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Abstract. We will discuss three subjects:
1. Geometry of symmetric spaces

2. Relations to algebraic topology

3. Links to linear algebra
The linear algebra happens over the real division algebras, the real, complex,
quaternionic and octonionic numbers. The relation of symmetric spaces to

octonions is least understood since a “linear algebra” over the octonions does
not (yet) exist. This is ongoing work.

1. Introduction

Riemannian geometry is locally just nearly-euclidean geometry with all its fea-
tures. The local quantity distinguishing Riemannian from euclidean geometry is
the curvature tensor R. Thus the most basic Riemannian spaces are those where
R is “constant”, that means parallel. These are (at least locally) the Riemannian
symmetric spaces. There are other geometric descriptions of these beautiful ob-
jects: They allow an isometric point reflection sp (called “symmetry”) at any point
p, and parallel transport happens by isometries, like in euclidean space (transla-
tions). Algebrically they can be described by pairs (G, σ) where G is a Lie group
and σ an order-2 automorphism (involution) of G with compact fixed group K ⊂ G.
Riemannian symmetric spaces are all known; they have been classified 90 years ago
by Elie Cartan.

What makes these spaces interesting not only for specialists in Riemannian ge-
ometry is their close connection to other fundamental mathematical theories, in
particular topology and linear algebra. On the one hand, symmetric spaces are
related to a very general topological theorem, Bott’s periodicity theorem, a funda-
mental statement for homotopy theory of classical groups and for vector bundles
and K-theory; these belong to the most common tools in algebraic topology.

On the other hand, there is a twofold link to linear algebra. (1) Symmetric spaces
are related to normal form problems in linear algebra, e.g. the diagonalization of
self adjoint matrices or the singular value decomposition of arbitrary real matrices.
(2) The “classical” examples form important structures for the linear algebra over
real, complex or quaternionic numbers: they are sets of subspaces (Grassmannians)
or substructures. However, there are also some spaces which do not fit into this
scheme. They seem to be related to the remaining division algebra (beneath the
real, complex, quaternionic numbers), the octonions, but the relation is not so clear
since there yet exists no linear algebra over the octonions.

All three subjects: Geometry, Topology, Linear Algebra, shall be addressed in
the talks.

2. Symmetric Spaces

The fundamental object of Riemannian geometry is the Riemannian metric on a
smooth manifold P , an inner product g = 〈 , 〉 on any tangent space TpP , depending
smoothly on p. This allows to define angles, path length and distance (the length of
the shortest path). It even defines parallel transport of tangent vectors along any
path. and hence a differentiation ∇ of tangent vector fields along paths. This was
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introduced hundred years ago by Tullio Levi-Civita and is called the Levi-Civita
(LC) derivative.

Locally, a manifold is just an open subset U ⊂ R
n, and on this set, g is a positive

definite symmetric matrix gij = g(ei, ej) depending smoothly on u ∈ U . A special
case is the euclidean metric gij = δij . If we change coordinates, g is expressed by
a different matrix, and we can not easily recognize the euclidean metric in curved
coordinates. But the LC derivative gives us a quantity which distiguishes between
Riemannian and euclidean geometry in any coordinate system. Let ∇i be the LC
derivative along the i-th coordinate line, the i-th partial LC-derivative. Recall that
usual partial derivatives commute, ∂i∂j = ∂j∂i. Not so for LC derivatives: The
commutator Rij = [∇i,∇j ] = ∇i∇j −∇j∇i is nonzero in general, however it is an
algebraic object, a linear map on each tangent space, which does not involve any
differentiation. This is called the Riemannian curvature tensor; it vanishes (in any
coordinate system) if and only if g is euclidean.

One of the geometric meanings of the curvature tensor is the separation of locally
shortest paths (geodesics). Like a line in euclidean space, a geodesic is a path γ
whose tangent vector γ′ is parallel along γ. If (γs)s∈(−ǫ,ǫ) is a smooth one-parameter

variation of a geodesic γ = γ0 by other geodesics and V (t) = ∂
∂s γs(t)|s=0 its

variation vector field along γ, then

V ′′ +R(V, γ′)γ′ = 0 (1)

up to parallel transport along γ, where R(v, w) =
∑

ij viwjRij for any tangent
vectors v, w with coordinates vi, wj .

