PLURIHARMONIC MAPS INTO KAHLER SYMMETRIC
SPACES AND SYM’S FORMULA
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ABSTRACT. A construction due to Sym and Bobenko recovers constant mean
curvature surfaces in euclidean 3-space from their harmonic Gauss maps. We
generalize this construction to higher dimensions and codimensions replacing
the surface by a complex manifold and the sphere (the target space of the
Gauss map) by a Kahler symmetric space of compact type with its standard
embedding into the Lie algebra g of its transvection group. Thus we obtain a
new class of immersed Kéahler submanifolds of g and we derive their properties.

INTRODUCTION

An important notion for a surface in euclidean 3-space is the Gauss map which
assigns to each point its normal vector in the sphere S? C R3. But can one revert
this process and recover the original surface from its Gauss map? In general this
is impossible; e.g. for minimal surfaces the Gauss map remains the same when we
pass to the associated surfaces. However, there are surface classes where such a
one-to-one correspondence exists. Among them are surfaces of prescribed nonzero
constant mean curvature (cmc). By a theorem of Ruh and Vilms [18], an immersed
surface f : M — R3 is cmc if and only if its Gauss map is harmonic. Vice versa,
given a generic harmonic map h : M — S into the 2-sphere S, there exists precisely
one cmc surface f with Gauss map h and mean curvature H = % (say). It can be
constructed from h and its associated family using a famous formula of Sym [20]
and Bobenko [1].

The aim of our paper is to generalize this construction to higher dimensions and
codimensions. We replace the 2-sphere S by an arbitrary Kahler symmetric space
P of compact type and arrive at a new class of Kahler submanifolds of R™, which
could be called “pluri-cmc”. To be more precise, we must look a little closer to the
original Sym-Bobenko construction: Starting with a harmonic map h : M — S, one
obtains two weakly conformal maps fy : M — R3 with h = 3(fy — f_). Outside

the branch points, f; and f_ have Gauss map h and mean curvature H = —%
and H = %, respectively. Now let P = G/K be an arbitrary Kéhler symmetric

space of compact type. It can be viewed as an adjoint orbit in its transvection
Lie algebra g in the same way as S is an adjoint orbit in R3 = so03. As before,
there is a one-to-one correspondence between pluriharmonic maps h : M — P
from a complex manifold M, and pairs of maps fy, f- : M — g, which are quasi-
holomorphic (a notion generalizing “weakly conformal”) along the common normal
vector h = 1 (f+ — f-) (Theorem 7.2). At regular points the Riemannian metrics
on M induced by f+ are Kdhler . Moreover, both immersions are ‘pluri-cmc’, i.e.
when restricted to complex one-dimensional submanifolds of M they behave like
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cmce surfaces in a certain sense (cf. (35)); in particular they allow a very peculiar
isometric deformation (associated family).

As it turned out, a modified and less explicit version of the Sym-Bobenko con-
struction was already known to Bonnet ([2], see [12]), and, in fact, the viewpoint
of Bonnet is an important tool for our generalization.

1. PARALLEL SURFACES

Let us recall some elementary facts for surfaces in 3-space. Consider an immer-
sion f : M — R3 of a 2-dimensional manifold M (‘surface’). Suppose that M is
oriented and that v : M — S is the Gauss map of f, where S C R3 denotes the unit
sphere. The surface f gives rise to a family of parallel surfaces fy = f + tv for all
t € R (we always exclude the points where f; is not regular, i.e. not an immersion).
The surfaces f and f; have the same principal curvature vectors on M, but the
principal curvatures ki, ko change from k; = 1/r; to ;= 1/(r; — t).

Suppose now that f has constant Gaussian curvature 1, i.e. riro9 = 1. Then the
parallel surfaces f+1 have constant mean curvature H = i% at their regular points:
1 1 1+ 1o + 2
o1 +r2j:1 e () +1
Further, the metrics on M induced by f; and f_; are conformal to each other.
In fact, if v; € T,M (for some u € M) is a principal curvature vector for «;
with |df.v;| = |r;|, then |dfi.v;| = |r; — ¢|. Consequently, the length ratio of the
perpendicular vectors df;.v1 and df;.ve is the same for ¢ = 1 and t = —1 (which

proves conformality): Using 17y = 1, we have

2H

" 1)

7‘1—1.T1+1_T17‘2—|—7‘1—7’2—1_

: = =—1. (2)

ro—1 ro+1 rirg—ri+re—1
Vice versa, starting with a surface f : M — R3 of constant mean curvature H = %,
its parallel surfaces fl and f, have constant Gaussian curvature 1 and constant
mean curvature —%, respectively. Moreover, the metrics on M induced by f and
f2 are conformal.

