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1 Introduction

One of the classical tools for the theory of m-dimensional submanifolds M in
euclidean n-space E = Rn is the Gauss map N . It assigns to each point x ∈
M ⊂ E its normal space Nx = (Tx)

⊥ and takes values in the Grassmannian
Gr = Grk(Rn) of all (possibly oriented) k-dimensional linear subspaces in Rn
where k = n−m is the codimension of M . We briefly discuss the question if
the submanifold can be recovered from its Gauss map, and we ask for classes
of submanifolds where this happens. Then we restrict attention to a class
of submanifolds where much more is valid: these submanifolds are recovered
just from the image of their Gauss maps.

In the hypersurface case k = 1, the range of the Gauss map is the m-
sphere which has the same dimension as M . In higher codimension we always
have dimM < dim Gr, but sometimes the values of N actually lie in an m-
dimensional totally geodesic subspace of Gr; e.g. this happens for complex
hypersurfaces of Cp where N takes values in CPp−1 ⊂ Gr2(R2p). Further,
if M ⊂ E is an extrinsic symmetric space, i.e. it is invariant under the
reflection at each of its normal spaces, then the Gauss image of M is also
totally geodesic. According to Nikolaewskii [15], there are no other totally
geodesic Gauss images in Gr, and the last mentioned case is completely rigid:

Theorem. Let Mo ⊂ E be an m-dimensional (full) irreducible extrinsic
symmetric submanifold other than the sphere Sm, and let No : Mo → Gr
be its Gauss map. Let M ⊂ E be any submanifold of the same dimension
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m with non-constant Gauss map N : M → Gr. Assume N(M) ⊂ No(Mo).
Then up to translations and scaling, M is an open subset of Mo.

In the present paper we give a conceptual proof of this part of Nikolaewskii’s
theorem (the original proof involves extended matrix computations with
many different cases). This purely local theorem is very remarkable: It
determines a (small piece of a) submanifold only from its Gauss image. A
similar statement for real or complex hypersurfaces would be obviously false;
the Gauss image is always contained in the sphere or complex projective
space which does not restrict the shape of the submanifold.

The paper is organized as follows. In sections 2–5 we introduce the “main
players”: fundamental forms, Gauss maps and extrinsic symmetric spaces.
The theorem is proved in Sections 6 and 7. One of the main tools for the
proof is Lemma 2 which was also used in [2] and goes back to Naitoh (cf.
[14]). Note that all our considerations are local, therefore we do not have to
distinguish between embeddings and immersions.

It is a pleasure to thank V. Matveev for hints and discussion.

2 Fundamental forms and Gauss map

Differential geometry began with the study of submanifolds, curves and sur-
faces in euclidean 3-space, and even today these are the main objects used to
explain general geometric ideas. The theory of submanifolds M in euclidean
n-space E = En (cf. [1] for a recent approach) has two different aspects:
inner and outer geometry. Inner geometry is based on the interior distance
between points in M where the distance is measured by arc length of curves
within M while outer geometry describes how tangent or normal spaces move
from point to point inside the ambient space. They correspond to the two
main invariants, the first and second fundamental forms g and α:

g(v, w) = 〈v, w〉,
αξ(v, w) = 〈∂vw, ξ〉 = −〈w, ∂vξ〉 = 〈Aξv, w〉

for any normal field ξ and any two tangent vector fields v, w on M . For the
simplest objects of differential geometry, the planar curves, the two invariants
are just numbers, arc length and curvature. C.F. Gauss derived a relation
between the two fundamental forms which is now called Gauss equation:

R = α ∧ α (1)

2



where R is the Riemannian curvature tensor (a second order expression in
g). It was created by Gauss’ student B. Riemann who isolated the first
aspect and created an inner geometry on manifolds which no longer need to
be embedded. The existence and uniqueness theorem for submanifolds says
that one only needs to prescribe the two fundamental forms on M in order
to encode the full submanifold geometry; in fact, the relations between the
fundamental forms discovered by Gauss, Codazzi and Ricci are necessary and
sufficient to warrant an embedding which is unique up to rigid motions.