We have seen that euclidean space is characterized by R = 0. The most funda-
mental non-euclidean Riemannian manifolds should be those where R is constant,
which means ∇R = 0. These are the (locally) symmetric spaces. Then the linear
ODE (1) has constant coefficients and can be solved explicitly. In particular, if
V (0) = 0 we have V (−t) = −V (t); in particular V (t) and V (−t) have the same
length. Thus the geodesic reflection sp (mapping γ(t) to γ(−t) for all geodesics γ
through p = γ(0)) is an isometry, at least locally near p. It is also called symmetry
at p.

V(−t)

V(t)

Vice versa, if P is a Riemannian manifold such that the point reflection sp (reflecting
every geodesic through p) is an isometry for any p ∈ P , then ∇R = 0. In fact, ∇R
is invariant under every isometry of P , in particular under sp. But sp reflects each
tangent vector a ∈ TpM into −a, hence

−∇aR(b, c)d = ∇−aR(−b,−c)(−d) = ∇aR(b, c)d

which shows ∇R = 0.
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The easiest example is euclidean space R
n (left figure); of course R = 0 implies

∇R = 0, and we see also the symmetry sp (point reflection at p). Similar, the
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sphere S
n is symmetric where the symmetry at p ∈ S

n is the reflection at the line
Rp (figure at center). A more interesting example is the Grassmannian Gk(R

n),
the set of all k-dimensional subspaces of Rn. The symmetry at any E ∈ Gk(R

n) is
the reflection sE , the linear map with sE = I on E and sE = −I on E⊥, applied to
k-dimensional subspaces (right figure). The Riemannian metric on Gk(R

n) comes
from its embedding into the euclidean vector space Sn of symmetric real matrices
by the map E 7→ sE (see [7] for more details).

The characterization of symmetric spaces by symmetries is much easier to handle
than the complicated PDE ∇R = 0. From now on, a (globally) symmetric space
is a Riemannian manifold P such that at each point p ∈ P there is an isometry
sp : P → P (called symmetry) fixing p and reflecting all geodesics through p. In
particular, the isometry group G on P acts transitively: For any p, q ∈ P there is an
isometry f on P with f(p) = q. In fact, we may choose a geodesic γ with γ(0) = p
and γ(1) = q and let o = γ( 12 ) be its midpoint. Then so(p) = q since so reflects γ at

γ( 12 ), that is soγ(t) = γ(1− t). We can yet improve this isometry by choosing f =
sqso which translates γ (two-fold reflection): f(γ(t)) = γ(t+ 1). Moreover, if V (t)
is any parallel vector field along γ then fV (t) is again parallel along γ (isometries
preserve parallelity) and arises from V (t) through a twofold reflection (by so and
sp) which is a translation along γ, hence fV (t) = V (t + 1). Such compositions of
two symmetries are called transvections; they replace the translations in euclidean
space. Thus parallel transport along γ happens by isometries.

p o q

s V((1/2)

V(1/2)V(0)

o

s s V(0) q o

s V(0)o

γ

The transvections along γ form a one-parameter subgroup, a group homomorphism
φ : R → G, and γ is an orbit of φ. Orbits have no self intersection, thus geodesic
loops are closed, smooth mappings on S

1.

There is a representation of P as a coset space of the isometry group of P or any
subgroup G acting transitively on P . Often we choose G to be the group generated
by all transvections (“transvection group”). If we fix some point o ∈ P (“origin”)
and let K = {g ∈ G : go = o} be the stabilizer or isotropy group at p, we have
an equivariant smooth map π : G → P , g 7→ go. The fibres (preimages of points)
are cosets gK, g ∈ G. In fact, if g, h ∈ G, then π(g) = π(h) ⇐⇒ go = ho
⇐⇒ g−1h ∈ K ⇐⇒ h ∈ gK. Thus π induces an equivariant diffeomorphism
φ : G/K → P , φ(gK) = go, where G/K is the coset space G/K = {gK : g ∈ G}.
In the example of the Grassmannian P = Gk(R

n), we choose the “origin” to be the
standard subspace R

k ⊂ R
n. The group G may be On, then K = OkOn−k (this is

the set of all orthogonal matrices preserving R
k, the block diagonal matrices (A 0

0 B )
with A ∈ Ok and B ∈ On−k).

The action of the isotropy group K at o commutes with the symmetry, sok = kso
for all k ∈ K. In fact more is true: Conjugation by so is an automorphism σ : G →
G, σ(g) = sogso (recall s−1

o = so), and K is essentially equal to the fixed group

K̂ = {g ∈ G : σ(g) = g}.1 Vice versa, if G is a Lie group with an involution σ such
that K = Fix(σ) is a compact subgroup, then G/K is a symmetric space, and the
symmetry so at the base point o = eK is induced by σ, namely so(gK) = σ(g)K.
Thus symmetric spaces are essentially pairs (G, σ) where G is a Lie group with
involution σ such that K = Fixσ is compact.