2. THE GAUSS MAP OF CMC SURFACES

By a theorem of Ruh and Vilms [18], surfaces of constant mean curvature are
characterized by the harmonicity of their Gauss maps:

Theorem 2.1 (Ruh-Vilms). Let M be a Riemann surface and f : M — R3 a
conformal immersion. Then f has constant mean curvature if and only if its Gauss
map v : M — S is harmonic.

Proof. Let H be the mean curvature of an immersion f : M — R3. For each u € M
and v € T,,M we have

20,H = —0, trace dv = — trace V,dv = — trace (Vdv, df.v) = (Av,df v).

Here, V denotes the Levi-Civita connection and A the Laplacian for the induced
metric on M. For “=”  we use the symmetry of (Vdy,df) in all three arguments
(Codazzi). Thus 0,H = 0 for all v if and only if the tangent part of Av van-
ishes (note that df (T,M) = T, (,)S), which is the definition of v : M — S being

harmonic. O

Now let us consider the inverse problem: Given any harmonic map h : M — S
on a Riemann surface M, can we construct a cme surface f : M — R3 with H = :l:%
and Gauss map v = h? This question has already been solved by Bonnet in 1853
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(2], [12]) as follows: Using the results of the previous section, we know that such
surfaces always come in pairs

fr=g9=%h, (3)
where g : M — R3 has constant Gaussian curvature 1. Thus the task is to find
g from h. By harmonicity, the vector Ah is normal to S, i.e. it points into the

direction of h. This means h x Ah = 0 where x denotes the vector product on R?.
Using conformal coordinates (x,y) on M we have

0="nh X (hgs + hyy) = (h X hy)g + (b X hy)y,
where subscripts mean partial derivatives. In other words, the R3-valued 1-form
v = (h x hy)dx — (h x hg)dy (4)

is closed!, dy = 0. Hence it can be integrated, v = dg for some g : M — R3,
provided that M is simply connected. In fact, g has the desired properties (cf. [12])
as we will see below (Section 5, Remark 2).

Using the almost complex structures j on M and J on S (the vector product with
the position vector), we may rewrite (4) as

y=hxdhj=Jdhj. (5)

Hence from (3) we obtain
dfs = dh+ Jdhj. (6)

Theorem 2.2 (Bonnet). Let M be a Riemann surface and h : M — S a harmonic
map, then the 1-form v = J dhj is closed. Further, if M is simply connected, there
is (up to translations) precisely one pair of weakly conformal maps f+ : M — R3
with constant mean curvature H = :F% and Gauss map h at the regular points, and
f+ is obtained by integrating df+ = dh . O

Remark. Equation (6) looks as if f_ and f; were holomorphic and antiholomor-
phic, respectively:
Jdfyj=Jdhj+dh=+dfy. (7)

But remember that J is the almost complex structure on S while fi does not take
values in S; only the tangent spaces are the same:

df 1 (T M) C Th(u)S (8)

(in fact we have equality). Mappings f1 satisfying (7) and (8) will be called quasi-
holomorphic along h (see Section 7). In the present context this simply means weak
conformality.

The Bonnet construction involves integrating the 1-form v = dg. More recently
it was observed by Sym [20] and Bobenko [1]? that ¢ has a direct geometric meaning
in terms of the associated family and the extended solution of the harmonic map h.
We will discuss this construction in a more general setting, using that (R3, x) is a
Lie algebra (corresponding to the Lie group SOs3) and S a particular adjoint orbit
which is a Kdhler symmetric space of compact type. In fact, any such space allows
this kind of embedding (Section 3 below). We will also generalize the domain M
to a complex manifold of arbitrary dimension (Section 4).

