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Abstract. A construction due to Sym and Bobenko recovers constant mean
curvature surfaces in euclidean 3-space from their harmonic Gauss maps. We

generalize this construction to higher dimensions and codimensions replacing
the surface by a complex manifold and the sphere (the target space of the
Gauss map) by a Kähler symmetric space of compact type with its standard
embedding into the Lie algebra g of its transvection group. Thus we obtain a

new class of immersed Kähler submanifolds of g and we derive their properties.

Introduction

An important notion for a surface in euclidean 3-space is the Gauss map which
assigns to each point its normal vector in the sphere S2 ⊂ R

3. But can one revert
this process and recover the original surface from its Gauss map? In general this
is impossible; e.g. for minimal surfaces the Gauss map remains the same when we
pass to the associated surfaces. However, there are surface classes where such a
one-to-one correspondence exists. Among them are surfaces of prescribed nonzero
constant mean curvature (cmc). By a theorem of Ruh and Vilms [18], an immersed
surface f : M → R

3 is cmc if and only if its Gauss map is harmonic. Vice versa,
given a generic harmonic map h : M → S into the 2-sphere S, there exists precisely
one cmc surface f with Gauss map h and mean curvature H = 1

2 (say). It can be
constructed from h and its associated family using a famous formula of Sym [20]
and Bobenko [1].

The aim of our paper is to generalize this construction to higher dimensions and
codimensions. We replace the 2-sphere S by an arbitrary Kähler symmetric space
P of compact type and arrive at a new class of Kähler submanifolds of R

n, which
could be called “pluri-cmc”. To be more precise, we must look a little closer to the
original Sym-Bobenko construction: Starting with a harmonic map h : M → S, one
obtains two weakly conformal maps f± : M → R

3 with h = 1
2 (f+ − f−). Outside

the branch points, f+ and f− have Gauss map h and mean curvature H = − 1
2

and H = 1
2 , respectively. Now let P = G/K be an arbitrary Kähler symmetric

space of compact type. It can be viewed as an adjoint orbit in its transvection
Lie algebra g in the same way as S is an adjoint orbit in R

3 = so3. As before,
there is a one-to-one correspondence between pluriharmonic maps h : M → P
from a complex manifold M , and pairs of maps f+, f− : M → g, which are quasi-
holomorphic (a notion generalizing “weakly conformal”) along the common normal
vector h = 1

2 (f+ − f−) (Theorem 7.2). At regular points the Riemannian metrics
on M induced by f± are Kähler . Moreover, both immersions are ‘pluri-cmc’, i.e.
when restricted to complex one-dimensional submanifolds of M they behave like
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cmc surfaces in a certain sense (cf. (35)); in particular they allow a very peculiar
isometric deformation (associated family).

As it turned out, a modified and less explicit version of the Sym-Bobenko con-
struction was already known to Bonnet ([2], see [12]), and, in fact, the viewpoint
of Bonnet is an important tool for our generalization.

1. Parallel surfaces

Let us recall some elementary facts for surfaces in 3-space. Consider an immer-
sion f : M → R

3 of a 2-dimensional manifold M (‘surface’). Suppose that M is
oriented and that ν : M → S is the Gauss map of f, where S ⊂ R

3 denotes the unit
sphere. The surface f gives rise to a family of parallel surfaces ft = f + tν for all
t ∈ R (we always exclude the points where ft is not regular, i.e. not an immersion).
The surfaces f and ft have the same principal curvature vectors on M , but the
principal curvatures κ1, κ2 change from κj = 1/rj to κj,t = 1/(rj − t).

Suppose now that f has constant Gaussian curvature 1, i.e. r1r2 = 1. Then the
parallel surfaces f∓1 have constant mean curvature H = ± 1

2 at their regular points:

2H =
1

r1 ± 1
+

1

r2 ± 1
=

r1 + r2 ± 2

r1r2 ± (r1 + r2) + 1
= ±1. (1)

Further, the metrics on M induced by f1 and f−1 are conformal to each other.
In fact, if vj ∈ TuM (for some u ∈ M) is a principal curvature vector for κj

with |df.vj | = |rj |, then |dft.vj | = |rj − t|. Consequently, the length ratio of the
perpendicular vectors dft.v1 and dft.v2 is the same for t = 1 and t = −1 (which
proves conformality): Using r1r2 = 1, we have

r1 − 1

r2 − 1
:

r1 + 1

r2 + 1
=

r1r2 + r1 − r2 − 1

r1r2 − r1 + r2 − 1
= −1. (2)

Vice versa, starting with a surface f̃ : M → R
3 of constant mean curvature H = 1

2 ,

its parallel surfaces f̃1 and f̃2 have constant Gaussian curvature 1 and constant
mean curvature − 1

2 , respectively. Moreover, the metrics on M induced by f̃ and

f̃2 are conformal.