1more precisely, K̂o ⊂ K ⊂ K̂ where K̂o ⊂ K̂ denotes the connected component of the unit

element of K̂; in particular Ko = K̂o.
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Moreover, σ acts as a linear involution on the tangent space TeG =: g at the unit
element e, the Lie algebra of G. Thus we have a decomposition of g it into (±1)-
eigenspaces, g = k + p. The fixed space k is the Lie algebra of the fixed group K
while the anti-fixed space p can be viewed as tangent space of P = G/K at the base
point eK. It turns out that in this representation, the curvature tensor R is just
(up to sign) the double Lie bracket,2 R(x, y)z = ±[[x, y], z] for all x, y, z ∈ p ⊂ g.
Geometry and algebra match perfectly. The isotropy group K acts linearly both
on k and p; the action on p is called isotropy representation of P (see Section 4).

3. Bott Periodicity and Generalizations

One of the classical theorems where geometry and topology are closely related
is Bott’s periodicity theorem:

The sequence of homotopy groups πk(G) is 2-periodic for the uni-

tary group G = Un and 8-periodic for the orthogonal and symplec-

tic groups G = On and G = Spn, where n >> k.

Recall that πk(G) is the set of homotopy classes of continuous maps from the
k-sphere to G. Simply speaking, algebraic topology measures the number and
dimension of “holes” in a space. If you have an uncovered hole, you can walk around
(mapping a circle, a 1-sphere S

1 into the space) but not through it. Thus holes
are measured by “uncovered” maps of a sphere into the space, where “uncovered”
means that you cannot contract the sphere into a point.

The proof [16] relies on a construction of chains of certain totally geodesic sub-
spaces of G (which is a symmetric space, as is any compact Lie group). The building
blocks for these chains arise from a simple geometric idea: Let P be a symmetric
space, p and −p two points in P with the same symmetry,3 s−p = sp. Let Ωo(P )
be the set of shortest geodesics γ connecting p to −p, say γ(0) = p and γ(1) = −p.
Each γ ∈ Ωo(P ) is uniquely determined by its midpoint γ(1/2). Thus Ωo(P ) can

be viewed as the subset P̂ ′ ⊂ P of midpoints of γ ∈ Ωo(P ). This is the fixed set of
an isometry, the reflection4 τ = −sp.

P

P’

p

−p

τ

Any connected component P ′ ⊂ P̂ ′ is called a “centriole”. This is totally geodesic,
that is: every geodesic in P ′ is also a geodesic in P . This follows from the local
uniqueness of geodesics, see figure:

2If G is a matrix group, G ⊂ GLn, then g = TeG also consists of matrices and the Lie bracket
is just the commutator of these matrices. In the general case we have to use the Lie derivative of
left invariant vector fields on G (which are in 1:1 correspondence to tangent vectors at e). Anyway
the Lie bracket is an algebraic object connected to the group structure of G.

3Then the point −p is called a pole of p, like north and south poles in a sphere. Many compact
symmetric spaces P (spheres, Grassmannians, classical groups etc.) allow a nice embedding into
euclidean space; if they are invariant under −I = diag(−1, . . . ,−1), then −p is a pole for p for
any p ∈ P .

4The quotient space P̄ = P/{±I} is again a symmetric space, hence γ : p ❀ −p becomes a

closed geodesic γ̄ which shows in turn that γ can be extended to a closed geodesic γ : [−1, 1] → P

which is invariant under −I. In particular, γ(− 1
2
) = −γ( 1

2
), but also γ(− 1

2
) = soγ(

1
2
). Thus P̂ ′

is the fixed set of τ = −sp.
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γ

τ(γ)
τP’

Moreover, for certain pairs (P, P ′) and k < d for some d, cf. [17], this has the
topological implication

πk(P ) = πk−1(P
′) (2)

In fact, by definition we have πk(P ) = πk−1(ΩP ) where ΩP denotes the space of
paths in P with end points p and −p. Using Morse theory,5 ΩP can be replaced by
the space ΩoP of shortest geodesics joining p and −p.

Example. Let G ⊂ GL(Rn) be a connected matrix Lie group with −I ∈ G.
This is a symmetric space; the symmetry at the unit element I is sI(g) = g−1.
We choose p = I and −p = −I. A geodesic γ : R → G with γ(0) = I is just
a group homomorphism, γ(s + t) = γ(s)γ(t). If γ(1) = 0, then the midpoint
J = γ( 12 ) satisfies J2 = −I (“complex structure”). Thus the midpoint set is the
set of complex structures in G.

