GEOMETRY OF OCTONIONS

J.-H. ESCHENBURG

Abstract

The simple classical compact groups $S O_{n}, S U_{n}, S p_{n}$ are related to the division algebras $\mathbb{R}, \mathbb{C}, \mathbb{H}$ (reals, complex numbers, quaternions). The exceptional groups $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$ are somehow related to the remaining normed division algebra, the octonions \mathbb{O}, but the relation is not quite easy to understand, except for $G_{2}=\operatorname{Aut}(\mathbb{O})$.

We will start with Hurwitz' theorem stating that $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ are all possible normed division algebras over the reals (construction included). Then we will turn to the octonionic projective plane and its connection to F_{4} and E_{6}. I tell what I know about the relation to E_{7} and E_{8}. I also explain the relation of the octonions to real Bott periodicity.

Contents

1. The discovery of the 4 normed division algebras 2
2. The normed division algebras 6
3. The automorphism groups of the normed algebras 9
4. Hermitian 3×3-matrices over $\mathbb{K} 13$
5. The automorphism group of $H_{3}(\mathbb{O}) \quad 14$
6. $\mathbb{O P} \mathbb{P}^{2}$ is a symmetric space 19
7. The isotropy group of $\mathbb{O P}^{2}$ is $\operatorname{Spin}_{9} \quad 20$
8. Representations of certain Clifford algebras 24
9. $(\mathbb{K} \otimes \mathbb{L})^{2}$ is always a Lie triple 26
10. Rosenfeld lines 29
11. The Lie triple on $(\mathbb{K} \otimes \mathbb{L})^{2} \quad 30$
12. Maximal abelian subspace and roots 31
13. Periodicity of Clifford representations via octonions 34
14. Vector bundles over spheres 35
15. Poles and Centrioles 38
16. Minimal centrioles and Clifford modules 40
17. Deformation of clutching maps 41
18. Quaternionic exceptional symmetric spaces 46

References 47
Date: September 25, 2018.

1. The discovery of the 4 normed division algebras

From ancient times on there was a link between numbers and geometry. Numbers came into geometry as ratio of two parallel straight line segments: How often fits the smaller segment into the larger one? Around 500 B.C., students of Pythagoras noticed that sometimes such ratio cannot be represented as a ratio of two integers. Thus the idea of (positive) real numbers representing the one-dimensional continuum was born.

Around 1570, the water engineer Rafael Bombelli from Bologna discovered the complex numbers when he tried to apply Cardano's solution formula for the cubic equation $x^{3}+3 a x=2 b$,

$$
x=\sqrt[3]{b+\sqrt{D}}+\sqrt[3]{b-\sqrt{D}}, \quad D=a^{3}+b^{2}
$$

There is a situation where D is no longer positive. E.g. $x^{3}-6 x=$ 4 has $D=-4$. Cardano's formula would give $x=\sqrt[3]{2+\sqrt{-4}}+$ $\sqrt[3]{2-\sqrt{-4}}$, but this seemed to be senseless since negative numbers are never squares. But still Bombelli dared to use these "imaginary" numbers like ordinary ones and succeeded. He noticed that $2 \pm \sqrt{-4}$ was a cubic number: $(-1 \pm \sqrt{-1})^{3}=2 \pm \sqrt{-4}$. Thus $x=-1+\sqrt{-1}+$ $(-1)-\sqrt{-1}=-2$ which was correct: $(-2)^{3}-6 \cdot(-2)=4$.

Yet imaginary numbers remained mysterious for several centuries to come. Even C.F. Gauß in his Ph.D. thesis on the Fundamental Theorem of Algebra avoided them as late as 1799 . But around that time, two amateur mathematicians found a geometric model for these numbers, the Danish surveyor Caspar Wessel $(1797)^{1}$ and independently the French accountant Jean-Robert Argand (1806). ${ }^{2}$ While the reals correspond to the line, the complex numbers correspond to the plane with the imaginary numbers sitting on the vertical axis. Of course this was known also to Gauß but as in other cases he was too cautious to publish it.

In 1835 William Rowan Hamilton, ${ }^{3}$ an Irish mathematician and astronomer, discovered independently the relation between complex numbers and planar geometry. But he wanted to go beyond. In the words

[^0]of John Baez, a mathematical physicist who has worked with octonions: ${ }^{4}$ "Fascinated by the relation between complex numbers and 2dimensional geometry, he tried for many years to invent a bigger algebra that would play a similar role in 3 -dimensional geometry. In modern language, it seems he was looking for a 3-dimensional normed division algebra. His quest built to its climax in October 1843. He later wrote to his son:

Every morning in the early part of the above-cited month, on my coming down to breakfast, your (then) little brother William Edwin, and yourself, used to ask me: 'Well, Papa, can you multiply triplets?' Whereto I was always obliged to reply, with a sad shake of the head: 'No, I can only add and subtract them'.

The problem was that there exists no 3 -dimensional normed division algebra. He really needed a 4-dimensional algebra. Finally, on the 16th of October, 1843, while walking with his wife along the Royal Canal to a meeting of the Royal Irish Academy in Dublin, he made his momentous discovery:

That is to say, I then and there felt the galvanic circuit of thought close; and the sparks which fell from it were the fundamental equations between i, j, k; exactly such as I have used them ever since.

