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OF THE WILLMORE CONJECTURE

J.-H. ESCHENBURG

1. Conformal geometry and the Willmore energy

Let Σ ⊂ R
3 be a closed surface.1 Let k1, k2 be the principal curvatures and

K = k1k2, H = 1
2 (k1 + k2) Gauss and mean curvature. We will consider the

expression H2 −K = 1
4 (k1 − k2)

2. Its integral is called Willmore energy,

Wo(Σ) =

∫

Σ

(H2 −K)da =
1

4

∫

Σ

(k1 − k2)
2da. (1)

Since
∫

Σ
K da = 2πχ(Σ) by Gauss-Bonnet, W (Σ) is essentially the L2-Norm of

the mean curvature function. One of its remarkable properties is its invariance
under conformal deformations of the ambient space.2 This can be seen without
computation as follows. The conformal diffeomorphisms of (open subsets of) R

3

are Moebius maps, preserving the set of spheres and planes in R
3. These are

generated by isometries, homotheties and a sphere inversion.3 If Σ ⊂ R
3 is a

surface with normal vector N , we consider at any p ∈ Σ the one-parameter family
of spheres St through p centered on the line t 7→ p+tN , including the plane through
p perpendicular to N (“t = ∞”). When |t| is small enough, St lies near p on one
side of Σ for t > 0, on the other for t < 0. There are two positions t1, t2 ∈ R ∪∞
where this ceases to be true; the corresponding reciprocal values ki = 1/ti are the
principal curvatures, and the corresponding spheres are called principal curvature
spheres. By this description it is apparent that a conformal diffeomorphism g sends
principal curvature spheres of Σ onto principal curvature sphere of gΣ. Now the
conformal invariance of W follows from the following Lemma.

Lemma 1.1. Let S1, S2 ⊂ R
n, n ≥ 3, be spheres touching each other at some

point p, that is they have a common normal vector at p. Let g be a Moebius
diffeomorphism on (an open subset of) R

n. Then

λ|k′1 − k′2| = |k1 − k2| (2)

where ki and k′i are the principal curvatures of Si and gSi and λ is the metric
dilatation factor for g at p.

Proof. The theorem is apparently true for isometries and for homotheties. It is also
true for the inversion fixing p and interchanging S1 and S2; the dilatation factor at
the fixed point p is one. Thus it is true for all Moebius diffeomorphisms. �

Date: December 3, 2013.
1See [2] for this section.
2Wo is invariant even under conformal changes of the ambient metric.
3All sphere inversions are conjugate by homotheties (changing the sphere radius) and transla-

tions (moving the center).
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2 J.-H. ESCHENBURG

Using the stereographic projection φ : R3 → S
3, the conformal geometry on R

3 is
transplanted to the 3-sphere S

3. This is a conformal map which maps spheres and
planes onto spheres in S

3 and conjugates conformal maps on R
3 and S

3. We may
think of both φ and φ−1 as restrictions (to R

3, S3 ⊂ R
4) of the sphere inversion

at the hypersphere Ŝ ⊂ R
4 passing through S

2 = R
3 ∩ S

3 and centered at e4 =
(0, 0, 0, 1), the only point in S

3 which is not in the image of φ (left figure).

R

e

3

4

S3

S

S C3

S’

The principal curvature spheres for the image surface φΣ ⊂ S
3 are defined like

in R
3, and therefore φ maps the principal curvature spheres Si of Σ ⊂ R

3 onto
those of φΣ ⊂ S

3. The corresponding spherical principal curvatures k′i of Σ′ =
φΣ can be seen replacing S

3 by its tangent cone C along S′
i (which is flat in 2

dimensions); they are the euclidean principal curvatures of the “orthospheres” Ŝ′
i ⊂

R
4 through S′

i perpendicular to S
3 and hence centered at the vertex of C (right

figure). Applying Lemma 1.1 to n = 4 and the orthospheres Ŝi (perpendicular to

R
3) and Ŝ′

i (perpendicular to S
3) which are mapped upon each other by φ we see

that Wo(Σ) = W (Σ′) where

W (Σ′) =

∫

Σ′

1

4
(k′1 − k′2)