Starting with P0 = G, we use the above construction repeatedly and obtain a chain6

G ⊃ P1 ⊃ P2 ⊃ · · · ⊃ Ps (3)

For low k [17, 18] this has the topological implication

πk(G) = πk−1(P1) = πk−2(P2) = · · · = πk−s(Ps) (4)

For G = Gn := Spn, Un, SOn, these chains are given in no. 2,3,4 of Table 1 below.
The periodicity now follows just from the observation

P2(Un) = Un/2, P4(SOn) = Spn/8, P4(Spn) = SOn/2 (5)

and from the fact that πk(Gn) does not depend on n for k << n since S = Gn/Gn−1

is a high dimensional sphere with πk(S) = 0.
By similar methods we can also prove and even generalize Atiyah’s version of

the periodicity theorem on vector bundles over compact manifolds, see [8].
Peter Quast [18] has classified all chains (3) with length s ≥ 3. The chains 2, 3,

4 occur in Milnor’s book [16] while 1 and 5 are new.7

5We use the negative gradient of the energy function E(γ) =
∫
I
|γ′|2 on the path space ΩP .

The flow of −∇E sweeps each γ ∈ ΩP into some critical point of E which is a geodesic. Most of
ΩP is swept to the set of minima, the shortest geodesics. For certain P , all nonminimal geodesics

have high index where the index of a geodesic is the number of linear independent deformations
decreasing the energy. This phenomenon can be seen already on the sphere Sn: A nonminimal
geodesic between north and south poles must wrap around the sphere at least once and can be
shortened in any of the n − 1 perpendicular directions. Hence the domains of attraction for

nonminimal geodesics have high codimension d and can be avoided by any sphere of dimension
< d in Ω(G). Thus πj(ΩP ) = πj(Ω

oP ) for any j < d.
6By the above example, all elements of Pk, k ≥ 1 are complex structures in G. In Pk we have

to choose p = Jk and −p = −Jk such that J1, . . . , Jk anticommute. A system of anticommuting

complex structures is the matrix representation of a Clifford algebra.
7In chain 1, SO′

4n denotes the half spin representation of Spin4n; like SO4n it arises from
Spin4n by dividing out a central Z2, but it is the other Z2-factor in the center Z2 ×Z2 of Spin4n.
The most interesting case is SO′

12, being part of the isotropy representation of the Rosenfeld plane

OHP2, see next section and table 2 below. The representation is quaternionic which allows an
interpretation of the Pr as “Grassmannians”, see 4.2 in [18]. Chain 5 is interesting since it relates

the octonionic projective plane OP2 to the exceptional group E7. It can be viewed as the octonionic
analogue of the classical chains 2, 3, 4. The other projective planes RP2, CP2, HP2 are the end
points of these chains for n = 3 and p = 1. These four groups G = Sp3, U6, SO′

12, E7 have more

in common: They belong to the isotropy group (s-representation) of the exceptional quaternionic
symmetric spaces S = F4/Sp3Sp1, E6/SU6Sp1, E7/SO′

12Sp1, E8/E7Sp1 respectively, see Table
2 at the end of the paper. This turns G into a quaternionic matrix group, similar to chain No.
2 (starting with Spn) where P1 is the set of totally complex subspaces, P2 the set of totally real

subspaces and P3 a real Grassmannian. Similarly, we may interpret the subspaces Pi for the
KP2-chains as sets of of certain totally geodesic subspaces of S, cf. [18], Section 4.2.
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No. G P1 P2 P3 P4

1 SO′
4n G+

2 (R
4n) (S1S4n−3)/± S

4n−4
S
4n−5 if n ≥ 2

2 Spn Spn/Un Un/SOn Gp(R
n) SOn/2 if p = n/2

3 U2n Gn(C
2n) Un Gp(C

n) Un/2 if p = n/2
4 SO4n SO4n/U2n U2n/Spn Gp(H

n) Spn/2 if p = n/2
5 E7 E7/U1E6 U1E6/F4 G1(O

3) = OP
2 -

Table 1

4. Normal forms for matrices

Let us start with a famous theorem in undergraduate linear algebra:

A real symmetric matrix S has an orthonormal basis of eigenvectors.