Yet in some sense there is a more fundamental invariant for submani-
folds in euclidean space, M ⊂ E, expressing directly the point-dependence
of the normal spaces. This is the Gauss map which has been studied be-
fore by Euler and others. It assigns to each point x ∈ M its normal space
Nx := NxM = (TxM)⊥ ⊂ E. For surfaces in E3 and more generally for m-
dimensional submanifolds of Em+1 (hypersurfaces) the normal space is just
a line, i.e. an element of real projective m-space RPm, and if the normal
lines are orientated, the Gauss map takes values in the m-sphere Sm, the
2-fold cover of RPm. Gauss had a practical reason to study this map: Be-
ing the astronomer Royal of the kingdom of Hannover (now the German
state Niedersachsen), he was responsible for the surveying of this country
1821–1825, and the Gauss map of the earth surface (the zenith direction)
is important for surveying since it determines the geographical coordinates.
The triangulation used by Gauss was shown on the last German 10 Mark
bill.

In general, the Gauss map of a submanifold Mm ⊂ En is a map into the
Grassmannian Gr = Grk(En) of k-dimensional linear subspaces of En where
k = n−m is the codimension; if M is oriented, one may put Gr the oriented
Grassmannian.1 Since the derivative of this map N : M → Gr measures how

1The oriented Grassmannian consists of the k-dimensional oriented subspaces of E (each
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the normal space is moving inside the ambient space, it should be essentially
the second fundamental form. In fact, the tangent vectors of Gr at Nx ∈ Gr
are the linear maps f : Nx → N⊥x = Tx,

2 and in particular, the tangent
vector ∂vN ∈ TNxGr for any v ∈ Tx is the linear map

∂vN : Nx 3 ξ 7→ (∂vξ)
T = −Aξv ∈ Tx. (2)

3 “Inverting” the Gauss map?

We want to consider the following problem: To which extend does the Gauss
map of a submanifold M ⊂ E determine its shape? More precisely, given the
Gauss map N : M → Gr together with the induced metric on M (first funda-
mental form), can we recover the embedding M ↪→ E? On the first sight, the
answer seems easy: Since the second fundamental form is the derivative of
N , both fundamental forms are given and the submanifold is determined by
the existence and uniqueness theorem. But this is false! Conterexamples are
obtained from minimal surfaces, i.e. surfaces in E3 with H := 1

2
trace α = 0.

They allow an isometric deformation preserving the Gauss map; the best
known example is the deformation of the catenoid into the helicoid.3 Hence
the same metric and Gauss map on the parameter manifold may allow several
non-congruent isometric embeddings.4

What was wrong with the argument? The given data consist of an ab-
stract Riemannian manifold M and a smooth map N : M → Gr. In order to
obtain the second fundamental form from (2), we need to identify the abstract
tangent bundle TM with the subbundle N⊥ ⊂ M × E. The corresponding

subspace appears doubly, with the two possible orientations). It is a 2-fold cover of the
ordinary Grassmannian; for k = 1 this is the covering Sm → RPm.

2Subspaces near Nx are graphs of linear maps f : Nx → N⊥x = Tx.

N

Nξ

ξ

f( )

x

x’
Tx

3http://en.wikipedia.org/wiki/Catenoid
4However, this cannot happen for non-minimal surfaces in E3: The Weingarten map A

(being a 2× 2-matrix) satisfies 0 = A2 − (trace A)A+ (detA)I = A2 − 2HA+KI . From
g and N we obtain K and A2 = dN tdN and H2 = 1

4 trace (A2) + 1
2K, and if H 6= 0, we

recover A = 1
2H (A2 +KI). Thus the embedding is uniquely determined by g and N .
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orthogonal isomorphism F : TM → N⊥ needs to be parallel with respect
to the Levi-Civita connection on TM and the projection connection of N⊥,
and moreover, the expression (∂v(Fw))⊥ = α(v, w) must be symmetric for
any two tangent vector fields v, w on M .5 For generic data it is impossible
to construct such a map. The precise obstructions for a map N : M → Gr
to be the Gauss map of an embedding of M seem to be unknown.

