW method itself ranged
from the explicit construction of the basis functions
to the calculation of the density of states, the charge
density, the effective potential, and the total energy,
all of which contribute to the comprehensive un-
derstanding of material properties. This included a
discussion of the influence of approximations un-
derlying the method, for instance, the muffin-tin or
the atomic sphere approximation. The theoretical
derivations were complemented by discussions of
the practical aspects of the method with respect to
both implementation and application.

Finally, the theoretical part was followed by a dis-
cussion of our recent results on FeS2, which served
the purpose of illustrating the predictive power of
modern band theory. In particular, from a detailed
analysis of the electronic states by means of partial
densities of states and orbital weighted band struc-
tures, we were able to identify the relevant orbitals.
Their sensitivity to changes of the crystal structure
was revealed by additional calculations with hypo-
thetically distorted structures. Eventually, we were

able to propose an explanation for the recently ob-
served widening of the optical band gap on the
incorporation of only small amounts of Zn.
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