The proof is not quite obvious. It is easy to see that eigenspaces of a symmetric
matrix are perpendicular, due to ST = S, but why are the eigenvalues real? This
needs some analysis. One may use that a symmetric matrix T = (tij) is positive
(negative) definite if and only if all its principal minors det(tij)i,j≤k, k = 1, . . . , n,
are positive (negative and positive in turn). For large λ ∈ R, the matrix Sλ = λI−S
is positive definite and all its principal minors are positive. By decreasing λ we
arrive at some value λo where first time one of the principal minor vanishes; this
must happen because Sλ will become negative definite as λ → −∞, hence every
second minor must change its sign. This λo is the largest eigenvalue of S.

Let us discuss another proof using some differential geometry on the space Sn of
real symmetric n×n-matrices. This is a euclidean vector space with inner product
〈X,Y 〉 = trace XY. We want to show that each conjugacy class in Sn intersects
the set of diagonal matrices ∆ ⊂ Sn. Conjugacy classes are orbits of the group
SOn acting linearly on Sn by S 7→ AdA S := ASAT (for any A ∈ SOn, S ∈ Sn).
Choose some D ∈ ∆ with distinct diagonal entries. Let CD = {AdA D : A ∈ SOn}
be the orbit of D under this action (the conjugacy class of D). This is a smooth
compact submanifold of Sn, and an easy calculation8 shows that ∆ is precisely the
normal space of CD at D. Now let S ∈ Sn be arbitrary. Then there is a point
X ∈ CD which is closest to S. Thus T = S −X is in the normal space of CD at
X (otherwise X could not be closest to S). Since X ∈ CD, there is A ∈ SOn with
AdA X = D, and since AdA preserves the orbit CD and the inner product on Sn,
it maps the normal vector T at X onto a normal vector T ′ at D. Thus T ′ ∈ ∆ and
hence S′ := AdA S = AdA(X + T ) = D + T ′ ∈ ∆ which proves the theorem.

X
∆

T S

S’D
T’

A

CD

Ad

The main ingredience for this proof is the fact that ∆ is the common normal space
for all principal orbits through ∆. Such a linear action is called polar: there is a
subspace ∆ (called “section”) which meets every orbit and each time the intersection
is perpendicular. An intersection point of an orbit with ∆ is called a normal form
for the elements in the orbit. The normal form of a real symmetric matrix S is a
diagonal matrix D which is conjugate to S; its entries are the eigenvalues of S. The
same holds for hermitian matrices over the complex numbers C, the quaternions H
and even the octonions O when n ≤ 3. While the usual linear algebra proof breaks
down for H and O since there is no obvious way to define determinants, the “new”
proof works in these cases as well.

8Let An be the space of antisymmetric matrices, the Lie algebra of SOn. Then TDCD =

[An, D] and hence Y ∈ (TDCD)⊥ ⇐⇒ 0 = 〈[An, D], Y 〉 = 〈An, [D,Y ]〉 ⇐⇒ [D,Y ] = 0 (since
[Sn,Sn] ⊂ An) ⇐⇒ Y ∈ ∆.
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A theorem of J. Dadok [5, 9] says that polar representations are essentially9 in
one-to-one correspondence to compact symmetric spaces, being the isotropy repre-
sentations of such spaces, so called s-representations.10 The case of symmetric and
hermitian matrices corresponds to the symmetric spaces with Dynkin diagram of
type A which are SUn/SOn, SUn, SU2n/Spn, and E6/F4 [12, p. 532 ff].11

There are several similar normal form problems in linear algebra. One is the “sin-
gular value decomposition” which assigns a rectangular diagonal matrix to an ar-
bitrary (k × n)-matrix using the natural action of SOk × SOn on R

k×n. This is
a polar representation; the corresponding symmetric space is the Grassmannian
Gk(R

n+k). A more exotic example is the (half) spin representation of Spin8+k on
the vector space (O⊗R K)2 for K = R,C,H,O and k = 1, 2, 4, 8; here the section is
spanned by ej ⊗ ej for j = 1, . . . , k where e1, . . . , ek form the canonical R-basis of
K ⊂ O, [6]. These polar actions correspond to the so called Rosenfeld planes which
I am going to explain in the next section.

On the first glance, the normal form problem seems a very local, even infinitesimal
approach to symmetric spaces: only the tangent space of a single point is involved.
However, it is related to global problems in various ways. First, some compact
symmetric spaces are linked to s-representations yet differently: they occur among
their orbits. E.g. in our first example (real symmetric matrices), the orbits of
diagonal matrices with just two different eigenvalues are Grassmannians. Thus we
obtain very nice (so called extrinsic symmetric) embeddings of symmetric spaces
into euclidean space which are extremely helpful in order to understand the topology
of these spaces, using Morse theory of the height functions of the ambient space.
Among the compact symmetric spaces, all the classical and 4 of the 17 exceptional
ones can be embedded in this way (up to coverings and S

1-factors).