2. The Gauss map of cmc surfaces

By a theorem of Ruh and Vilms [18], surfaces of constant mean curvature are
characterized by the harmonicity of their Gauss maps:

Theorem 2.1 (Ruh–Vilms). Let M be a Riemann surface and f : M → R
3 a

conformal immersion. Then f has constant mean curvature if and only if its Gauss
map ν : M → S is harmonic.

Proof. Let H be the mean curvature of an immersion f : M → R
3. For each u ∈ M

and v ∈ TuM we have

2∂vH = −∂v trace dν = − trace ∇vdν
∗
= − trace 〈∇dν, df.v〉 = 〈∆ν, df.v〉.

Here, ∇ denotes the Levi-Civita connection and ∆ the Laplacian for the induced

metric on M . For “
∗
=”, we use the symmetry of 〈∇dν, df〉 in all three arguments

(Codazzi). Thus ∂vH = 0 for all v if and only if the tangent part of ∆ν van-
ishes (note that df(TuM) = Tν(u)S), which is the definition of ν : M → S being
harmonic. �

Now let us consider the inverse problem: Given any harmonic map h : M → S
on a Riemann surface M , can we construct a cmc surface f : M → R

3 with H = ± 1
2

and Gauss map ν = h? This question has already been solved by Bonnet in 1853
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([2], [12]) as follows: Using the results of the previous section, we know that such
surfaces always come in pairs

f± = g ± h, (3)

where g : M → R
3 has constant Gaussian curvature 1. Thus the task is to find

g from h. By harmonicity, the vector ∆h is normal to S, i.e. it points into the
direction of h. This means h×∆h = 0 where × denotes the vector product on R

3.
Using conformal coordinates (x, y) on M we have

0 = h × (hxx + hyy) = (h × hx)x + (h × hy)y,

where subscripts mean partial derivatives. In other words, the R
3-valued 1-form

γ = (h × hy)dx − (h × hx)dy (4)

is closed1, dγ = 0. Hence it can be integrated, γ = dg for some g : M → R
3,

provided that M is simply connected. In fact, g has the desired properties (cf. [12])
as we will see below (Section 5, Remark 2).

Using the almost complex structures j on M and J on S (the vector product with
the position vector), we may rewrite (4) as

γ = h × dh j = J dh j. (5)

Hence from (3) we obtain

df± = dh ± J dh j. (6)

Theorem 2.2 (Bonnet). Let M be a Riemann surface and h : M → S a harmonic
map, then the 1-form γ = J dh j is closed. Further, if M is simply connected, there
is (up to translations) precisely one pair of weakly conformal maps f± : M → R

3

with constant mean curvature H = ∓ 1
2 and Gauss map h at the regular points, and

f± is obtained by integrating df± = dh ± γ. �

Remark. Equation (6) looks as if f− and f+ were holomorphic and antiholomor-
phic, respectively:

J df± j = J dh j ± dh = ±df±. (7)

But remember that J is the almost complex structure on S while f± does not take
values in S; only the tangent spaces are the same:

df±(TuM) ⊂ Th(u)S (8)

(in fact we have equality). Mappings f± satisfying (7) and (8) will be called quasi-
holomorphic along h (see Section 7). In the present context this simply means weak
conformality.

The Bonnet construction involves integrating the 1-form γ = dg. More recently
it was observed by Sym [20] and Bobenko [1]2 that g has a direct geometric meaning
in terms of the associated family and the extended solution of the harmonic map h.
We will discuss this construction in a more general setting, using that (R3,×) is a
Lie algebra (corresponding to the Lie group SO3) and S a particular adjoint orbit
which is a Kähler symmetric space of compact type. In fact, any such space allows
this kind of embedding (Section 3 below). We will also generalize the domain M
to a complex manifold of arbitrary dimension (Section 4).

1Since harmonic maps are critical for a variational principle (the variation of the energy) which
is invariant under the isometry group of S, this formula can also be obtained as a conservation
law from the Noether theorem, see [17],[12].

2Sym studied surfaces g with Gaussian curvature K = −1 which have no parallel cmc surfaces.