We can find positive answers for certain classes of submanifolds. One
such class is formed by the surfaces in E3 with fixed nonzero constant mean
curvature H, say H = 1

2
. Their Gauss map is harmonic [17], and for each

S2-valued harmonic map N on a simply connected two-dimensional Riemann
surface M there is (up to translations) exactly one immersion M → E3 with
H = 1

2
and Gauss map N . Ironically it is the same isometric deformation

which provides the counterexamples in the minimal surface case (H = 0) and
which in the case H = 1

2
is used to reconstruct the surface from its Gauss

map.6 In higher dimensions and codimensions we only know one class of
examples which we are going to describe next.

If M ⊂ E is a hypersurface (k = 1), then M and Gr = Sm have the
same dimension m, a very important geometric property: recall that the
Gauss-Kronnecker curvature of M is the determinant of dN which has many
implications. This is no longer true for codimension k ≥ 2 since dim Gr =
dim Hom(N, T ) = km > m = dimM . But in some cases we are able to find
a totally geodesic submanifold Q ⊂ Gr with dimQ = m and N(M) ⊂ Q.
E.g. if E = R2p = Cp and M ⊂ Cp is a complex submanifold with dimension
m = 2p − 2 (complex hypersurface), then Nx is always a complex line and
thus N takes values in complex projective space CPp−1 which is a totally
geodesic m-dimensional submanifold of Gr2(R2p).

In fact, Nikolaewskii [15] has classified the situation where such Q exists.
Besides real and complex hypersurfaces there is a third class which is related
to extrinsic symmetric spaces (see next section). Using extended matrix

5It is easy to see that these two requirements are also sufficient since the Rn-valued 1-
form F is closed and can be integrated. If (M, g) allows two different isometric embeddings
with the same Gauss map N , the two parallel isomorphisms F, F̃ : TM → N⊥ yield a
parallel and orthogonal automorphism F−1 ◦ F̃ of TM . Generically, i.e. if the holonomy
group is SO(m) with m > 2, such an automorphism must be trivial, thus an isometric
embedding with prescribed Gauss map is unique. In the case of minimal surfaces described
above, the automorphism is rotation by a constant angle. A similar phenomenon occurs
in higher dimensions for pluri-minimal submanifolds, cf. [7].

6This is the famous Sym-Bobenko Formula; see [6] for details and generalization.
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computations, Nikolaewskii could show that this last case is completely rigid:
the Gauss map image determines the submanifold uniquely. We wish to give
a conceptual proof for this theorem (as stated in the introduction).

4 Extrinsic symmetric spaces

A symmetric space is a Riemannian manifold M with an isometric point
reflection (symmetry) at every point x ∈ M , i.e. there is an isometry sx of
M with sx(x) = x and (dsx)x = −I. We are interested in a submanifold
version of this notion which is defined as follows.

For every submanifold M ⊂ E and any point x ∈ M we let τx be the
normal reflection at x, i.e. the affine isometry of E fixing x whose linear
part (differential) τx∗ has eigenvalues 1 on Nx and −1 on Tx. A submanifold
M ⊂ E is called extrinsic symmetric if it is preserved by all these normal
reflections τx, x ∈ M (cf. [1], Section 3.7). Clearly, an extrinsic symmetric
space with its induced Riemannian metric is a symmetric space where the
symmetry at x is τx|M . Examples are euclidean spheres Sm ⊂ Em+1, the
orthogonal group O(n) ⊂ Rn×n or the Grassmannians where a k-dimensional
linear subspace is replaced with the orthogonal reflection at this subspace
and the receiving space E consists of all symmetric n× n-matrices.7 In fact,
most symmetric spaces (so called symmetric R-spaces, [12]) allow such an
embedding.

The hermitian symmetric spaces are of particular interest. These are
symmetric spaces M with a Kähler structure J such that all symmetries
are holomorphic. Then at any x ∈ M , the complex structure Jx on TxM
is a skew symmetric derivation of the curvature tensor at x and hence an
element of the isotropy Lie algebra gx ⊂ g (see footnote 14); the embedding
x 7→ Jx : M → g (standard embedding) is extrinsic symmetric (cf. [8], [6]).