Further, the isotropy representation of a symmetric space P = G/K is just the
linearization of the isotropy action of K ⊂ G on P itself. This brings us from polar
representations to polar actions which have been classified by Andreas Kollross [14].
The normal form problem for orthogonal and unitary matrices belongs to that area.
We can relate isotropy representation and action by the map p → P , v 7→ γv(t) for
fixed t where γv is the geodesic with γv(0) = o and γ′

v(0) = v It is interesting what
happens to an extrinsic symmetric s-orbit M ⊂ p under this map. We obtain a
one-parameter family of embeddings M ⊂ P starting and ending at a fixed point of
K with a totally geodesic embedding in the middle. E.g. the Grassmannians occur
as mid point sets of shortest geodesics in SUn joining the identity matrix I to any
other element of the center Zn ⊂ SUn. We have seen such examples in section 3.

5. Symmetric spaces and division algebras

There are precisely four normed real division algebras: R,C,H,O. These are
closely connected to symmetric spaces. The “classical” symmetric spaces are related
to the linear algebra over the associative division algebras R,C,H and come in 7
infinite chains of increasing dimension:

(1) Grassmannians: {Kp ⊂ K
n} = Gp(K

n) for K ∈ {R,C,H},

9The notion of polarity involves only the orbits, not the group action. Sometimes there are sub-

groups acting with the same orbits; we must consider the largest possible group acting effectively
with these orbits.

10If ρ : K → O(V ) is an s-representation, the corresponding symmetric space is G/K where
g = k⊕V with the Lie bracket [A,X] ∈ V , [X,Y ] ∈ k for A ∈ k, X,Y ∈ V given by [A,X] = ρ(A)X
while 〈A, [X,Y ]〉k = 〈ρ(A)X,Y 〉 for 〈A,B〉k = − trace (ρ(A)ρ(B))− trace (ad(A) ad(B)).

11The spaces with Dynkin diagram A3 are SU3/SO3, SU3, SU6/Sp3, E6/F4. They played a

key role in my mathematical life: The only known infinite families of compact simply connected
positively curved Riemannian manifolds are the orbit spaces of isometric circle actions on SU3 and
SU6/Sp3 (with a non-symmetric metric); the first family has been discovered by Aloff, Wallach

and myself, the second one by Berger and Bazaikin. There are only few irreducible symmetric
spaces which allow free isometric circle actions: compact Lie groups, SU2n/SO2n, SU2n/Spn and
the Grassmannians G2k−1(R

2n), cf. [11]. In particular, E6/F4 does not allow such actions as was

proved first by Robert Bock [2].
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(2) R-structures on C
n: {Rn ⊂ C

n} = Un/SOn

C-structures on H
n: {Cn ⊂ H

n} = Spn/Un,
(3) C-structures on R

2n: {R2n ∼= C
n} = SO2n/Un

H-structures on C
2n: {C2n ∼= H

n} = U2n/Spn.

On the other hand, the non-associative division algebra O seems to be related to
the finitely many “exceptional” symmetric spaces, but this relation is not yet fully
understood. Let us restrict our attention to irreducible type-I symmetric spaces
(G/K with G compact and simple). This class consists of the classical spaces
(Grassmannians and R,C,H-structures, see above) together with 12 exceptional
spaces. These include the Rosenfeld planes with dimension 16, 32, 64, 128 which
seem to continue the series of classical projective planesKP

2 of dimensions 2, 4, 8, 16.
Boris Rosenfeld in 1956 tried to define them as projective planes AP2 over the non-
associative algebra A = O ⊗R K =: OK for K = R,C,H,O, respectively. Though
this was not successful [1], Rosenfeld’s idea somehow survived, and following Besse
[3] we keep calling these spaces Rosenfeld planes AP

2. In several aspects, they
behave as if they were projective planes over A.

(1) There are “projective lines” AP
1 ⊂ AP

2 which are oriented Grassmanni-
ans12 G+

k (R
8+k) where k = dimR K. However, the intersection of these

“lines” is not always transversal. But we still have the duality AP
2 ∼=

{AP1 ⊂ AP
2} where the latter space denotes the dual plane, that is the set

of all “lines” AP
1 in AP

2.
(2) While the isotropy representation of KP

2 is essentially13 the (half) spin
representation of Spin1+k on K

2, the isotropy representation of AP
2 is

essentially the (half) spin representation for Spin8+k on A
2.