LSince harmonic maps are critical for a variational principle (the variation of the energy) which
is invariant under the isometry group of S, this formula can also be obtained as a conservation
law from the Noether theorem, see [17],[12].

2Sym studied surfaces g with Gaussian curvature K = —1 which have no parallel cmc surfaces.
Bobenko transferred this idea to the case K = +1 and to cmc surfaces.
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3. KAHLER SYMMETRIC SPACES

A Riemannian manifold P is Kdhler if it carries a parallel isometric almost com-
plex structure J. From Vx(JZ) = JVxZ we have R(X,Y)JZ = JR(X,Y)Z for
all tangent vectors X,Y,Z where R denotes the curvature tensor of P. Conse-
quently (R(X,Y)JZ,JW) = (R(X,Y)Z, W), and from the block symmetry of R
we see

R(X,Y)=R(JX,JY). 9)
Thus R(JX,Y) = R(JJX,JY) = —R(X,JY), and therefore J is a derivation of
R at any point p:
RJX,Y)Z+ R(X,JY)Z+ R(X,Y)JZ=JR(X,Y)Z.

Now let P = G/K be Kaihler symmetric (hermitian symmetric) of compact
type, i.e. P is Kahler and symmetric of compact type and all the point symmetries
(geodesic symmetries) s, are holomorphic. Then at any point p € P the curvature
tensor R is a Lie triple product on T, P and J, a derivation of R. We may assume
p=ceK. Let

=t+p (10)
be the corresponding Cartan decomposition (eigenspace decomposition of Ad(s,)).
Then we may identify T,P = p. We extend J,, : p — p to a derivation jp of the Lie
algebra g by putting jp = 0 on ¢. Since g is semisimple, each derivation is inner.

Hence we may view J, € g (acting on g by ad(Jp)). The map

J:P—g, p—J, (11)
is called the standard embedding of P (see [10]). Its image P = J(P) C g is an
adjoint orbit: Since J is parallel, J, and J, are conjugate for an arbitrary g € P
under the transvection g along a geodesic joining p = eK to q. Hence jq = Ad(g)jp.
By holomorphicity each & € K = G, preserves J,, thus jp centralizes K and
the map J : P — Ad(G)jp is an equivariant covering (note that the stabilizer
Lie algebra of jp is £). But in fact it is injective. To see this, note that the
orbit P = Ad(G)J, C g is itself an (extrinsic) hermitian symmetric space with
(extrinsic) symmetry s, = Ad(expw.J,) and almost complex structure ad(jp)|Tﬁ I3
where p = jp. Since any semisimple hermitian symmetric space is simply connected
[13, p. 376], the map J is one-to-one. The Riemannian metric on P induced by
any Ad(G)-invariant inner product on g coincides up to a constant with the initial
Riemannian metric on each de Rham factor. The tangent and normal spaces of P
at p = jp are

T;P = ad(g)J, = [p, Jp] = —Jp(p) =p, NP =p* =¢, (12)

thus (10) is also the decomposition into the tangent and normal space of P at jp.
(From now on, we will no longer distinguish between P and P. Hence we consider
P as a submanifold of g where the point p € P becomes the element p = J, € g.

Example 1. Let P = S C R3 be the 2-sphere. For any p € S we have 1,5 = pt and
Jpv =p x v for v € T),S. Let so03 be the space of real antisymmetric 3 x 3-matrices
(the Lie algebra of SO3). The mapping R?® — so3 : w — A, with A,z = w x x is
a linear isomorphism which transforms the vector product into the Lie product and
the usual SOs-action on R? into the adjoint action on so3. Thus the sphere S C R3,
which is the SOs-orbit of ez, is mapped onto the adjoint orbit of A., = je3.

Example 2. Let P = Gx(C") = U, /(U x U,_i) be the complex Grassmannian
of k-dimensional linear subspaces of C". Identifying each complex subspace with
its orthogonal projection, we embed P as a U,-conjugacy class into the space of
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hermitian or (after multiplying with ¢ = y/—1) anti-hermitian n X n-matrices which
form the Lie algebra u,, of the unitary group U,; this is the standard embedding.

