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Abstract. Working out an idea of Huang and Leung [6, 7] we show that all
classical compact symmetric spaces can be represented as sets of subspaces of

either one of the following two types: {Ap ⊂ An} for p < n or {Bn ⊂ An},
where A is equal or closely related to the tensor algebra K ⊗ L of two division
algebras K, L ∈ {R, C, H}, and where B is a certain half-dimensional subalgebra
of A (joint work with S. Hosseini, [4]). We will discuss a possible extension of

this result - at least on the Lie algebra level - to exceptional symmetric spaces
where also the octonion algebra O will show up. This is work in progress.

1. Classical and Exceptional Symmetric spaces

There are precisely four normed real division algebras: R, C, H, O. These are
closely connected to Riemannian symmetric spaces. Let us restrict our attention
to irreducible symmetric spaces G/K of type I where G compact and simple. The
associative division algebras R, C, H correspond to the classical spaces which form
seven infinite series,

(1) Grassmannians: {Kp ⊂ K
n} = Gp(K

n) for K ∈ {R, C, H},
(2) R-structures on C

n: {Rn ⊂ C
n} = Un/On

C-structures on H
n: {Cn ⊂ H

n} = Spn/Un,
(3) C-structures on R

2n: {R2n ∼= C
n} = O2n/Un

H-structures on C
2n: {C2n ∼= H

n} = U2n/Spn,

while the nonassociative division algebra O are somehow related to the 12 excep-
tional spaces, but this connection is not yet fully understood. The latter spaces
include the Rosenfeld planes with dimensions 16, 32, 64, 128 which seem to continue
the series of classical projective planes KP

2 of dimensions 2, 4, 8, 16. Boris Rosen-
feld in 1956 tried to define those as projective planes AP

2 over the non-associative
algebra A = O ⊗R K =: OK for K = R, C, H, O, respectively. Though this was not
successful [1], Rosenfeld’s idea somehow survived, and following Besse [2] we keep
calling these spaces Rosenfeld planes AP

2. In several aspects, they behave as if
they were projective planes over A.

(1) There are “projective lines” AP
1 ⊂ AP

2 which are oriented Grassmannians1

G+
k (R8+k) with k = dimR K. However, the intersection of these “lines” is

not always transversal. But we still have the duality AP
2 ∼= {AP

1 ⊂ AP
2}

where the latter space denotes the “dual projective plane”, that is the set
of all “lines” AP

1 in AP
2.

(2) While the isotropy representation of KP
2 = RKP

2 is essentially2 the (half)
spin representation of Spin1+k on K

2, the isotropy representation of AP
2 =

OKP
2 is essentially the (half) spin representation for Spin8+k on A

2.
(3) The Lie algebra of the isometry group of KP

2 can be described in terms
of tracefree anti-hermitian 3× 3-matrices over K, and this remains true for
AP

2, replacing K by A (Vinberg’s formula [1, p. 192]).3

Date: November 2, 2012.
1There is a small deviation for A = OO: According to [3], OOP2 = G

#
8 (R16) rather than

G+
8 (R16) (which would be a two-fold covering of G

#
8 (R16)).

2As the spin representation of Spin2n is complex for odd n and quaternional for even n, we
have to add the U1 and Sp1 factors in order to obtain the full isotropy representation.

3
g = Derκ(A)⊕Ao(A, 3) where Derκ(A) denotes the derivations of A which commute with the

conjugation κ(x ⊗ y) = x̄ ⊗ ȳ and where Ao(A, 3) denotes the anti-hermitian trace-zero 3 × 3-
matrices over A. The Lie bracket is more complicated, cf [1].
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2. Selfreflective subspaces and subalgebras

All other type-I exceptional symmetric spaces (except G2/SO4, the space of
all quaternion type subalgebras of the octonions) are obtained as spaces of self-
reflective subspaces of the Rosenfeld planes. A reflective submanifold Q of a sym-
metric space P is a connected component of the fixed set of some isometric in-
volution r on P . Reflective submanifolds come in pairs: For any q ∈ Q there is
another reflective submanifold Q′ through q perpendicular to Q which is a fixed
set component of the involution r ◦ sq of P (where sq denotes the symmetry at
q). If Q and Q′ are congruent, the submanifold is called self-reflective. For any
reflective submanifold Q ⊂ P , the set of all Q′ ⊂ P with Q′ congruent to Q is again
a symmetric space called {Q ⊂ P}; its symmetry at Q is r.

If we believe in Rosenfeld’s description as AP
2, we can conjecture that these self-

reflective subspaces are either “projective lines” AP
1 ⊂ AP

2 or projective subplanes
BP

2 ⊂ AP
2 (like RP

2 ⊂ CP
2), where B ⊂ A is a selfreflective subalgebra. This is the

fixed subalgebra (1-eigenspace) of an involution ρ of A which is “balanced” in the
sense that the two eigenspaces have equal dimensions and that ρ commutes with
the conjugation κ on A (with κ(x⊗ y) = x̄⊗ ȳ). There are the following two kinds
of such involutions on A = K ⊗ L.