Extrinsic symmetric spaces are the most beautiful submanifolds, playing
a similar rôle for submanifold geometry as symmetric spaces do for Rieman-
nian geometry. While the latter spaces have parallel curvature tensor, the
former ones have parallel second fundamental form which follows from the in-
variance of∇α under τx∗.8 The Gauss equations (1) show that α is even more
fundamental than R. As symmetric spaces are stable in the sense of “intrin-
sic pinching” (a Riemannian manifold with ∇R ≈ 0 is already diffeomorphic

7Cf. [3] for details and further examples.
8∇α(u, v, w) = τx∗∇α(u, v, w) = ∇α(τx∗u, τx∗v, τx∗w) = −∇α(u, v, w).
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to a locally symmetric space, [13], [10]), extrinsic symmetric submanifolds
are stable in the sense of “extrinsic pinching” [16]: any submanifold with
∇α ≈ 0 is already close to an extrinsic symmetric one.

Now let us consider the Gauss map of an extrinsic symmetric space M ⊂
E. We may assume that M is contained in the unit sphere9 S ⊂ E. Then we
have x ∈ Nx for all x ∈M and thus τx is linear, τx = τx∗. Since M is invariant
under τx, the same is true for the set of all normal spaces of M . But Gr is
a symmetric space whose symmetry at Nx ∈ Gr is precisely the reflection
τx, therefore the Gauss image Q = N(M) is a symmetric subspace10 of Gr.
Since the kernel of dN = −A would be a parallel distribution on M whose
leaves are affine subspaces of E, the kernel must be zero, thus N : M → Q is
a covering map (in many cases a diffeomorphism). Moreover it is equivariant
with respect to the group

K = {A ∈ O(n); A(M) = M}

acting transitively on M , and therefore N is an isometry (up to scaling)
on each isotropy irreducible component11 of M . In the case of the sphere
M = Sm, the Gauss map N identifies Sm with the Grassmannian of oriented
one-dimensional subspaces in Em+1.

5 Algebra of extrinsic symmetric spaces

According to work of Ferus (cf. [8] or [4]), each irreducible extrinsic symmetric
space (up to congruence and rescaling) is a certain orbit of the isotropy

9Since α is parallel, the same holds for the mean curvature vector η = trace α and for
the corresponding Weingarten map Aη . Hence the eigenspaces of Aη are also parallel and
moreover invariant under any Aξ, due to the parallelity of η and the Ricci equation which
implies [Aξ, Aη ] = 0. The leaves of each eigenspace distribution are submanifolds in a
subspace of E and M decomposes into such submanifolds which are the intersections of M
with an orthogonal decomposition of E (extrinsic splitting). Each factor can be considered
seperately. If it is not an affine subspace, we have Aη = λI for some nonzero λ, and thus
M lies in some sphere of radius 1/|λ|. Normalizing we may assume that M is contained
in the unit sphere Sn−1.

10If P is a symmetric space with symmetries σp, p ∈ P , and if Q ⊂ M is a connected
subset which is invariant under each σq , q ∈ Q, then Q is a symmetric subspace, i.e. a
complete totally geodesic submanifold of P , see [9] or [3].

11In fact, if M does not split extrinsically as M1 ×M2 ⊂ En1 × En2 = E with Mi ⊂
Eni (extrinsic irreducibilty), it is also intrinsically isotropy irreducible, i.e. the isotropy
representation is irreducible ([4], Theorem 4).
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representation of another symmetric space as follows.12 Let G be a compact
Lie group with two commuting involutions σ and τ . Then we have a common
decomposition of the Lie algebra

g = k− + k+ + p− + p+ (3)

where k = k+ + k− and g+ = k+ + p+ are the Lie subalgebras fixed by σ∗ and
τ∗, respectively. Further we require that τ is inner and of a very simple type:
τ∗ = eπad(η) for some η ∈ p+ with ad(η)3 = −ad(η), i.e. the eigenvalues of