4. PLURIHARMONIC MAPS

Let P = G/K be a semisimple symmetric space and M a simply connected com-
plex manifold with almost complex structure j. We will also use the corresponding
rotations

ro = (cosO)I + (sinf)j : TM — TM (13)
for any 6 € [0,27]. A smooth map h : M — P is called pluriharmonic if h|c is
harmonic for any complex one-dimensional submanifold (complex curve) C' C M,
or, in other terms, if the (1,1) part of the Hessian Vdh(t1 | the so called Levi form,
vanishes:

Vdh(v,w) + Vdh(jv, jw) =0 (14)
for any two tangent vectors v, w on M 3

Pluriharmonic maps always come in one-parameter families, called associated
families, defined as follows (cf. [9], [4]): The differential of a smooth map f : M — P
is a vector bundle homomorphism ¢ = df : TM — E = f*T'P. Vice versa,
given any vector bundle E (over M) endowed with a connection and a bundle
homomorphism ¢ : TM — FE, we may ask if ¢ is the differential of a smooth
map f; such a homomorphism (or E-valued 1-form) ¢ will be called integrable. If
this holds, F can be identified with f*T P and, in particular, E carries a parallel
Lie triple product on its fibres. Assuming that E is already equipped with such a
structure, one obtains the following precise integrability condition for ¢ (see [8]):
There exists amap f : M — P and a parallel vector bundle isometry ® : f*TP — E
preserving the Lie triple structure such that

o =odf. (15)

Both f and ® are unique up to translation with some g € G.

Now assume that a smooth map h : M — P is given, thus ¢y = dh is integrable.
We may ask if the rotated differential g = dhry is integrable for all € [0, 27] as
well. This question was answered in [9]: The integrability condition holds for all
g if and only if h is pluriharmonic. In this case we have a family of pluriharmonic
maps hyg : M — P (the associated family of h) and parallel bundle isometries
Oy : f*TP — f;TP preserving the curvature tensor (Lie triple product) of P such
that

dhg = (I)g dh To (16)
holds for all 8 € [0,27]. We can always assume &y = I, and, if P is an inner
symmetric space (which means that —I lies in the identity component of K acting
on p), we may choose additionally ®, = —1I, due to r; = —1I (see [4]). Since ®y(u)
maps 1't(,) P onto T, ()P preserving the metric and the curvature tensor, it is the
differential of a unique element of G mapping f(u) to fo(u). This will be called
®y(u) again and it defines a family of mappings ®p : M — G with &y = e and, if
P is inner, @, (u) = sp(y), Where s, € G denotes the point symmetry at g for any
q€eP.

Remark. Pluriharmonic maps have often been described in terms of moving
frames. If we choose (locally) a frame F' for h (i.e. a smooth map F : M, — G with
F(u)p = h(u) for any w € M, C M, where p = eK € P = G/K), we obtain also a
frame for each hy, namely

Fy = dyF. (17)

3In order to define the Hessian one has to choose locally a Ké&hler metric on M. However, the
definition of pluriharmonicity is independent of the choice of this metric.
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Then the corresponding Maurer-Cartan form* wg = EFy LdFy € QY(M, g) satisfies
wp = wg + Wp o = We + )\_1(4); + )\w;,' (18)

due to (16) and the parallelism of ®y (see [4]). Here we put A = e, and we, wy
are the components of w = wy = F~'dF in the Cartan decomposition (10), while
wy, wy are the restrictions of the (complexified) 1-form wy, : TM @ C — p ® C to

pr Wp
T'M ={v—ijv; ve TM}, T'M = {v+ijv; veTM}, (19)
the (£i)-eigenbundles of j. As a consequence of (17) and (18) we obtain
O, ldPy = Ad(F)(w—wre)
= (1-A"NHAdF)wy + (1 = X)) Ad(F)wy . (20)

This shows that ®g is an extended solution in the sense of Uhlenbeck [22], generalized
to the pluriharmonic case by Ohnita and Valli [15].

One may show that Ad(F)w, = % s,ds;, where s: P — G, p — s, is the Cartan
embedding and s, = so h.