2da =

∫

Σ′

((H ′)2 −K ′ + 1)da (3)

where we have used the Gauss equation 1 = K ′ − k′1k
′
2 for a surface Σ′ ⊂ S

3.
From now on we will work in the sphere S

3 rather than in R
3. Changing our

notation, the surface Σ lies already in S
3, and the H and K denote the spherical

mean curvature and the Gauss curvature of the induced metric, respectively. Since
∫

Σ
K da = 2πχ(Σ) by Gauss-Bonnet, we omitK and define for Σ ⊂ S

3 the Willmore
energy

W (Σ) =

∫

Σ

(1 +H2)da. (4)

Clearly, W ≥ A where A(Σ) denotes the area of Σ. For surfaces of genus zero,
the Willmore energy is minimized by the great spheres (H = 0) which have W =
A = 4π. The Willmore conjecture says that among surfaces of positive genus, the
functional W takes its minimum precisely for the Clifford torus Σ = T where

T = S
1
1/

√
2
× S

1
1/

√
2
⊂ S

3 ⊂ R
2 × R

2 .

Its image under stereographic projection S
3 → R

3 is the torus of revolution whose
profile circle has two tangents meeting each other perpendicularly at the origin.4

4The right figure below shows the great 2-sphere S2 = S3 ∩ R3

134
orthogonally projected onto

R2

13
. The intersection with the Clifford torus T ∩ S2 = S0

1/
√

2
× S1

1/
√
2
are two small circles in

S2 which are projected to the two vertical line segments. The dashed line segments denote two



WILLMORE CONJECTURE 3

To prove this conjecture we can restrict our considerations to embedded surfaces
since Li and Yau [3] have shown that immersed surfaces have Willmore energy ≥ 8π
which is bigger than 2π2 = A(T) = W (T).

2. The conformal group on S
3

We consider the 3-sphere S
3 as a subset of R4 ⊂ RP

4. More precisely, putting
x̂ = (x, t) ∈ R

4 × R = R
5, we have

S
3 = {[x̂] : x̂ ∈ R

5, x̂ 6= 0, 〈x̂, x̂〉− = 0}

where 〈x̂, x̂〉− = |x|2 − t2 is the Lorentzian metric on R
5. This is the projectivized

light cone L = {x̂ ∈ R
5 : 〈x̂, x̂〉− = 0}. Morover, the 4-ball B4 consists of the

timelike homogeneous vectors,

B
4 = {[x̂] : 〈x̂, x̂〉− < 0}.

The Lorentzian group G = SO4,1
∼= O4,1/{±I} (where O4,1 is the group of linear

transformations on R
5 preserving the Lorentzian inner product 〈 , 〉−) acts effec-

tively on RP
4 = R

5
∗/R

∗ and preserves S
3 and B

4. On B
4 it acts as the isometry

group with respect to the hyperbolic metric5 and on S
3 = ∂B4 as the conformal

group (Moebius group).6

perpendicular great circles through e4 = (0, 0, 0, 1) (the black point in the center) tangent to
T ∩ S2. The stereographic projection φ : S3 \ {e4} → R3 from e4 commutes with the rotations in
the 12-plane and maps S2 onto the 13-plane in the left figure. Since T is invariant under rotations

in the 12-plane, its image under φ is a torus of revolution. The dashed great circles through e4
are mapped onto lines through φ(−e4) = 0 in the 13-plane; these are the dashed lines in the left
figure.

5We may identify B4 with the upper sheet of the 2-sheeted hyperboloid H = {x̂ : x2−t2 = −1}
by choosing for each homogeneous vector [x̂] ∈ B4 the representative x̂ with 〈x̂, x̂〉− = −1 and

t > 0. The hyperbolic metric on H ⊂ R5 is induced by the Lorentzian inner product on R5. It is
clearly invariant under G. This is the Klein model of hyperbolic geometry where geodesics become
straight line segments in B.

x

tH
L

B

6The Lorentian inner product induces on the projectivized light cone S3 = [L] not a metric but
only a conformal class of metrics. Each intersection of L with a spacelike hyperplane is a system
of representatives for S3 which inherits a positive definite metric h from the ambient Lorentzian

inner product. However, this metric depends on the height of the intersection for each generating
line of L, but it does not depend on the slope of the intersecting hyperplane since adding a vector
parallel to the generating line (being the kernel of the metric) does not change the inner product.