ad(η) are 0 and ±i. More precisely, since τ∗ = eπad(η) =

{
I on g+

−I on g−
,

ad(η) =

{
0 on g+

J on g−
(4)

where J is a complex structure on g+ (eigenvalues ±i). Let K ⊂ G be the
fixed group of σ. Then M = Ad(K)η ⊂ p =: E is an extrinsic symmetric
space whose normal reflection at the point η is τ∗. The tangent and normal
spaces of M at η are p− and p+. The ambient space E = p is a Lie triple, i.e.
[p, [p, p]] ⊂ p. The corresponding trilinear map on p,

R(u, v)w = [w, [u, v]] (5)

is called Lie triple product; it is the curvature tensor of the symmetric space
G/K whose tangent space at eK can be identified with p. Both subspaces
p+, p− (being the fixed sets of the involutions τ∗ and σ∗τ∗ on p) are Lie
subtriples, i.e. they are preserved by R. The Lie algebra k consists of the
derivations13 of R, and k+ (resp. k−) contains those elements of k which
preserve (resp. reverse) the splitting p = p− + p+.

The same η ∈ p+ ⊂ g+ (cf. (4)) generates yet another extrinsic sym-
metric space: the full adjoint orbit M̂ = Ad(G)η ⊂ g with TηM̂ = g− and

NηM̂ = g+. The complex structure J on g− defined in (4) makes M̂ her-

mitian symmetric, and M̂ ⊂ g is the standard embedding mentioned above.
Thus we see that any extrinsic symmetric space M lies in a standard embed-
ded hermitian symmetric space M̂ ; in fact, M is a real form of M̂ since it is
the fixed set of σ∗|M̂ which acts as a complex conjugation on M̂ .

12Recently, J.R. Kim gave a similar characterization for extrinsic symmetric spaces with
indefinite inner product, cf. [11], [5].

13Derivations of R are skew adjoint linear maps A : p→ p with AR(x, y)z = R(Ax, y)z+
R(x,Ay)z +R(x, y)Az. They form the Lie algebra of the automorphism group K of p.
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We can also view the hermitian case as a special case of the general
construction of extrinsic symmetric spaces as follows. To avoid confusion
with the notation in the general case we change symbols renaming g → h,
J → j, η → ζ. The compact Lie group H (previous G) is considered as a
symmetric space H = G/K with G = H × H and K = {(h, h); h ∈ H}.
Therefore we put g = h⊕ h and

p = {(X,−X); X ∈ h}, k = {(X,X); X ∈ h}. (6)

The Cartan decomposition h = h+ +h− extends to g = g+ +g−, and we have
η = (ζ,−ζ) ∈ p+ and J = (j,−j).

6 The second fundamental form

Now let Mo ⊂ E = p be an irreducible extrinsic symmetric space and M ⊂ E
any submanifold of the same dimension with Gauss image N(M) ⊂ Q :=
N(Mo). We fix some point x ∈ M and let η ∈ Mo such that NxM =
NηMo = p+ and TxM = TηMo = p−. For tangent and normal vector fields
v, w and ξ on M we consider the Levi-Civita derivatives

∇vw = (∂vw)T , ∇vξ = (∂vξ)
N (7)

Together they form a covariant derivative on the trivial bundle M × E =
TM ⊕NM . We show first that the constant Lie triple product R is parallel
also with respect to this derivative:

Lemma 1 ∇R = 0.

Proof. Let a, b, c, d be ∇-parallel vector fields along any curve x(t) in M ; we
may assume that each of them is either tangent or normal. Put R(a, b, c, d) :=
〈R(a, b)c, d〉. Denoting ′ = d

dt
we have to show R(a, b, c, d)′ = 0. But

R(a, b, c, d)′ = R(a′, b, c, d) +R(a, b′, c, d) +R(a, b, c′, c) +R(a, b, c, d′).