5. THE KAHLER SYMMETRIC CASE

Let us restrict our attention to a Kdhler symmetric space P = G/K of compact
type. Using the standard embedding we consider P as an adjoint orbit in g. Then
the almost complex structure J, at any p € P C g is just ad(p), restricted to the
tangent space T,,P = ad(g)p C g.

Now we deal with two almost complex structures: j on M and J on P. Recall
that the definition of a pluriharmonic map h : M — P involves only j, not J (which
is not present in the general case). However, for Kéhler symmetric spaces we have
another characterization of pluriharmonic maps in terms of both j and J which
generalizes the first part of Bonnet’s theorem 2.2:

Theorem 5.1. Let P C g be a Kahler symmetric space of compact type, M a
complex manifold and h : M — P a smooth map. Then h is pluriharmonic if and
only if the g-valued 1-form v = Jdhj = [h,dhj] is closed.

Proof. We have dy(v,w) = 0,y(w) — 0yy(v) — v(Vyw — V,v) and

Ouyy(w) = 0Oylh, Ojuwh]
= [Oph, 0jwh] + [h, Dy 0w h]. (21)
Thus we obtain
dy(v,w) = [dh.wv,dh.jw] — [dh.w,dh.jv]
+ [ha th(v7]w) - th(wajv)L (22)

where h is considered as a map into the ambient space g rather than into P. The
normal and tangent spaces of P at the point A = h(u) € P (which we may consider
as the base point p = eK) form the Cartan decomposition (10). Since the kernel
of ad(h) is &, the term in the second line of (22) is in p while the two terms in the
first line belong to &, due to [p,p] C €. Thus we have dy = 0 if and only if

[dh.v,dh.jw] — [dh.w,dh.jv] = 0, (23)
(Vdh(v, jw) = Vdh(w,jv))" = 0, (24)
where ( )7 denotes the component in 7}, P. The second equation (24) says precisely
that h : M — P is pluriharmonic. The first one, (23), is a consequence of the

pluriharmonicity whenever P is a compact symmetric space: If h : M — P is
pluriharmonic, we have R(dh.a,dh.b) = 0 for all a,b € T'"M (see [15], [9]). For

4To keep the notation simple we assume that G is a matrix group.
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a=v —ijv and b = w — ijw this gives (23); recall that the Lie bracket on p is the
curvature operator of P (up to sign). O

Remark 1. All arguments can be generalized to metrics of arbitrary signa-
ture (see [19], [14]). However, in the indefinite case we can no more conclude
R(dh(T'M),dh(T'M)) = 0 from the pluriharmonicity of h : M — P. However,
this extra condition is extremely useful; e.g. it is necessary for an associated fam-
ily to exist. It was an additional assumption in [19] (called S!-pluriharmonicity).
Maybe the closedness of the form J dh j would be the better definition.

Remark 2. If M is simply connected, we can integrate v and find a smooth
mapping g : M — g with dg = v = Jdhj. Using (21) we compute its Hessian

Vdg(v,w) = [dh.v,dh.jw] + [h, Vdh(v, jw)]. (25)

In the Bonnet case (dim M = 2, P = S), the map g at regular points is the surface
with Gaussian curvature K = 1, see Section 1 and [12]. This is not completely
obvious since g is not isometric, not even conformal. The second fundamental form
a? of g (assuming that ¢ is an immersion) is the normal part of its Hessian (25).
In the surface case, there is no normal part inside T'S, thus we get (omitting the
symbol ‘dh’)

o (v,w) = [v, jw] = v X jw. (26)

Hence a9 (v, jv) =0 and a?(v,v) = [v, jv] = a9(jv, jv) and further

([v, jv], [v, jol)

([[v, jolv], jv)

= —(R(v,jv)v, jv)

= [Pljvl* = (v, jv)* (27)

Comparing with the Gauss equations for the surface g in R? we see that g has
Gaussian curvature K = 1.

Remark 3. The case where M is a surface and P = CP" = G1(C"") C sup g
was recently considered in [11].