Thus the metric h itself may be not invariant under G, but its conformal class is.
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3. Willmore energy and area

Let Σ ⊂ S
3 be a compact surface, da its surface element. Recall the Willmore

energy and the area of Σ:

W (Σ) =

∫

Σ

(1 +H2)da, A(Σ) =

∫

Σ

da.

Let Σt be the parallel surface of (signed) distance t from Σ.

Proposition 3.1. [6]
W (Σ) ≥ A(Σt) (5)

Proof. Let x : Σ → S
3 be the embedding (or immersion) and N its normal vector

field on S
3. Then xt = cx + sN mit c = cos t and s = sin t is the parallel surface.

If we fix p ∈ Σ and let vi ∈ TpΣ (i = 1, 2) be the eigenbasis of the Weingarten map

∇N = (∂N)TS
3

with eigenvalues (principal curvatures) −ki, then ∂xt has eigenval-
ues c − ski with parallel eigenvectors vi(t) along the great circle t 7→ xt(p). Thus
A(Σt) =

∫

Σ
a(t)da where a(t) is the Jacobian of xt, the product of the eigenvalues

of ∂xt, and we have

a(t) = (c− sk1)(c− sk2)
= c2 − 2csH + s2k1k2
≤ c2 − 2csH + s2H2

= (c− sH)2

= 〈( c
s ) ,

(

1
−H

)

〉2

≤ |( c
s )|

2 ∣
∣

(

1
−H

)∣

∣

2

= 1 +H2

where H = 1
2 (k1 + k2) is the mean curvature. �

Remark. Σt is smooth only for small |t|, up to the first focal point of Σ, but at a
focal point and beyond, Σt = ∂Bt(Σ) looses even more area.

4. The canonical family

One decisive idea of the proof is a mountain pass argument. If we want to
cross a mountain chain, we are looking for the lowest pass across the mountains.
This means, among all possible paths across the mountains we are looking for the
one whose maximal height is as small as possible. In mathematic terms, we are
using a homotopy of paths and minimize the maximal height among all paths in
the homotopy in order to detect a critical point with index one in our landscape
(“minimax method”).

We apply this idea to our situation as follows: Our “landscape” is the set of
closed surfaces in S

3 and the “height” is the area of such a surface. The minimax
method is appropriate since minimal surfaces in S

3 are never minima of the area
functional: they have always positive index which means that they can be made
smaller by deformation in certain directions. In fact, according to a theorem of
Urbano [7], the index of a closed minimal surface Σ of positive genus in S

3 is at
least 5 with equality if and only if Σ is the Clifford torus T. At a mountains pass
there is just one direction downwards, but here we have 5 such directions. Therefore
our “path” must be 5-dimensional rather than 1-dimensional. Now we will describe
such a 5-parameter family of surfaces, called canonical family which we assign to
each surface Σ ⊂ S

3.
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Let G be the group of conformal transformations on S
3 and K the subgroup

of isometries of S3; the quotient G/K is the hyperbolic 4-ball B4. Since we are
not interested in isometric motions, we work modulo K and obtain a 4-parameter
family gΣ, g ∈ B

4 ⊂ G (Cartan embedding, see section 7). All gΣ have the same
Willmore energy (which is constant under conformal changes of the ambient space).
Additionally we have the family of parallel hypersurfaces Σt, t ∈ I = (−π, π) where
we know that W (Σ) ≥ A(Σt) (Prop. 3.1). Thus

W (Σ) ≥ A(Σ′) (6)

for all Σ′ in the canonical family. We will reparametrize this family in a subtle way
(see section 8) such that it can be extended to the boundary of B4 × I. Hence we
obtain a map

Φ : I5 → {surfaces in S
3}

(canonical family of Σ) which assigns to each x ∈ B̄
4 × Ī a surface Φ(x), and with

Prop. 3.1 we obtain

W (Σ) ≥ A(Φ(x)) (7)

for all x ∈ I5. We call two such maps Φo,Φ1 homotopic if there is a homotopy
between them fixing the boundary ∂I5. Each homotopy class Π has a width L(Π)
which is

L(Π) = inf
Φ∈Π

sup
x∈I5

A(Φ(x)) (8)

We will show that L(Π) > 4π when Σ has positive genus (“positive genus theorem”,
section 10). Further we have to assume from Geometric Measure Theory [1, 5] that
the inf-sup in (8) is attained (“Min-max Theorem”): There exists a minimal surface
ΣΠ with

A(ΣΠ) = L(Π). (9)

However it is important for the proof that the min-max theory of Almgren and
Pitts is more general: The previous knowledge of the index of the critical point is
not needed. Hence we may replace 5 by any n. All what is needed in order to find
a minimal surface ΣΠ with (9) is that the area is strictly smaller at the boundary
of In,

L(Π) > sup
x∈∂In

A(Φ(x)) (10)

for some Φ ∈ Π.