Bobenko transferred this idea to the case K = +1 and to cmc surfaces.
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3. Kähler symmetric spaces

A Riemannian manifold P is Kähler if it carries a parallel isometric almost com-
plex structure J . From ∇X(JZ) = J∇XZ we have R(X,Y )JZ = JR(X,Y )Z for
all tangent vectors X,Y,Z where R denotes the curvature tensor of P . Conse-
quently 〈R(X,Y )JZ, JW 〉 = 〈R(X,Y )Z,W 〉, and from the block symmetry of R
we see

R(X,Y ) = R(JX, JY ). (9)

Thus R(JX, Y ) = R(JJX, JY ) = −R(X,JY ), and therefore J is a derivation of
R at any point p:

R(JX, Y )Z + R(X,JY )Z + R(X,Y )JZ = JR(X,Y )Z.

Now let P = G/K be Kähler symmetric (hermitian symmetric) of compact
type, i.e. P is Kähler and symmetric of compact type and all the point symmetries
(geodesic symmetries) sp are holomorphic. Then at any point p ∈ P the curvature
tensor R is a Lie triple product on TpP and Jp a derivation of R. We may assume
p = eK. Let

g = k + p (10)

be the corresponding Cartan decomposition (eigenspace decomposition of Ad(sp)).

Then we may identify TpP = p. We extend Jp : p → p to a derivation Ĵp of the Lie

algebra g by putting Ĵp = 0 on k. Since g is semisimple, each derivation is inner.

Hence we may view Ĵp ∈ g (acting on g by ad(Ĵp)). The map

Ĵ : P → g, p 7→ Ĵp (11)

is called the standard embedding of P (see [10]). Its image P̃ = Ĵ(P ) ⊂ g is an
adjoint orbit: Since J is parallel, Jp and Jq are conjugate for an arbitrary q ∈ P

under the transvection g along a geodesic joining p = eK to q. Hence Ĵq = Ad(g)Ĵp.

By holomorphicity each k ∈ K = Gp preserves Jp, thus Ĵp centralizes K and

the map Ĵ : P → Ad(G)Ĵp is an equivariant covering (note that the stabilizer

Lie algebra of Ĵp is k). But in fact it is injective. To see this, note that the

orbit P̃ = Ad(G)Ĵp ⊂ g is itself an (extrinsic) hermitian symmetric space with

(extrinsic) symmetry sp = Ad(expπĴp) and almost complex structure ad(Ĵp)|Tp̃P̃

where p̃ = Ĵp. Since any semisimple hermitian symmetric space is simply connected

[13, p. 376], the map Ĵ is one-to-one. The Riemannian metric on P̃ induced by
any Ad(G)-invariant inner product on g coincides up to a constant with the initial

Riemannian metric on each de Rham factor. The tangent and normal spaces of P̃
at p̃ = Ĵp are

Tp̃P̃ = ad(g)Ĵp = [p, Ĵp] = −Jp(p) = p, Np̃P̃ = p⊥ = k, (12)

thus (10) is also the decomposition into the tangent and normal space of P̃ at Ĵp.

¿From now on, we will no longer distinguish between P and P̃ . Hence we consider
P as a submanifold of g where the point p ∈ P becomes the element p = Ĵp ∈ g.

Example 1. Let P = S ⊂ R
3 be the 2-sphere. For any p ∈ S we have TpS = p⊥ and

Jpv = p× v for v ∈ TpS. Let so3 be the space of real antisymmetric 3× 3-matrices
(the Lie algebra of SO3). The mapping R

3 → so3 : w 7→ Aw with Awx := w × x is
a linear isomorphism which transforms the vector product into the Lie product and
the usual SO3-action on R

3 into the adjoint action on so3. Thus the sphere S ⊂ R
3,

which is the SO3-orbit of e3, is mapped onto the adjoint orbit of Ae3
= Ĵe3

.

Example 2. Let P = Gk(Cn) = Un/(Uk × Un−k) be the complex Grassmannian
of k-dimensional linear subspaces of C

n. Identifying each complex subspace with
its orthogonal projection, we embed P as a Un-conjugacy class into the space of
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hermitian or (after multiplying with i =
√
−1) anti-hermitian n×n-matrices which

form the Lie algebra un of the unitary group Un; this is the standard embedding.

4. Pluriharmonic maps

Let P = G/K be a semisimple symmetric space and M a simply connected com-
plex manifold with almost complex structure j. We will also use the corresponding
rotations

rθ = (cos θ)I + (sin θ)j : TM → TM (13)

for any θ ∈ [0, 2π]. A smooth map h : M → P is called pluriharmonic if h|C is
harmonic for any complex one-dimensional submanifold (complex curve) C ⊂ M ,
or, in other terms, if the (1,1) part of the Hessian ∇dh(1,1), the so called Levi form,
vanishes:

∇dh(v, w) + ∇dh(jv, jw) = 0 (14)

for any two tangent vectors v, w on M .3

Pluriharmonic maps always come in one-parameter families, called associated
families, defined as follows (cf. [9], [4]): The differential of a smooth map f : M → P
is a vector bundle homomorphism ϕ = df : TM → E = f∗TP . Vice versa,
given any vector bundle E (over M) endowed with a connection and a bundle
homomorphism ϕ : TM → E, we may ask if ϕ is the differential of a smooth
map f ; such a homomorphism (or E-valued 1-form) ϕ will be called integrable. If
this holds, E can be identified with f∗TP and, in particular, E carries a parallel
Lie triple product on its fibres. Assuming that E is already equipped with such a
structure, one obtains the following precise integrability condition for ϕ (see [8]):
There exists a map f : M → P and a parallel vector bundle isometry Φ : f∗TP → E
preserving the Lie triple structure such that

ϕ = Φ df. (15)

Both f and Φ are unique up to translation with some g ∈ G.
Now assume that a smooth map h : M → P is given, thus ϕ0 = dh is integrable.

We may ask if the rotated differential ϕθ = dh rθ is integrable for all θ ∈ [0, 2π] as
well. This question was answered in [9]: The integrability condition holds for all
ϕθ if and only if h is pluriharmonic. In this case we have a family of pluriharmonic
maps hθ : M → P (the associated family of h) and parallel bundle isometries
Φθ : f∗TP → f∗

θ TP preserving the curvature tensor (Lie triple product) of P such
that

dhθ = Φθ dh rθ (16)

holds for all θ ∈ [0, 2π]. We can always assume Φ0 = I, and, if P is an inner
symmetric space (which means that −I lies in the identity component of K acting
on p), we may choose additionally Φπ = −I, due to rπ = −I (see [4]). Since Φθ(u)
maps Tf(u)P onto Tfθ(u)P preserving the metric and the curvature tensor, it is the
differential of a unique element of G mapping f(u) to fθ(u). This will be called
Φθ(u) again and it defines a family of mappings Φθ : M → G with Φ0 = e and, if
P is inner, Φπ(u) = sh(u), where sq ∈ G denotes the point symmetry at q for any
q ∈ P .

Remark. Pluriharmonic maps have often been described in terms of moving
frames. If we choose (locally) a frame F for h (i.e. a smooth map F : Mo → G with
F (u)p = h(u) for any u ∈ Mo ⊂ M , where p = eK ∈ P = G/K), we obtain also a
frame for each hθ, namely

Fθ = ΦθF. (17)

3In order to define the Hessian one has to choose locally a Kähler metric on M . However, the

definition of pluriharmonicity is independent of the choice of this metric.
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Then the corresponding Maurer-Cartan form4 ωθ = F−1
θ dFθ ∈ Ω1(M, g) satisfies

ωθ = ωk + ωp rθ = ωk + λ−1ω′
p + λω′′

p (18)

due to (16) and the parallelism of Φθ (see [4]). Here we put λ = e−iθ, and ωk, ωp

are the components of ω = ω0 = F−1dF in the Cartan decomposition (10), while
ω′

p, ω′′
p are the restrictions of the (complexified) 1-form ωp : TM ⊗ C → p ⊗ C to

T ′M = {v − ijv; v ∈ TM}, T ′′M = {v + ijv; v ∈ TM}, (19)

the (±i)-eigenbundles of j. As a consequence of (17) and (18) we obtain

Φ−1
θ dΦθ = Ad(F )(ω − ω rθ)

= (1 − λ−1)Ad(F )ω′
p + (1 − λ)Ad(F )ω′′

p . (20)

This shows that Φθ is an extended solution in the sense of Uhlenbeck [22], generalized
to the pluriharmonic case by Ohnita and Valli [15].

One may show that Ad(F )ωp = 1
2 shdsh where s : P → G, p 7→ sp is the Cartan

embedding and sh = s ◦ h.

5. The Kähler symmetric case

Let us restrict our attention to a Kähler symmetric space P = G/K of compact
type. Using the standard embedding we consider P as an adjoint orbit in g. Then
the almost complex structure Jp at any p ∈ P ⊂ g is just ad(p), restricted to the
tangent space TpP = ad(g)p ⊂ g.

Now we deal with two almost complex structures: j on M and J on P . Recall
that the definition of a pluriharmonic map h : M → P involves only j, not J (which
is not present in the general case). However, for Kähler symmetric spaces we have
another characterization of pluriharmonic maps in terms of both j and J which
generalizes the first part of Bonnet’s theorem 2.2:

Theorem 5.1. Let P ⊂ g be a Kähler symmetric space of compact type, M a
complex manifold and h : M → P a smooth map. Then h is pluriharmonic if and
only if the g-valued 1-form γ = J dh j = [h, dh j] is closed.