<a9(1}’ U)70‘g(jvajv)> - |O‘g(vajw)|2

6. EXTENDING SYM’S CONSTRUCTION

For any pluriharmonic map h : M — P = G/K and its associated family
(ho, Pp) with framing Fy = ®pF' we define the Sym map (putting 6§ = %|g:0 and
using &g = I)

k= (6F)F! = (60)®,' =60 : M — g. (28)
This was introduced by Sym [20] in the case P = S. It is of particular importance
in the Kahler symmetric case where P is an adjoint orbit in the Lie algebra g. Thus
the group G acts on P C g by the adjoint representation, and the defining equation
(16) for the associated family now becomes

dhg = Ad(Dg) dhry. (29)
On the other hand, the isometry ®y(u) also maps h(u) onto hg(u):
hy = Ad(®g)h. (30)
Differentiating this last equation,
dhe = ad(d®g)h + Ad(®g)dh,
and comparing with (29) we obtain

Ad(Dg) dh(rg — I) = [dg, h]. (31)
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Now we differentiate once more, this time with respect to 6 at = 0, using ®g = ¢,
0Py =k and rqg = I, drg = j:

dhj = [0d®g, h] = —Jp, dk,
where Jp, = ad(h) is the complex structure on T P. Summing up we get:
Theorem 6.1. The Sym map k = §® integrates the Bonnet form ~y:
dk = Jdhj=r. (32)
O

Thus we have seen that the Sym map k is (up to a translation) nothing else than
the Bonnet map g (we will call it Bonnet-Sym-Bobenko map).

7. GENERALIZING CMC SURFACES

As we saw in the first section, cmc surfaces in 3-space always come in pairs fi
where v = 1(f} — f_) is the Gauss map. More precisely, cmc surfaces with |[H| = 1
can be characterized as pairs of immersions fy : M — R3, defined on a Riemann
surface M, being conformal (‘quasi-holomorphic’) and having common harmonic
Gauss map h = %( f+ — f-). If M is simply connected, there is an explicit one-to-
one correspondence between harmonic maps h : M — S and cmc surfaces (fy, f-);
the reverse correspondence h ~» (fi,f—) is given by the Bonnet-Sym-Bobenko
construction (see Theorem 2.2). In this form, cmc surfaces can be generalized to
higher dimension and codimension.

First we have to give a precise definition of quasi-holomorphicity. Let P C R"
be a submanifold whose induced metric is Kéahler. Further, let M be any complex
manifold and h : M — P a smooth map. Let j and J denote the almost complex
structures on M and P. Then J induces a complex structure Jp on the fibres of
h*TP, ie. Jye acts on Ty, P for any u € M. A smooth map f: M — R" is
called (F)quasi-holomorphic along h if

(1) df (TuwM) C dh(T,M) for any u € M,

(2) Jpdf j = £df.

Lemma 7.1. If f : M — P is quasi-holomorphic along h, then f is a Kdhler
immersion on its reqular set Mycq = {u € M; df, injective}, i.e. j is an isometric
parallel almost complex structure for the induced metric on Myeq.

Proof. Jp, is isometric and parallel in the bundle h*T P which contains df (T M),
and df intertwines j and FJj,. O

Theorem 7.2. Let P = G/K be a Kdhler symmetric space of compact type with its
standard embedding P C g and let M be a simply connected complex manifold. Then
there is a one-to-one correspondence (up to translations) between pluriharmonic
maps h : M — P with its associated family (hg, ®g) on the one side and on the
other side pairs of maps f+ : M — g with common pluriharmonic normal h =
%(f+ — f-): M — P such that fy is F-quasiholomorphic along h. The reverse
correspondence h ~ (fy, f-) is given by

fr=g9=xh, (33)
using the Bonnet-Sym-Bobenko map g = 6P : M — g.
Proof. Starting with a pluriharmonic map h : M — P, we only have to show that

the mappings fi defined by (33) are quasi-holomorphic and dfy(TM) L h. But
note that

dfy = dg +dh = Jdhj + dh,
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and hence Jdfyj = —dh &+ Jdhj = £dfy. Further, d,h L h (any adjoint orbit
lies in a sphere and is therefore perpendicular to the position vector) and J,0;,h =
[h,0juh] L h, thus 0, f+ L h.