5. The Clifford torus has least area

Let Σ be the closed minimal surface in S
3 with least area among all minimal

surfaces with positive genus (exists by Geometric Measure Theory). We will use
a theorem of Urbano [7] stating that a closed minimal surface of positive genus
has index 5 (the least possible index) if it is a Clifford torus. Thus we argue by
contradiction and assume that the index of Σ is at least 6. According to (7), the
canonical family Φ of Σ satisfies

sup
x

A(Φ(x)) ≤ W (Σ) = A(Σ)

(since Σ is minimal, H = 0, we have W = A), hence the supremum is a maximum,

sup
x

A(Φ(x)) = A(Σ).
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Since the index of Σ = Φ(xo) is bigger than 5, we can deform is slightly to another
surface Σ′ (away from the Φ) with smaller area; in fact we can deform the whole
family Φ in a small neighborhood of xo such that the deformed family Φ′ (which is
no longer “canonical”)7 satisfies

sup
x

A(Φ′(x)) < A(Σ).

and Φ′ = Φ on ∂I5. (Φ is like a path leading over the top of a mountain: then nearby
there is another path (circumventing the top) whose maximal height is lower.) Let
Π′ = [Φ′] and Σ′ = ΣΠ′ its minimax surface. Then

A(Σ′) = L(Π′) ≤ sup
x

A(Φ′(x)) < A(Σ).

Since A(Σ′) = L(Π′) > 4π (positive genus theorem), Σ′ is a minimal surface of
positive genus with A(Σ′) < A(Σ), but Σ has already least area among those
surfaces, a contradiction!

6. The Clifford torus minimizes Willmore

We start with a surface Σ with positive genus and W (Σ) < 8π (which is no
restriction since W (T) = 2π2 < 8π). We form its canonical family Φ and the
homotopy class Π = [Φ]. Then

L(Π) ≤ sup
x∈I5

A(Φ(x)) ≤ W (Σ) < 8π (11)

Let ΣΠ be the minimax surface for Π, i.e. A(ΣΠ) = L(Π) > 4π. Then A(ΣΠ) lies
strictly between 4π and 8π, therefore ΣΠ cannot be a sphere (minimal spheres are
great spheres, according to a theorem of H. Hopf, and therefore they have area
4π), nor it has higher multiplicity (then the area would be ≥ 8π). But among the
remaining surfaces, the Clifford torus has least area, hence

2π2 ≤ A(ΣΠ) = L(Π)
(11)

≤ W (Σ) (12)

which shows W (Σ) ≥ W (T).
If for some Σ with positive genus we have equality, W (Σ) = W (T) = 2π2,

the canonical family Φ(x) = Σx satisfies A(Σx) ≤ W (Σx) ≤ W (Σ) = 2π2. If
supx A(Σx) < 2π2, we have L(Π) < 2π2 for Π = [Φ], but then the minimax sur-
face Σ′ of Φ is a minimal surface with A(Σ′) < A(T) which is impossible. Thus
supx A(Σx) = 2π2, and the supremum is attained at a surface Σ′ = Σxo

with
A(Σ′) = 2π2 = W (Σ′); note that Σ′ is a conformal image of Σ and not a parallel
surface since from the proof of Prop. 3.1 we see that a parallel surface Σ′′ would
satisfy A(Σ′′) < W (Σ) = 2π2. But A(Σ′) = W (Σ′) implies that Σ′ is a mini-
mal surface of positive genus, hence Σ′ = T by section 5. Thus Σ is conformally
equivalent to T.