Proof. We have dγ(v, w) = ∂vγ(w) − ∂wγ(v) − γ(∇vw −∇wv) and

∂vγ(w) = ∂v[h, ∂jwh]
= [∂vh, ∂jwh] + [h, ∂v∂jwh]. (21)

Thus we obtain

dγ(v, w) = [dh.v, dh.jw] − [dh.w, dh.jv]
+ [h,∇dh(v, jw) −∇dh(w, jv)], (22)

where h is considered as a map into the ambient space g rather than into P . The
normal and tangent spaces of P at the point h = h(u) ∈ P (which we may consider
as the base point p = eK) form the Cartan decomposition (10). Since the kernel
of ad(h) is k, the term in the second line of (22) is in p while the two terms in the
first line belong to k, due to [p, p] ⊂ k. Thus we have dγ = 0 if and only if

[dh.v, dh.jw] − [dh.w, dh.jv] = 0, (23)

(∇dh(v, jw) −∇dh(w, jv))T = 0, (24)

where ( )T denotes the component in ThP . The second equation (24) says precisely
that h : M → P is pluriharmonic. The first one, (23), is a consequence of the
pluriharmonicity whenever P is a compact symmetric space: If h : M → P is
pluriharmonic, we have R(dh.a, dh.b) = 0 for all a, b ∈ T ′M (see [15], [9]). For

4To keep the notation simple we assume that G is a matrix group.
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a = v − ijv and b = w − ijw this gives (23); recall that the Lie bracket on p is the
curvature operator of P (up to sign). �

Remark 1. All arguments can be generalized to metrics of arbitrary signa-
ture (see [19], [14]). However, in the indefinite case we can no more conclude
R(dh(T ′M), dh(T ′M)) = 0 from the pluriharmonicity of h : M → P . However,
this extra condition is extremely useful; e.g. it is necessary for an associated fam-
ily to exist. It was an additional assumption in [19] (called S1-pluriharmonicity).
Maybe the closedness of the form J dh j would be the better definition.

Remark 2. If M is simply connected, we can integrate γ and find a smooth
mapping g : M → g with dg = γ = J dh j. Using (21) we compute its Hessian

∇dg(v, w) = [dh.v, dh.jw] + [h,∇dh(v, jw)]. (25)

In the Bonnet case (dim M = 2, P = S), the map g at regular points is the surface
with Gaussian curvature K = 1, see Section 1 and [12]. This is not completely
obvious since g is not isometric, not even conformal. The second fundamental form
αg of g (assuming that g is an immersion) is the normal part of its Hessian (25).
In the surface case, there is no normal part inside TS, thus we get (omitting the
symbol ‘dh’)

αg(v, w) = [v, jw] = v × jw. (26)

Hence αg(v, jv) = 0 and αg(v, v) = [v, jv] = αg(jv, jv) and further

〈αg(v, v), αg(jv, jv)〉 − |αg(v, jw)|2 = 〈[v, jv], [v, jv]〉
= 〈[[v, jv]v], jv〉
= −〈R(v, jv)v, jv〉
= |v|2|jv|2 − 〈v, jv〉2. (27)

Comparing with the Gauss equations for the surface g in R
3 we see that g has

Gaussian curvature K = 1.

Remark 3. The case where M is a surface and P = CPn = G1(C
n+1) ⊂ sun+1

was recently considered in [11].

6. Extending Sym’s construction

For any pluriharmonic map h : M → P = G/K and its associated family
(hθ,Φθ) with framing Fθ = ΦθF we define the Sym map (putting δ = ∂

∂θ
|θ=0 and

using Φ0 = I)

k := (δF )F−1 = (δΦ)Φ−1
0 = δΦ : M → g. (28)

This was introduced by Sym [20] in the case P = S. It is of particular importance
in the Kähler symmetric case where P is an adjoint orbit in the Lie algebra g. Thus
the group G acts on P ⊂ g by the adjoint representation, and the defining equation
(16) for the associated family now becomes

dhθ = Ad(Φθ) dh rθ. (29)

On the other hand, the isometry Φθ(u) also maps h(u) onto hθ(u):

hθ = Ad(Φθ)h. (30)

Differentiating this last equation,

dhθ = ad(dΦθ)h + Ad(Φθ)dh,

and comparing with (29) we obtain

Ad(Φθ) dh(rθ − I) = [dΦθ, h]. (31)
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Now we differentiate once more, this time with respect to θ at θ = 0, using Φ0 = e,
δΦθ = k and r0 = I, δrθ = j:

dh j = [δdΦθ, h] = −Jh dk,

where Jh = ad(h) is the complex structure on ThP . Summing up we get:

Theorem 6.1. The Sym map k = δΦ integrates the Bonnet form γ:

dk = J dh j = γ. (32)

�

Thus we have seen that the Sym map k is (up to a translation) nothing else than
the Bonnet map g (we will call it Bonnet-Sym-Bobenko map).