Since both the tangent and normal space, p− and p+, are Lie subtriples, we
have R(a, b, c, d) = 0 unless R has an even number of entries of each type
(tangent vs. normal); e.g. R(p−, p−, p−, p+) = 0 since R(p−, p−)p− ⊂ p− ⊥
p+, and by the curvature identities this remains true with permuted entries.
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But the derivative of a∇-parallel tangent (resp. normal) field is normal (resp.
tangent), hence each term on the right hand side contains an odd number of
entries of each sort, thus it has to be zero.

The difference tensor between the two derivatives ∇ and ∂ on M × E,

L := ∂ −∇ (8)

is essentially the second fundamental form; we have

Lvw = α(v, w), Lvξ = −Aξv. (9)

Since ∂vR = 0 and ∇vR = 0 by the previous lemma, we get LvR = 0, i.e. Lv
is a derivation of R and therefore14 Lv ∈ k, acting as ad(Lv). More precisely,
Lv interchanges p− and p+, hence Lv ∈ k−. Thus we have defined a linear
map

L : p− → k−, v 7→ Lv = Lv. (10)

Let Lt : k− → p− be the transposed of L with respect to an Ad(G)-invariant
inner product on g extending the given Ad(K)-invariant inner product on
p = E.

Lemma 2 For all ξ ∈ p+ we have

Lt ◦ ad(ξ) = −ad(ξ) ◦ L, (11)

L ◦ ad(ξ) = −ad(ξ) ◦ Lt. (12)

Proof. The first equation follows from the symmetry of α which reads

[Lv, w] = [Lw, v] (13)

for all v, w ∈ p−. In fact, for any ξ ∈ p+ we have

〈[Lv, w], ξ〉 = 〈Lv, [w, ξ]〉 = −〈v, Ltad(ξ)w〉,
〈[Lw, v], ξ〉 = 〈v, [ξ, Lw]〉 = 〈v, ad(ξ)Lw〉

14Any Lie triple derivation L : p → p extends uniquely to a Lie algebra derivation
L : g→ g where for every A ∈ k we let L(A) ∈ k with [L(A), x] = L[A, x]− [A,Lx] for any
x ∈ p. Since g is semisimple, each derivation is inner, L = ad(l) for some l ∈ g. In fact
l ∈ k since L = ad(l) preserves p and k.
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which proves (11). The second equation (12) is obtained by composing (11)
from both sides with ad(η). From (4) we see that ad(η) and ad(ξ) commute
(since [ad(η), ad(ξ)] = ad([η, ξ]) = 0), and further ad(η)2 = J2 = −I on g−.
Using (11) for η in place of ξ,

ad(η)Ltad(ξ)ad(η) = ad(η)Ltad(η)ad(ξ) = −ad(η)2L ad(ξ) = L ad(ξ),
−ad(η)ad(ξ)L ad(η) = −ad(ξ)ad(η)L ad(η) = ad(ξ)Lt ad(η)2 = −ad(ξ)Lt.

The left hand sides are equal by (11), hence we have proved (12).

The second fundamental form L defines a skew symmetric linear map
L̂ : g− → g− interchanging p− and k−:

L̂ =

{
L on p−
−Lt on k−

(14)

Lemma 3 L̂ commutes with the action of g̃+ = k̃+ + p+ on g−, where k̃+ =
[p+, p+] ⊂ k+.

Proof. From Equations (11) and (12) of the previous Lemma we obtain

L̂ ◦ ad(ξ) = ad(ξ) ◦ L̂ (15)

for all ξ ∈ p+. Hence L̂ commutes with the action of p+ on g−, and conse-
quently with the action of [p+, p+] = k̃+.

7 The group action

Lemma 4 Let Mo ⊂ p be extrinsic symmetric and irreducible, but Mo 6= Sm.
Then [p+, p+] = k+ and hence g̃+ = g+.