7However, the “Positive Genus Theorem” still holds for this family Φ′ since its boundary is

still that of Φ which is canonical, see section 10.
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7. Boundary of the canonical family

What happens with gΣ when g ∈ B
4 ⊂ G approaches the boundary S

3 = ∂B4?
The embedding B

4 →֒ G is the Cartan embedding:

v ∋ B4 7→ gv = sosv = s−vso ∈ G (13)

where so and sv are the geodesic reflections (symmetries) at the points o, v ∈
B
4 with the hyperbolic metric on B

4 where we choose o to be the origin of B4.
The hyperbolic isometry gv translates the geodesic γv = vo through v and o (the
“axis”) and parallel-translates the hyperplanes intersecting γv perpendicularly. In
particular,

gv(v) = sosv(v) = so(v) = −v. (14)

On the sphere S
3 = ∂B4, the hyperbolic isometry gv acts as a conformal map: a

spherical dilatation fixing the points ±v̄ with v̄ = v/|v| and moving every point
q ∈ S

3 away from v̄ towards −v̄ along the great circle from v̄ to −v̄ through q. If
|v| ր 1, then gv maps S

3 \ Bǫ(v̄) onto Bǫ(−v̄). Consequently, if a surface Σ ⊂ S
3

lies completely outside Bǫ(v̄), it is mapped into Bǫ(−v̄) and its limit as |v| ր 1
will be only the point −v̄. On the other hand, if v̄ ∈ Σ, then gv acts as a dilatation
on Σ. In fact, after conjugation with the stereographic projection φ from −v̄ it
becomes a euclidean dilatation (homothety), and a very small portion Σ ∩ Bǫ(v̄)
will be enlarged by an arbitrarily large factor as |v| → 1. Therefore φ(gvΣ∩Bǫ(v̄))
is converging to a plane through the origin, the tangent plane of Φ(Σ) at φ(v̄) = 0,
and in the limit |v| → 1, Σ ∩Bǫ(v̄) is mapped onto the great sphere in S

3 which is
tangent to Σ at v̄ (see left figure).

o −vv

φ

v

q
N

−q

−pv
k

v1
v
k

g

g
vk

p
1

p

θ
o

k
p

sθ
θ

θ

We yet have to determine lim gvk
Σ for a sequence (vk)k∈N in B

4 with vk → p ∈ Σ
(see right figure). We will restrict our attention to the normal plane P spanned by
the vector p and the normal vector N of Σ at p. We show that gvk

Σ may converge
to any (small or great) sphere in S

3 which intersects P perpendicularly at −p.

Lemma 7.1. Let qθ ∈ S
3 ∩ P be the point with ∠(−p, p, q) = θ for arbitrary

θ ∈ [−π
2 ,

π
2 ]. Let (vk) be a sequence on the line seqment [p, qθ] with vk → p, and let

pk ∈ S
3 be the end point of the geodesic (line segment in B̄

4) from −p through vk.
Let Sθ = S

3 ∩Hθ (with center sθ) where Hθ ⊂ R
4 is the hyperplane intersecting P

perpendicularly along the line segment [−p,−qθ]. Then

lim
k→∞

gvk
Σ = Sθ. (15)
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Proof. Since vk ∈ P , the isometries gvk
preserve P , and

gvk
(p) = sosvk

(p) = so(qθ) = −qθ,
gvk

(−p) = sosvk
(−p) = so(pk) = −pk → −p .

Hence limk gvk
[p,−p] = [−qθ,−p]. Thus, in the limit k → ∞, the hyperplane

H = N⊥ through [p,−p] is mapped onto the hyperplane Hθ through −p and −qθ
perpendicular to P , and the same holds for the intersections of these hyperplanes
with S

3. Thus in the limit k → ∞, the great sphere H ∩ S
3 (in fact, an arbitrary

small neighborhood of p in this great sphere) is mapped onto the small sphere
Sθ = Hθ ∩ S

3 throught −p and −qθ. Since Σ is approximated by H ∩ S
3 in a small

neighborhood of p, we have shown that lim gkΣ = Sθ. �

8. Continuous extension to the boundary

We would like to extend the 4-parameter family of surfaces {gvΣ : v ∈ B
4} to

the boundary of B
4. However, as Lemma 7.1 shows, the limit is not unique as

v approaches a boundary point p ∈ S
3 = ∂B4 whenever p ∈ Σ. Therefore we

have to blow up these boundary points: each p ∈ Σ will be replaced by a one-
parameter family of points pθ, θ ∈ [−π