(3) The Lie algebra of the isometry group of KP
2 can be described in terms

of tracefree anti-hermitian 3× 3-matrices over K, and this remains true for
AP

2, replacing K by A (Vinberg’s formula [1, p. 192]).14

All other type-I exceptional symmetric spaces (except G2/SO4, the space of
all quaternion type subalgebras of the octonions) are obtained as spaces of self-
reflective subspaces15 of the Rosenfeld planes. If we believe in Rosenfeld’s de-
scription as AP

2, we can conjecture that these subspaces are projective subplanes
BP

2 ⊂ AP
2 (similar to RP

2 ⊂ CP
2), where B ⊂ A is a selfreflective subalgebra.16

E.g. E6/F4 can be viewed as the set of all totally geodesic embeddings of OP
2 into

OCP
2 (cf. [3], p. 313); we will write briefly E6/F4 = {OP

2 ⊂ OCP
2}. Here A = OC

and B = OR = Fix(ρ) with ρ = id⊗κ2 on A where κ2 is complex conjugation in the
second tensor factor C. But other cases, like E6/Sp4 and E7/SU8, are less obvious.
It seems that these correspond to involutions ρ of type (b) on A, see footnote 16.

An analogous problem for classical spaces has been solved in a common paper
with Somayeh Hosseini [10], based on recent work of Y. Huang and N.C. Leung
[13]:

12There is a small deviation for A = OO: According to [4] OOP2 = G#
8 (R16) rather than

G+
8 (R16) (which would be a two-fold covering of G#

8 (R16)).
13As the spin representation of Spin′

2n is complex for odd n and quaternional for even n, we

have to add the U1 and Sp1 factors in order to obtain the full isotropy representation.
14g = Derκ(A) ⊕ Ao(A, 3) where Derκ(A) denotes the derivations of A which commute with

the conjugation κ(x⊗ y) = x̄⊗ ȳ and where Ao(A, 3) denotes the anti-hermitian trace-zero 3× 3-
matrices over A. The Lie bracket is more complicated, cf [1].

15A reflective submanifold Q of a symmetric space P is a connected component of the fixed set

of some isometric involution τ on P . Reflective submanifolds come in pairs: For any q ∈ Q there
is another reflective submanifold Q′ through q perpendicular to Q which is a fixed set component
of the involution τ ◦sq of P (where sq denotes the symmetry at q). If Q and Q′ are congruent, the

submanifold is called self-reflective. For any reflective submanifold Q ⊂ P , the set of all Q′ ⊂ P
with Q′ congruent to Q is again a symmetric space called {Q ⊂ P}; its symmetry at Q is τ .

16This is the fixed subalgebra (1-eigenspace) of an involution ρ of A with eigenspaces of equal
dimensions and such that ρ commutes with the conjugation κ on A (“balanced involution”). There
are two kinds of such involutions on A = K ⊗ L: (a) ρ = σ ⊗ id or id ⊗ τ and (b) ρ = σ ⊗ τ

where σ, τ are balanced involutions on K, L, respectively. In case (b), the subalgebra B is a tensor
product with the paracomplex numbers C = R⊕ Rs with s2 = 1.
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Theorem 1. All classical type-I symmetric spaces (up to coverings and S1 factors)
are either Grassmannians Gp(A

n) or inclusion sets {Gp(B
n) ⊂ Gp(A

n)} where B

is some self-reflective subalgebra of A and A = K⊗ L =: KL with K,L ∈ {R,C,H}
or A itself is already a self-reflective subalgebra of K ⊗ L. Some symmetric spaces
allow several such descriptions, cf. Table 2.17

No. Type Space dim rk B A Grassmannian

1 AI Un/On
n(n+1)

2 n R C {RPn−1 ⊂ CP
n−1}

2 U2n/O2n n(2n+1) 2n C̃C HC {G2(R
2n) ⊂ G2(C

2n)}
3 AII U2n/Spn 2n(n−1) n H HC {HP

n−1 ⊂ G2(C
2n)}

4 AIII Up+q/(UpUq) 2pq p C Gp(C
p+q)

5 U2n/(U2pU2n−2p) 8p(n−p) 2p HC Gp(HC
n)

6 U2n/(UnUn) 2n2 n CC HC {(CPn−1)2⊂ G2(C
2n)}

7 BD I Op+q/OpOq pq p R Gp(R
p+q)

8 O4n/O4pO4n−4p 16p(n−p) 4p HH Gp(HH
n)

9 O2n/OnOn n2 n C C̃C {(RPn−1)2 ⊂ G2(R
2n)}

10 O4n/O2nO2n 4n2 2n C̃CC HH {G2(R
2n)2 ⊂ G4(R

4n)}

11 D III O2n/Un n(n−1) [n2 ] C C̃C {CPn−1 ⊂ G2(R
2n)}

12 O4n/U2n 2n(2n−1) n HC HH {G2(C
2n) ⊂ G4(R

4n)}
13 C I Spn/Un n(n−1) n C H {CPn−1 ⊂ HP

n−1}
14 C II Spp+q/SppSpq 4pq p H Gp(H

p+q)