7. Generalizing cmc surfaces

As we saw in the first section, cmc surfaces in 3-space always come in pairs f±
where ν = 1

2 (f+−f−) is the Gauss map. More precisely, cmc surfaces with |H| = 1
2

can be characterized as pairs of immersions f± : M → R
3, defined on a Riemann

surface M, being conformal (‘quasi-holomorphic’) and having common harmonic
Gauss map h = 1

2 (f+ − f−). If M is simply connected, there is an explicit one-to-
one correspondence between harmonic maps h : M → S and cmc surfaces (f+, f−);
the reverse correspondence h ; (f+, f−) is given by the Bonnet-Sym-Bobenko
construction (see Theorem 2.2). In this form, cmc surfaces can be generalized to
higher dimension and codimension.

First we have to give a precise definition of quasi-holomorphicity. Let P ⊂ R
n

be a submanifold whose induced metric is Kähler. Further, let M be any complex
manifold and h : M → P a smooth map. Let j and J denote the almost complex
structures on M and P . Then J induces a complex structure Jh on the fibres of
h∗TP , i.e. Jh(u) acts on Th(u)P for any u ∈ M . A smooth map f : M → R

n is
called (∓)quasi-holomorphic along h if

(1) df(TuM) ⊂ dh(TuM) for any u ∈ M ,
(2) Jh df j = ±df .

Lemma 7.1. If f : M → P is quasi-holomorphic along h, then f is a Kähler
immersion on its regular set Mreg = {u ∈ M ; dfu injective}, i.e. j is an isometric
parallel almost complex structure for the induced metric on Mreg.

Proof. Jh is isometric and parallel in the bundle h∗TP which contains df(TM),
and df intertwines j and ∓Jh. �

Theorem 7.2. Let P = G/K be a Kähler symmetric space of compact type with its
standard embedding P ⊂ g and let M be a simply connected complex manifold. Then
there is a one-to-one correspondence (up to translations) between pluriharmonic
maps h : M → P with its associated family (hθ,Φθ) on the one side and on the
other side pairs of maps f± : M → g with common pluriharmonic normal h =
1
2 (f+ − f−) : M → P such that f± is ∓-quasiholomorphic along h. The reverse
correspondence h ; (f+, f−) is given by

f± = g ± h, (33)

using the Bonnet-Sym-Bobenko map g = δΦ : M → g.

Proof. Starting with a pluriharmonic map h : M → P , we only have to show that
the mappings f± defined by (33) are quasi-holomorphic and df±(TM) ⊥ h. But
note that

df± = dg ± dh = J dh j ± dh,
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and hence J df± j = −dh ± J dh j = ±df±. Further, ∂vh ⊥ h (any adjoint orbit
lies in a sphere and is therefore perpendicular to the position vector) and Jh∂jvh =
[h, ∂jvh] ⊥ h, thus ∂vf± ⊥ h.

Vice versa, starting with a quasi-holomorphic pair of maps (f+, f−) such that
h = 1

2 (f+ − f−) is pluriharmonic and normal to both f+, f−, we have to show

that g = 1
2 (f+ + f−) is the Bonnet-Sym-Bobenko map. This follows from the

quasi-holomorphicity:

J dg j =
1

2
(J df+ j + J df− j) =

1

2
(df+ − df−) = dh,

and therefore dg = J dh j = γ. �

Our last theorem summarizes the properties of these mappings.

Theorem 7.3. Let P ⊂ g be Kähler symmetric, M a simply connected com-
plex manifold and h : M → P a pluriharmonic map. Let (f+, f−) be the quasi-
holomorphic pair along h defined in Theorem 7.2. Suppose that f = f+ is an
immersion. Then we have:

(1) f is a Kähler immersion with second fundamental form

α(v, w) = [dh.v, df.jw] + Jh(∇P
v dh).jw + (∇P

v dh).w, (34)

where Jh = ad(h) and ∇P dh is the Hessian of h : M → P .
(2) For each v ∈ TM we have

α(v, v) + α(jv, jv) = [Jhdf.v, df.v] = αP
h (df.v, df.v), (35)

where αP
h denotes the second fundamental form of P ⊂ g at h ∈ P .

(3) Fixing a point u ∈ M we denote by p = Th(u)P and k = Nh(u)P the tangent
and normal spaces of P ⊂ g at h(u). Then the corresponding components
of α at u satisfy

α
(1,1)
p = 0, (36)

α
(2,0)
k = (h∗αP )(2,0) = [Jh dh, dh](2,0), (37)

where α(1,1) and α(2,0) are the restrictions of α (after complexification) to
T ′M ⊗ T ′′M and T ′M ⊗ T ′M , respectively.