2 ,
π
2 ]. More precisely, we choose an open

tubular neighborhood Ω of Σ ⊂ R
4 with small radius ǫ such that ∂Ω is smooth. We

construct a continuous map T : B̄4 → B̄
4 as follows:8

(1) T maps B4 \ Ω homeomorphically onto B
4,

(2) T maps Ω̄ ∩ B̄
4 onto Σ by the nearest point projection π,

(3) The map v 7→ C(v) := gT (v)Σ, v ∈ B
4 \ Ω̄, admits a continuous extension

to B̄
4 which is constant along the projection lines of π.

o

N

p
Ω

B
p

θ
θ

The blow-up of p ∈ Σ is the one-parameter family pθ ∈ ∂Ω ∩ B̄
4 ∩ P (where

P = Span (p,N)), parametrized by the angle θ ∈ [−π
2 + ǫ, π

2 − ǫ].9 Hence we may
put C(pθ) = Sθ which means by continuity that T |B4\Ω̄ eventually maps the radial

lines emenating from p approximately onto the line segments [p, qθ]. For any other
q ∈ S

3 \Σ, the “surface” C(q) will be the trivial, C(q) = {−q}. Thus our map C is

8 Using the line segments γθ = [p, qθ], parametrized on [0, dθ] by euclidean arc length with
dθ = |p − qθ|, we may put T (γθ(t)) = p for t ≤ ǫ and T (γθ(t)) = γθ(ϕ(t)) for t ≥ ǫ, here ϕ is
continuous with ϕ(t) = t for t ≥ 2ǫ and where ϕ maps the interval [ǫ, dθ] strictly monotoneously

onto [0, dθ].
9The angle interval is slightly smaller than [−π

2
, π
2
] because of the corners.
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defined on B̄
4. Last we let C(v)t ⊂ S

3 be the surface of signed spherical distance t
from C(v), for any v ∈ B̄

4. Thus we have obtained a 5-parameter family of surfaces
C(v)t for (v, t) ∈ B̄

4×[−π, π] ∼= I5. Note that all surfaces at the boundary are round
spheres: C(v) and C(v)t are round spheres for all v ∈ ∂B4 and t ∈ [−π, π], and
when |t| = π, then C(v)t is a single point or empty for any v ∈ B̄

4. In particular,
any equidistant family t 7→ C(v)t with v ∈ S

3 = ∂B4 is a family of concentric round
spheres. There is some t ∈ [−π, π] such that C(v)s = ∅ for all s < t while C(v)t
is a single point Q̄(v), the common center of the family. This defines a continuous
map

Q̄ : S3 → S
3 (16)

called center map or extended Gauss map.10 The concentric sphere family C(v)t
contains precisely one great sphere C(v)t(v). After a reparametrization (called Φ̃),

the t-intervall is I = [0, 1] and t(v) is always its mid point 1
2 . Since the area of a

sphere in S
3 is ≤ 4π = area of a great sphere, we see

sup
x∈∂I5

A(Φ(x)) = 4π (17)

where Φ : I5 → {surfaces in S
3} is the reparametrization of C on I5.

9. The extended Gauss map

Let Σ ⊂ S
3 be a closed surface with normal field N . We want to compute

the extended Gauss map Q̄ of the canonical family of Σ. The oriented closed
surface Σ decomposes S3 \ Σ into two connected components A and A∗ where the
chosen normal vector N points into A∗. Further, there is the tubular neighborhood
ΩS = Ω ∩ S

3 of Σ which meets both A and A∗. The map T : S3 → S
3 maps the

closure Ω̄S radially onto Σ while the domains Ã = A \ Ω̄S and Ã∗ = A∗ \ Ω̄S are
mapped diffeomorphically onto A and A∗. The extended Gauss map Q̄ : S3 → S

3

is as follows:

N

−q

−p
o

sθ
θ

p
θπ

2−θ

q

θ

θ

Q̄(v) =







T (v) if v ∈ Ã,

−T (v) if v ∈ Ã∗

sθ if v = qθ ∈ ΩS

(18)

10Q̄ restricted to Σ is the classical Gauss map −N .
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Putting c = cos θ and s = sin θ we see from the figure above

sθ = −cNp − sp. (19)

Lemma 9.1. Let Σ ⊂ S
3 be a closed oriented surface and Q̄ : S3 → S

3 its extended
Gauss map. Then the mapping degree of Q̄ is the genus of Σ.