Proof. Note that any A ∈ k+ with A ⊥ [p+, p+] acts trivially on p+. Hence
(g̃+, k̃+) is the effective pair15 corresponding to the Lie triple p+. We show
by inspection of the tables for Mo (cf. [14], p. 241 f) that

k+ = k̃+ = [p+, p+] (16)

15We call the pair of Lie algebras (g, k) with k ⊂ g ineffective if there is a nonzero
subalgebra l ⊂ k with [l, g] ⊂ k; in other words, the subgroup L ⊂ K corresponding to l
acts trivially on G/K.
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in all cases but the one corresponding to Mo = Sm (Case No. 13 for i = 1).
In fact, the symmetric pairs (k, k+) corresponding to k− are listed on p. 242,
first column while the last column contains the pairs (g̃+, k̃+) corresponding
to p+.16 We have k̃+ = k+ in all cases except No. 13 for i = 1 where p+ = R
and the pair (R+ so(n− 2), so(n− 2)) is ineffective; the effective one would
be (g̃+, k̃+) = (R, 0).

Lemma 5
L̂ = λ ad(η) (17)

for some real λ.

Proof. The vector space g− has a complex structure J = ad(η)|g− which

commutes with the action of g+ (by (4)) and of L̂ (by (15)), i.e. these
actions are complex linear.

IfMo belongs to the cases 7–18 in [14] or [2], the Lie algebra g is simple and
hence the symmetric pair (g, g+) is irreducible.17 Thus g+ acts irreducibly on
g−, and L̂ commutes with this action. By Schur’s lemma, L̂ = αI for some
α ∈ C. But L̂ is antisymmetric as a real endomorphism, hence α is purely
imaginary, α = λi and L̂ = λJ = λ ad(η)|g−.

The cases 1–6 are those where Mo is hermitian and p itself a Lie alge-
bra. More precisely, there is a simple compact Lie algebra h with Cartan
decomposition h = h+ + h− such that g = h⊕ h and

p = {(X,−X); X ∈ h}, k = {(X,X); X ∈ h}.
Now g− = h−⊕h− has two irreducible factors for the action of g+ = h+⊕h+,
and the complex structure J = (j,−j) is given by the Lie bracket with
η = (ζ,−ζ) ∈ p+. By Schur’s lemma, L̂ has (imaginary) eigenvalues λi, µi
on the two irreducible factors, and in particular

L̂(X,X) = (λjX,−µjX)

for all X ∈ h−. But on the other hand L̂(k−) ⊂ p−, hence

L̂(X,X) = (Y,−Y )

for some Y ∈ h−. Comparing these equations shows λ = µ.

16The table in [2], p. 735 f is very similar: It displays the pairs (k, k+) on p. 735, third
column and the noncompact duals of (g̃+, k̃+) on p. 736, second column

17see [14], p. 241, third column or the dual in [2], p. 736, first column
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Lemma 6
λ = const (18)

Proof. Locally we may view λ and η as smooth functions on M . Since η is
the position vector of Mo ⊂ S, its derivatives ∂vη lie in TηMo = TxM , hence
η is a parallel normal vector field on M . By Lemma 1 we have ∇R = 0, and
hence ad(η) = R(., η) : p− → k− ⊂ Hom(p+, p−) is ∇-parallel.18 Codazzi
equations show

(∇vL)w = (∇wL)v (19)

for any two tangent vectors v, w ∈ p−. Using (17) and (4) we obtain

(∂vλ)Jw = (∂wλ)Jv. (20)

If v, w are linearly independent we have ∂vλ = 0 = ∂wλ. Thus λ = const.

Proof of the Theorem. If λ = 0, then L = 0 and our submanifold M is
affine. Otherwise we may assume λ = ±1 (up to scaling), and replacing η
by −η if necessary, we have λ = 1. Since ad(η) : p− → k− ⊂ Hom(p+, p−)
is a linear isometry up to scaling, being the differential of the (equivariant)
Gauss map of Mo, the same holds for L. Thus both Gauss maps N : M → Q
and No : Mo → Q are local isometries, and using these maps to identify the
abstract Riemannian manifold M with an open subset of Mo, the second fun-
damental forms are the same (L̂ = ad(η)). Now the theorem follows from the
uniqueness part of the existence and uniqueness theorem for submanifolds.
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