(4) The associated family hθ of h leads to a one-parameter family fθ : M → g

of isometric immersions with

dfθ = Ad(Φθ)df rθ, (38)

and the second fundamental form αθ of fθ satisfies

αθ,p(v, w) = Ad(Φθ)αp(v, rθw) (39)

αθ,k(v, w) = Ad(Φθ)αk(rθv, rθw). (40)

Proof. (1) By Lemma 7.1 f is a Kähler immersion. We equip M with the induced
(Kähler) metric. Then f is an isometric immersion and α is just its Hessian,
α = ∇df = ∇dg + ∇dh. Form (25) we obtain

α(v, w) = [dh.v, dh.jw] + [h, (∇vdh).jw] + (∇vdh).w. (41)

The middle term [h,∇dh(v, jw)] of (41) can be replaced by Jh∇P dh(v, jw) where
∇P dh is the p-projection of ∇dh (i.e. the Hessian of h : M → P ) since ad(h) =

ad(Ĵh) vanishes on k and acts as J = Jh on p (see Section 3). The last term
∇dh(v, w) splits into its p and k components where the k-component is given by
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the second fundamental form αP of P ⊂ g which is αP (X,Y ) = [JX, Y ] for all
X,Y ∈ p.5 Thus we obtain

α(v, w) = [dh.v, dh.jw] + [Jdh.v, dh.w] + [h, (∇P
v dh).jw] + (∇P

v dh).w.

For the second term on the right hand side we have

[Jdh.v, dh.w] = −[dh.v, Jdh.w] = [dh.v, Jdh.jjw] = [dh.v, dg.jw],

and combining this with the first term we obtain (34).
(3) The right hand side of (34) is already decomposed into its components with

respect to k and p (note that df(TuM) ⊂ p and [p, p] ⊂ k), and (36) follows from
(23). To prove (37) note that α = ∇dh + ∇dg, and

∇dg = ∇[h, dh j] = [dh, dh j] + [h,∇dh j].

The k-component of the second term [h,∇dh j] vanishes since ad(h) = ad(Ĵh) takes
values in p. The first term [dh, dh j] is antisymmetric on T ′M ⊗ T ′M (where j is

just a scalar factor i), but ∇dg
(2,0)
k is symmetric, so it must be zero. We are left

with the (2, 0) component of (∇dh)k = αP (dh, dh) (mind that k is the normal space
of P ⊂ g at p = h(u).).

(2) In order to prove (35), we only have to consider the k-part of (34) since the
expression α(v, v) + α(jv, jv) belongs to the (1, 1)-part of α whose p-component
vanishes by (36). We have

α(v, v) + α(jv, jv) = [dh.v, df.jv] + [dh.jv, df.jjv],

and since df j = −J df (due to the quasi-holomorphicity of f), the second term is

[dh.jv, df.jjv] = −[dh.jv, J df.jv] = [J dh.jv, df.jv] = [dg.v, df.jv].

Thus the two terms add up to [df.v, df.jv] = −[df.v, J df.v] = [J df.v, df.v] which
proves (35).

(4) Each pluriharmonic map hθ associated with h gives a Bonnet-Sym-Bobenko
map gθ with

dgθ = Jhθ
dhθ j

= Jhθ
Ad(Φθ)dh rθ j

= Ad(Φθ)Jhdh j rθ

= Ad(Φθ)dg rθ. (42)

But we also have
dhθ = Ad(Φθ)dh rθ, (43)

(see (29)), and therefore we obtain (38) from dfθ = dgθ + dhθ. Since Ad(Φθ) is an
isometry of g and rθ is an isometry for the Kähler metric on M induced by f , the
immersions fθ are isometric. From the k-part of (34) we get (replacing dh with dhθ

and using (43),

αθ,k(v, w) = [Ad(Φθ)dh.rθv,Ad(Φθ)df.rθjw]
= Ad(Φθ)[dh.rθv, df.jrθw]
= Ad(Φθ)α(rθv, rθw)

which proves (40). Finally, (39) can be concluded from the p-part of (34) observing

∇P
v dhθ = ∇P

v (Φθ dh rθ) = Φθ(∇P
v dh)rθ,

which holds because rθ and Φθ (viewed as a homomorphism h∗TP → h∗
θTP ) are

parallel. �

5We have 〈αP (X, Y ), ξ〉 = 〈∂XY, ξ〉 = −〈Y, ∂Xξ〉 for any ξ ∈ k. The vector X ∈ TpP can be

expressed by the action of a one-parameter group gt = exp tX̂ for some X̂ ∈ p, more precisely,

X = d
dt
|t=0 Ad(gt)p = [X̂, p] = −JX̂. Hence X̂ = JX. Now ∂Xξ = d

dt
|t=0 Ad(gt)ξ = [X̂, ξ] =

[JX, ξ], and 〈αP (X, Y ), ξ〉 = −〈Y, [JX, ξ]〉 = −〈[Y, JX], ξ〉.
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Concluding Remarks.