Proof. Let ω be the volume form of S3. By definition, the mapping degree of Q̄ is
deg(Q̄) =

∫

S3
Q̄∗ω /

∫

S3
ω where the denominator is the volume of S3 (which is 2π2).

In the numerator, the domain S
3 will be decomposed into the three subdomains

according to (18). Clearly, since T maps Ã diffeomorphically onto A and Ã∗ onto
A∗,

∫

Ã

Q̄∗ω =

∫

Ã

T ∗ω = vol(A),
∫

Ã∗

Q̄∗ω =

∫

Ã∗

T ∗ω = vol(A∗).

Thus these two terms add up to vol S3 = 2π2.
In order to compute the remaining term

∫

ΩS Q̄∗ω, we choose an oriented or-
thonormal eigenbasis e1, e2 with DeiN = −kiei where D is the covariant derivative
on S

3 and ki are the principal curvatures of Σ ⊂ S
3. Further let eθ = ∂/∂θ. From

Q̄ = −cN − sp

where p is the position vector and N the normal vector of Σ, we obain for i = 1, 2

DeiQ̄ = (kic− s)ei
DeθQ̄ = sN − cp

Note that sN − cp ∈ TQ̄(p)S
3, but the basis (e1, e2, sN − cp,−cN − sp) has negative

orientation since
∣

∣

s −c
−c −s

∣

∣ = −1, thus ωQ̄(e1, e2, sN − cp) = −1. Thus

−ωQ̄(De1Q̄, De2Q̄, DeθQ̄) = (k1c− s)(k2c− s)

= k1k2c
2 + s2 − (k1 + k2)sc

= (K − 1)c2 + s2 − 2Hsc
= Kc2 − c2 −Hs2,

with c2 = cos 2θ and s2 = sin 2θ. Thus
∫

ΩS

Q̄∗ω = −

∫

Σ

∫ π/2

−π/2

(Kc2 − c2 −Hs2) dθ du

The functions c2, s2 depend only on θ while K,H depend only on u ∈ Σ. But note

that
∫ π/2

−π/2
c2 = 0 =

∫ π/2

−π/2
s2 (integration over the full period) while

∫ π/2

−π/2
c2 = π/2.

On the other hand,
∫

Σ
K = 2π(2− 2g) where g denotes the genus of Σ. Hence

∫

ΩS

Q̄∗ω = −2π2(1− g).

Now the full integral is
∫

S3

Q̄∗ω = 2π2 − 2π2(1− g) = 2π2g.

Thus we have shown deg Q̄ = g. �
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10. The canonical family has width > 4π (Positive Genus Theorem,
rough idea)

Suppose not: L([Φ]) = 4π. For the sake of exposition suppose that

sup
x∈I5

A(Ψ(x)) = 4π

for some Ψ ∈ [Φ] (really this value can only be approximated). Let T denote the
set of oriented great spheres in S

3; we have T ∼= S
3. Let K = Ψ−1(T ). By our

normalization of the canonical family, ∂K ⊂ S
3 × { 1

2}. Now two alternatives can
happen for K:

B4

1/2 1/2

B4

K K

I I

A B

σ

In Case A, S3 × { 1
2} is the boundary of K (which consists of great spheres). Thus

the map S
3 → S

3, v 7→ Ψ(v, 1
2 ) has trivial homology. But this is the extended

Gauss map which has degree g which is nontrivial for g ≥ 1, a contradiction.

In Case B, there is a curve σ in B
4 × I from B

4 × {0} to B
4 × {1} which avoids K

(dotted line). The surfaces corresponding to the points of σ satisfy

4π ≤ supA(Ψ ◦ σ) ≤ supA(Ψ) ≤ 4π

but at the boundary of the parameter intervall, Ψ ◦ σ is the zero surface. Thus we
may apply the min-max theorem on Ψ ◦ σ (see end of section 4) to conclude that
there is a minimal surface with area 4π among these surfaces. But this must be a
great sphere, hence σ intersects K, a contradiction!
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