15 E I E6/Sp4 42 6 ĈH? OC {G2(H
4)/Z2 ⊂ OCP

2}
16 E II E6/SU6Sp1 40 4 HC OC {G2(C

6) ⊂ OCP
2}

17 E III E6/Spin10U1 32 2 OC OCP
2

18 E IV E6/F4 26 2 O OC {OP
2 ⊂ OCP

2}

19 E V E7/SU8 70 7 ĈHC? OH {G4(C
8)/Z2 ⊂ OHP

2}
20 E VI E7/SO

′
12Sp1 64 4 OH OHP

2

21 HH OH {G+
4 (R

12) ⊂ OHP
2}

22 E VII E7/E6U1 54 3 OC OH {OCP
2 ⊂ OHP

2}
23 E VIII E8/SO

′
16 128 8 OO OOP

2

24 ĈHH? OO {G#
8 (R

16) ⊂ OOP
2}

25 E IX E8/E7Sp1 112 4 OH OO {OHP
2 ⊂ OOP

2}
26 F I F4/Sp3Sp1 28 4 H O {HP

2 ⊂ OP
2}

27 F II F4/Spin9 16 1 O OP
2

28 GI G2/SO4 8 2 H O {H ⊂ O}

Table 2

The proof is mainly by identifying the group G of orthogonal A-linear maps g
on A

n. E.g. if A = HC, we have on V = A
n two anticommuting complex structures

i and j and another complex structure î = 1 ⊗ i which commutes with i, j. Then
S = îi with S2 = I has i-invariant (±1)-eigenspaces V± which are interchanged by

j. Any g ∈ G commutes with i, j, î. Thus g preserves the eigenspaces V± and is
already determined by its restriction to V− since V+ = jV−. Since g commutes with
i, the restriction g|V− is in the unitary group of V−

∼= C
2n and hence G = U2n.

But this proof does not apply to cases where A is non-associative because then A
n is

no longer an A-module. Therefore in the second part of Table 2 below we have used
results of D.S.P. Leung and Chen-Nagano [15, 4] on self-reflective submanifolds. If
Q ⊂ P = G/K is a (self-)reflective subspace, then {Q ⊂ P} = G/GQ, where
GQ = {g ∈ G : g(Q) = Q}, and GQ contains the symmetry group of Q as a normal
subgroup. Thus it is easy to identify the spaces {Q ⊂ P}. However, the pairs

17The second column in Table 2 is the type of the space according to E. Cartan’s classification,
cf. [12]. In the last column, the space is represented either as a Grassmannian Gp(An) or as a

space of inclusions {Gp(Bn) ⊂ Gp(An)}.
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(B,A) given in No. 15, 19 and 24 are only a conjecture, following [13].18 If we
look for a proof, Vinberg’s formula [1, p. 192] gives some hope to understand the
corresponding groups at least on the infinitesimal level. This requires an extension
of Vinberg’s formula to self-reflective subalgebras of O⊗K and also to associative
algebras in order to allow comparison with the classical case.

6. Conclusion

The linear algebra which is relevant to Riemannian geometry has two parts. Part
1 is the linear algebra over the the associative division algebras R,C,H, and it is
connected to the classical symmetric spaces. Milnor’s chains proving Bott’s period-
icity theorem and relating all these structures (cf. Section 3) seem of fundamental
importance for Linear Algebra 1. Part 2 should be a restricted linear algebra over
O which is not yet fully developed. It must be quite different. It cannot contain
vectors and modules and linear maps, but projective lines and planes and even
(3× 3)-matrices seem to survive. As we have seen, Milnor’s proof extends to some
exceptional spaces, but unfortunately not to all of them. In Section 5 we have
tried a different approch, a description of symmetric spaces - classical as well as
exceptional - in terms of the algebras A = K ⊗R L with K,L ∈ {R,C,H,O}. For
the classical spaces (avoiding O) this is a theorem, for the exceptional ones it is
a conjecture, but with a lot of evidence and support. So let’s try to learn Linear
Algebra 2.
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