1. Equation (35) is the generalization of the cmc property H = − 1
2 : It says that

for any complex one-dimensional submanifold (complex curve) C ⊂ M , the mean
curvature vector of the surface f |C in g is given by the second fundamental form of
P along h|C . If M is itself a surface and P = S2 with the position vector as unit
normal, then 〈α(v, v) + α(jv, jv), h〉 = −〈df.v, df.v〉 and hence f has cmc H = − 1

2 .
Due to (35), we would like to call the immersion f ‘pluri-cmc’ although in general
the mean curvature vector is not constant (not even of constant length) along f |C .

2. If h is isotropic pluriharmonic (see [9]), i.e. h admits a trivial associated family
hθ = h, the maps f± are twistor lifts of other isotropic pluriharmonic maps, see
[16]. If h is even holomorphic (which is stronger), then f+ = 0 and f− = 2h.

3. All three maps e = f, g, h have associated families eθ formed in the same way:

deθ = Ad(Φθ)de rθ (44)

Geometrically this means that the tangent space deu(TuM) which is a subspace
of the J-closure of dhu(TuM) (i.e. the smallest complex subspace of Th(u)P con-
taining dhu(TuM)) is moved in a parallel way for all three cases, using the same
automorphism Ad(Φθ(u)).

4. There is an important difference between the case of cmc surfaces in 3-space and
the higher dimensional analogues: If f : M → P is pluriharmonic but not (anti)-
holomorphic, the dimension of M is strictly smaller than the one of P , with the
only exception P = S2. In fact, the flatness of dh(T ′M) ⊂ h∗TP ⊗C determines a
dimension bound, see [21], [7]. This difference is reflected in the appearance of αp

which does not occur in the cmc case.

5. There is yet another notion generalizing cmc surfaces, the so called ppmc sub-
manifolds, see [3]. These are Kähler submanifolds M ⊂ R

n with parallel α(1,1), and
they are characterized by the pluriharmonicity of their Gauss map. Our present
generalization is different: Note that the pluriharmonic map h : M → P is not
the (Grassmann-valued) Gauss map of f± but just one distinguished unit normal
vector of f±. This is the usual Gauss map only for surfaces in 3-space (P = S2).
A flaw of the ppmc notion is the difficulty of finding interesting examples, see also
[5], [6]. In contrast, the Bonnet-Sym-Bobenko construction gives many nontrivial
examples of ‘pluri-cmc’ submanifolds.
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de mathématiques XII (1853), 433 - 438

[3] F.E. Burstall, J.-H. Eschenburg, M.J. Ferreira, R. Tribuzy: Kähler submanifolds with parallel
pluri-mean curvature, Diff. Geom. Appl. 20 (2004), 47 - 66

[4] J. Dorfmeister, J.-H. Eschenburg: Pluriharmonic maps, loop groups and twistor theory, Ann.

Glob. Anal. Geom. 24 (2003), 301 - 321
[5] J.-H. Eschenburg, M.J. Ferreira, R. Tribuzy: Isotropic ppmc immersions, to appear in Ann.

Glob. Anal. Geom. (2007)
[6] J.-H. Eschenburg, M.J. Ferreira, R. Tribuzy: A Characterization of the standard embedding

of CP 2, Preprint 2007
[7] J.-H. Eschenburg, P. Kobak: Pluriharmonic maps of maximal rank, to appear in Math. Z.

(2007)

[8] J.-H. Eschenburg, R. Tribuzy: Existence and uniqueness of maps into affine homogeneous
spaces, Rend. Sem. Mat. Univ. Padova 69 (1993), 11 - 18

[9] J.-H. Eschenburg, R. Tribuzy: Associated families of pluriharmonic maps and isotropy,
manuscripta math. 95 (1998), 295 - 310

[10] D. Ferus: Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81 - 93



12 J.-H. ESCHENBURG AND P. QUAST

[11] A.M. Grundland, A. Strassburger, W.J. Zakrzewski: Surfaces immersed in su(N + 1) Lie
algebras obtained from the CP N sigma models, J. Phys. A, Math. Gen. 39 No. 29 (2006),
9187 - 9213
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