(a) ρ = σ ⊗ id or ρ = id ⊗ τ ,
(b) ρ = σ ⊗ τ

where σ, τ are balanced involutions on K, L, respectively. In both cases we have
A = B+uB for some u ∈ A which belongs to the (−1)-eigenspace of ρ. In some cases,
the subalgebra B is a tensor product with the paracomplex numbers C = R ⊕ Rs
with s2 = 1 where s anticommutes with the other generators. The possible choices

are listed in Table 1 where ?̂ always refers to the second tensor factor, κ and κp

denote the conjugations in C and C, respectively, and τ is the automorphism of O

fixing H which corresponds to −I ∈ SO4 ⊂ G2.

No. A generators ρ Case u B generators
1 C i κ a i R -
2 H i, j Ad(i) a j C i

3 CC i, î κ a i C i

4 CC i, î κκ̂ b i, î C îi

5 HC i, j, î κ̂ a î H i, j

6 HC i, j, î Ad(i) a j CC i, î

7 HC i, j, î Ad(i)κ̂ b j, î CC i, jî

8 HH i, j, î, ĵ Ad(i) a j CH i, î, ĵ

9 HH i, j, î, ĵ Ad(i)Ad(̂i) b j, ĵ CCC i, î, jĵ

10 CC s, î κp a s C i
11 CC s, i κ a i C s
12 O i, j, l τ a l H i, j

13 OC i, j, l, î κ̂ a î O i, j, l

14 OC i, j, l, î τ a l HC i, j, î

15 OC i, j, l, î τ κ̂ b l, î C′
H i, j, l̂i

16 OH i, j, l, î, ĵ Ad(̂i) a ĵ OC i, j, l, î

17 OH i, j, l, î, ĵ τ a l HH i, j, î, ĵ

18 OH i, j, l, î, ĵ τ Ad(̂i) b l, ĵ C′
HC i, j, î, lĵ

19 OO i, j, l, î, ĵ, l̂ τ̂ a l̂ OH i, j, l, î, ĵ

20 OO i, j, l, î, ĵ, l̂ τ τ̂ b l, l̂ C′
HH i, j, î, ĵ, ll̂

Table 1
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3. Spaces of self-reflective subspaces

In Table 2 below we represent all irreducible type-I symmetric spaces as Grass-
mannians (including Rosenberg planes) or spaces of self-reflective subspaces in
Grassmannians. For classical spaces this has been proved in [4], based on recent
work of Y. Huang and N.C. Leung [7]:

Theorem 1. All classical type-I symmetric spaces (up to coverings and local S1

factors) are either Grassmannians Gp(A
n) or sets of subspaces {Gp(B

n) ⊂ Gp(A
n)}

where B is some self-reflective subalgebra of A where either A = K ⊗ L =: KL with
K, L ∈ {R, C, H} or A is a self-reflective subalgebra of K ⊗ L. Some symmetric
spaces allow several such descriptions, cf. Table 2.4

The proof is mainly by identifying the group G of orthogonal A-linear maps g on
A

n. E.g. if A = HC, we have on V = A
n two anticommuting complex structures

i and j and another complex structure î = 1 ⊗ i which commutes with i, j. Then
S = îi with S2 = I has i-invariant (±1)-eigenspaces V± which are interchanged by

j. Any g ∈ G commutes with i, j, î. Thus g preserves the eigenspaces V± and is
already determined by its restriction to V− since V+ = jV−. Since g commutes with
i, the restriction g|V− is in the unitary group of V−

∼= C
2n and hence G = U2n.

But this proof does not apply to cases where A is non-associative. An algebraic
reason is that A

n is no longer an A-module. But there is also a geometric reason:
From a representation of a symmetric space P as a space of certain subspaces in A

n

we get an R-space structure on P , a noncompact transformation group extending
the isometry group on P . We just have to replace the orthogonal A-linear trans-
formations by arbitrary A-linear transformations. But most exceptional spaces are
not R-spaces!

Therefore in the second part of Table 2 below we have used results of D.S.P.
Leung and Chen-Nagano [8, 3] on self-reflective submanifolds. If Q ⊂ P = G/K is
a (self-)reflective subspace, then {Q ⊂ P} = G/GQ, where GQ = {g ∈ G : g(Q) =
Q}, and GQ contains the symmetry group of Q as a normal subgroup. Thus it is
easy to identify the spaces {Q ⊂ P}. E.g. E6/F4 can be viewed as the set of all
totally geodesic embeddings of OP

2 into OCP
2 (cf. [2], p. 313); we will write briefly

E6/F4 = {OP
2 ⊂ OCP

2}. Here A = OC and B = OR = Fix(ρ) with ρ = id ⊗ κ̂
on A where κ̂ is complex conjugation on the second tensor factor C. But other
cases, like E6/Sp4 and E7/SU8, are less obvious. It seems that those correspond
to involutions ρ of type (b) on A. In fact, the pairs (B, A) assigned to No. 15,
19 and 24 are only conjectured, following [7]. If we look for a proof, Vinberg’s
formula gives some hope to understand the corresponding groups, at least on the
infinitesimal level. This requires an extension of Vinberg’s formula to self-reflective
subalgebras of O⊗K and also to associative algebras to allow comparison with the
classical cases.

