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Let M be a simply connected Riemann surface and S2 the round 2-sphere. A
key observation in our paper [4] is a generalization of the following simple fact:

Lemma 0.1. A smooth map h : M → S2 is harmonic iff the R
3-valued one-form

γ = (h × hy)dx − (h × hx)dy is closed.

In Theorem 2.2 of our paper [4] we assign this observation to O. Bonnet [2], which
is wrong. As explained by F. Hélein [5], it can be viewed as Noether’s theorem for
the variational problem for harmonic maps into the sphere, and it was used before
in [6, 3, 7] in order to study the corresponding evolution equation. It probably does
not go back to the times of Bonnet. However, Bonnet [2] showed that all surfaces of
constant mean curvature (those with harmonic Gauss map h) arise up to scaling as
f = g ± h where g is a surface of constant Gaussian curvature. But such surface g

is obtained by integrating the above one-form γ, (i.e. dg = γ), see Equation (27) in
our paper [4]. Therefore we called γ Bonnet form and g Bonnet-Sym-Bobenko map

since Sym [8] and Bobenko [1] have constructed g in a different way. This might
be misleading, and we want to point out that there is no doubt about the priority
of Sym and Bobenko regarding the construction of g.
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