Vice versa, starting with a quasi-holomorphic pair of maps (f;, f—) such that
h = L(f4 — f-) is pluriharmonic and normal to both fi, f_, we have to show
that ¢ = 1(f+ + f-) is the Bonnet-Sym-Bobenko map. This follows from the
quasi-holomorphicity:

1 ) ) 1
Jdgj = §(de+] +Jdf-j) = i(df+ —df-) = dh,
and therefore dg = Jdhj = 7. (|

Our last theorem summarizes the properties of these mappings.

Theorem 7.3. Let P C g be Kahler symmetric, M a simply connected com-
plex manifold and h : M — P a pluriharmonic map. Let (fi,f-) be the quasi-
holomorphic pair along h defined in Theorem 7.2. Suppose that f = fi is an
immersion. Then we have:

(1) f is a Kdhler immersion with second fundamental form
a(v,w) = [dhv, df jw] + J(VEdh).jw + (VEdh).w, (34)

where J, = ad(h) and V¥dh is the Hessian of h : M — P.
(2) For each v e TM we have

a(v,v) + a(jv, jv) = [Jndfv, df v] = of (df v, df v), (35)

where af denotes the second fundamental form of P C g at h € P.

(3) Fizing a point v € M we denote by p = Tj, () P and € = Ny, P the tangent
and normal spaces of P C g at h(u). Then the corresponding components
of a at u satisfy

S} (36)

ol = (h*a?)®O = [, dh,dh) 0, (37)
where oMV and o299 are the restrictions of o (after complezification) to
T'MQT"M and T'M @ T' M, respectively.

(4) The associated family ho of h leads to a one-parameter family fo : M — g
of isometric immersions with

df@ = Ad(‘bg)df To, (38)

and the second fundamental form oy of fo satisfies
agp(v,w) = Ad(Pg)ayp (v, rew) (39)
age(v,w) = Ad(Dg)ae(rev, rew). (40)

Proof. (1) By Lemma 7.1 f is a Kéhler immersion. We equip M with the induced
(K&hler) metric. Then f is an isometric immersion and « is just its Hessian,
a = Vdf = Vdg + Vdh. Form (25) we obtain

a(v,w) = [dhv, dh.jw] + [h, (Vydh).jw] + (Vydh).w. (41)

The middle term [h, Vdh(v, jw)] of (41) can be replaced by J, VZdh(v, jw) where
VPdh is the p-projection of Vdh (i.e. the Hessian of h : M — P) since ad(h) =
ad(.J,) vanishes on ¢ and acts as J = J, on p (see Section 3). The last term
Vdh(v,w) splits into its p and € components where the -component is given by
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the second fundamental form o’ of P C g which is of (X,Y) = [JX,Y] for all
X,Y € p.® Thus we obtain
a(v,w) = [dh.v,dh.jw] + [Jdh.v, dh.w] + [h, (VEdh).jw] + (VT dh).w.
For the second term on the right hand side we have
[Jdh.v,dh.w] = —[dhwv, Jdh.w] = [dh.v, Jdh.jjw] = [dh.v,dg.jw],

and combining this with the first term we obtain (34).

(3) The right hand side of (34) is already decomposed into its components with
respect to ¢ and p (note that df (T, M) C p and [p,p] C €), and (36) follows from
(23). To prove (37) note that o = Vdh + Vdyg, and

Vdg = V[h,dh j] = [dh, dh j] + [h, Vdh j).
The t-component of the second term [h, Vdh j] vanishes since ad(h) = ad(.J},) takes
values in p. The first term [dh,dh j] is antisymmetric on 7'M @ T'M (where j is

just a scalar factor 7), but VdgéQ’O) is symmetric, so it must be zero. We are left
with the (2, 0) component of (Vdh)e = aF (dh, dh) (mind that € is the normal space
of P C gatp=h(u).).

(2) In order to prove (35), we only have to consider the €-part of (34) since the
expression «a(v,v) + a(jv, jv) belongs to the (1,1)-part of @ whose p-component
vanishes by (36). We have

a(v,v) + ajv, jv) = [dhv, df ju] + [dh.jv, df jjv],
and since df j = —J df (due to the quasi-holomorphicity of f), the second term is
[dh.jv,df.jjv] = —[dh.jv, J df.jv] = [J dh.jv,df .jv] = [dg.v, df .jv].