4. Conclusion

The linear algebra relevant to Riemannian symmetric spaces has two parts. Part
1 is the linear algebra over the the associative division algebras R, C, H, and it is
connected to the classical symmetric spaces. Part 2 should be a restricted linear
algebra over O which is not yet fully developed. It must be quite different. It cannot
contain vectors and modules and linear maps, but projective lines and planes and
even (3 × 3)-matrices seem to survive. We have tried a description of symmetric
spaces - classical as well as exceptional - in terms of the algebras A = K⊗R L with
K, L ∈ {R, C, H, O}. For the classical spaces (avoiding O) this is a theorem, for
the exceptional ones it is just a conjecture, but with some evidence. So let’s try to
learn Linear Algebra 2.

4The second column in Table 2 is the type of the space according to E. Cartan’s classification,
cf. [5]. In the last column, the space is represented either as a Grassmannian Gp(An) or as a space

of subspaces {Gp(Bn) ⊂ Gp(An)}.
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It is still incomprehensible how such an awful algebra like O⊗O (not associative,
not alternative, no division algebra) can be related to such beautiful structures as
the symmetric space E8/SO′

16. It is still unclear to me why twofold tensor products
of division algebras occur, but not tensor products with three or more factors. It is
still unclear why some projective geometry survives the breakdown of linear algebra
in the non-associative case. Elie Cartan classified symmetric spaces in 1926, but 86
years later we are still far from a full understanding of these spaces.

No. Type Space dim rk B A Grassmannian

1 AI Un/On
n(n+1)

2 n R C {RP
n−1 ⊂ CP

n−1}
2 U2n/O2n n(2n+1) 2n CC HC {G2(R

2n) ⊂ G2(C
2n)}

3 AII U2n/Spn 2n(n−1) n H HC {HP
n−1 ⊂ G2(C

2n)}
4 AIII Up+q/(UpUq) 2pq p C Gp(C

p+q)
5 U2n/(U2pU2n−2p) 8p(n−p) 2p HC Gp(HC

n)
6 U2n/(UnUn) 2n2 n CC HC {(CP

n−1)2⊂ G2(C
2n)}

7 BD I Op+q/OpOq pq p R Gp(R
p+q)

8 O4n/O4pO4n−4p 16p(n−p) 4p HH Gp(HH
n)

9 O2n/OnOn n2 n C CC {(RP
n−1)2 ⊂ G2(R

2n)}
10 O4n/O2nO2n 4n2 2n CCC HH {G2(R

2n)2 ⊂ G4(R
4n)}

11 D III O2n/Un n(n−1) [n
2 ] C CC {CP

n−1 ⊂ G2(R
2n)}

12 O4n/U2n 2n(2n−1) n HC HH {G2(C
2n) ⊂ G4(R

4n)}
13 C I Spn/Un n(n−1) n C H {CP

n−1 ⊂ HP
n−1}

14 C II Spp+q/SppSpq 4pq p H Gp(H
p+q)

15 E I E6/Sp4 42 6 C′
H? OC {G2(H

4)/Z2 ⊂ OCP
2}

16 E II E6/SU6Sp1 40 4 HC OC {G2(C
6) ⊂ OCP

2}
17 E III E6/Spin10U1 32 2 OC OCP

2

18 E IV E6/F4 26 2 O OC {OP
2 ⊂ OCP

2}
19 E V E7/SU8 70 7 C′

HC? OH {G4(C
8)/Z2 ⊂ OHP

2}
20 E VI E7/SO′

12Sp1 64 4 OH OHP
2

21 HH OH {G+
4 (R12) ⊂ OHP

2}
22 E VII E7/E6U1 54 3 OC OH {OCP

2 ⊂ OHP
2}

23 E VIII E8/SO′
16 128 8 OO OOP

2

24 C′
HH? OO {G#

8 (R16) ⊂ OOP
2}

25 E IX E8/E7Sp1 112 4 OH OO {OHP
2 ⊂ OOP

2}
26 F I F4/Sp3Sp1 28 4 H O {HP

2 ⊂ OP
2}

27 F II F4/Spin9 16 1 O OP
2

28 GI G2/SO4 8 2 H O {H ⊂ O}

Table 2
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