Thus the two terms add up to [df.v,df.jv] = —[df.v, Jdf w] = [J df.v,df v] which
proves (35).

(4) Each pluriharmonic map hy associated with h gives a Bonnet-Sym-Bobenko
map gy with

dgo = Jn,dhgj
= Jhs Ad(@g)dh?‘ej
= Ad(q)g)Jhdhj To
= Ad(‘bg)dg To. (42)
But we also have
dh9 = Ad(q)g)dh To, (43)

(see (29)), and therefore we obtain (38) from dfy = dgg + dhy. Since Ad(Py) is an
isometry of g and ry is an isometry for the Kéhler metric on M induced by f, the
immersions fy are isometric. From the ¢-part of (34) we get (replacing dh with dhy
and using (43),
ape(v,w) = [Ad(Pg)dh.rov, Ad(Dg)df.rojw]
= Ad(®y)[dh.rgv, df .jrow]
= Ad(Pp)a(rev, row)
which proves (40). Finally, (39) can be concluded from the p-part of (34) observing
VEdhg = VE(®gdhry) = ®o(VEdh)ry,

which holds because rp and ®g (viewed as a homomorphism h*TP — hjTP) are
parallel. 0O

5We have (af (X,Y),£) = (xY, &) = —(Y,dxE) for any € € £. The vector X € TpP can be
expressed by the action of a one-parameter group g+ = exp tX for some X € p, more precisely,
X = Fli—oAd(g)p = [X,p] = —JX. Hence X = JX. Now Ox¢& = gli—o Ad(ge)¢ = [X,€] =
[JX7§]7 and <aP(X7 Y)’§> = 7<Y7 [JX7£]> = 7<[Yv JXL£>'
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Concluding Remarks.

1. Equation (35) is the generalization of the cmc property H = —%: It says that
for any complex one-dimensional submanifold (complex curve) C' C M, the mean
curvature vector of the surface f|¢ in g is given by the second fundamental form of
P along h|c. If M is itself a surface and P = S? with the position vector as unit
normal, then (a(v,v) 4+ a(jv, jv), h) = —(df.v, df.v) and hence f has cmc H = —1.
Due to (35), we would like to call the immersion f ‘pluri-cmc’ although in general
the mean curvature vector is not constant (not even of constant length) along f|c.

2. If h is isotropic pluriharmonic (see [9]), i.e. h admits a trivial associated family
hg = h, the maps fi are twistor lifts of other isotropic pluriharmonic maps, see
[16]. If h is even holomorphic (which is stronger), then fi =0 and f_ = 2h.

3. All three maps e = f, g, h have associated families ey formed in the same way:
deg = Ad(‘I’g)de To (44)

Geometrically this means that the tangent space de, (T, M) which is a subspace
of the J-closure of dh,(T,,M) (i.e. the smallest complex subspace of T}, ()P con-
taining dh, (T, M)) is moved in a parallel way for all three cases, using the same
automorphism Ad(®gy(u)).

4. There is an important difference between the case of cmc surfaces in 3-space and
the higher dimensional analogues: If f : M — P is pluriharmonic but not (anti)-
holomorphic, the dimension of M is strictly smaller than the one of P, with the
only exception P = S2. In fact, the flatness of dh(T'M) C h*TP @ C determines a
dimension bound, see [21], [7]. This difference is reflected in the appearance of
which does not occur in the cmc case.

5. There is yet another notion generalizing cmc surfaces, the so called ppmc sub-
manifolds, see [3]. These are Kéhler submanifolds M C R™ with parallel (1", and
they are characterized by the pluriharmonicity of their Gauss map. Our present
generalization is different: Note that the pluriharmonic map A : M — P is not
the (Grassmann-valued) Gauss map of fi but just one distinguished unit normal
vector of fi. This is the usual Gauss map only for surfaces in 3-space (P = S?).
A flaw of the ppmec notion is the difficulty of finding interesting examples, see also
[5], [6]. In contrast, the Bonnet-Sym-Bobenko construction gives many nontrivial
examples of ‘pluri-cmc’ submanifolds.
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