And in a famous act of mathematical vandalism, he carved these equations into the stone of the Brougham (Broom) Bridge: $i^{2}=j^{2}=k^{2}=$ $i j k=-1$." John Baez further describes his finally successfull efforts in 2005 to find this bridge near Dublin and to photograph the famous plate with the inscription:

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication $i^{2}=j^{2}=k^{2}=i j k=-1 \&$ cut it on a stone of this bridge.

The Irish mathematicians celebrate this event on the 16th october of each year at this place near Dublin.

[^1]

These equations define a multiplication of the four basis vectors $1, i, j, k$ and thus an algebra structure on \mathbb{R}^{4}. This is called quaternion algebra, denoted by the symbol \mathbb{H} in honour of Hamilton. However, he was not the first to use quaternions. A few years before, 1840, the French banker and mathematician Benjamin Olinde Rodrigues ${ }^{5}$ had already introduced them in order to parametrize rotations in 3 -space, but he did not introduce the multiplicative structure, and his discovery was not very well known at that time.
Remark. A faithful representation of the algebra \mathbb{H} is the matrix algebra

$$
\mathbb{R} \cdot S U_{2}=\left\{\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right): a, b \in \mathbb{C}\right\}
$$

(similar to $\mathbb{C}=\mathbb{R} \cdot S O_{2}=\left\{\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right): a, b \in \mathbb{R}\right\}$) where i, j, k are represented by the Pauli spin matrices $\left({ }^{-i}{ }_{i}\right),\left(1^{-1}\right),\left({ }_{i}{ }^{i}\right)$. This shows the associativity of \mathbb{H}, and further that every nonzero element $a \in \mathbb{H}$ has an inverse a^{-1}. Thus \mathbb{H} is a division algebra which means that any linear equation $a x=b$ or $x a=b$ with given $a, b \in \mathbb{H}$ and $a \neq 0$ has a unique solution $x=a^{-1} b$ or $x=b a^{-1}$.

[^2]We keep citing John Baez from an 2004 interview: ${ }^{6}$ "Among the mathematicians working in this area was John Graves, ${ }^{7}$ a friend of Hamilton. It was Graves who had first got Hamilton interested in the problem of describing the complex numbers as pairs of ordinary numbers. When Hamilton told Graves about the quaternions, Graves' immediate question was: if you're allowed make up a way of multiplying lists of 4 numbers, why not more? And the day after Christmas of that same year, he sent a letter to Hamilton saying he had succeeded in coming up with a number system that we now call the octonions (\mathbb{O}), which are lists of 8 numbers, and that he had a way of multiplying them that also allowed him to divide. 'Hamilton wrote back saying, just because it's bigger I don't know if it is better,' says Baez. 'He said something like, I have a horse with four legs, I don't know if your horse with eight legs will run twice as fast!'

Back then, Baez explains, to publish a paper you would need a member of a learned society to give a talk about it at a meeting of the society, and it would appear in the society's journal, in the transcript of the meeting. Hamilton promised Graves he would talk about octonions at a meeting of the Royal Irish Academy, but he was so excited about the quaternions he kept forgetting. But, a few years later, Arthur Cayley ${ }^{8}$ reinvented the octonions and published before Graves ever got any credit for it! Then Hamilton gave a talk saying actually Graves thought of them first, but they wound up being called the Cayley numbers for a long time. So Graves missed out on his credit."

The algebra structure of \mathbb{O} is more complicated than that of \mathbb{H} since there are 7 "imaginary" directions i, j, k, l, p, q, r or e_{1}, \ldots, e_{7} or $1, \ldots 7$ for short, and when one chooses the right ordering, the multiplication table is given by the following figure where each of the triangles 124 , 235,346 , etc. denotes a quaternionic subalgebra, $e_{1} e_{2}=e_{4}$ etc.

[^3]The figure in the center contains all secants of the heptagon and half of all triangles with three different types of secants. ${ }^{9}$ It is a model of the Fano projective plane $\mathbb{Z}_{2} \mathbb{P}^{2}$ with 7 points and 7 lines which are represented by the triangles, see the right figure (where, say, 110 denotes the homogeneous vector $[1,1,0] \in \mathbb{Z}_{2} \mathbb{P}^{2}$). The automorphism group of this situation is the group $G L_{3}\left(\mathbb{Z}_{2}\right)$ which is the second smallest simple finite group (with 168 elements), .

2. The normed division algebras

By an algebra over \mathbb{R} we understand a finite dimensional real vector space \mathbb{K} with a bilinear map $\mathbb{K} \times \mathbb{K} \rightarrow \mathbb{K},(a, b) \mapsto a \cdot b=a b$ called multiplication. The algebra \mathbb{K} is called a normed algebra or composition algebra if \mathbb{K} carries a euclidean norm (denoted by $|a|)^{10}$ such that

$$
\begin{equation*}
|a b|=|a||b| \tag{2.1}
\end{equation*}
$$

for all $a, b \in \mathbb{K}$. This is an extremely strong hypothesis. Assume further that \mathbb{K} has a unit element 1 and hence a canonical embedding of $\mathbb{R}=\mathbb{R} \cdot 1$ into \mathbb{K}. Let $\mathbb{K}^{\prime}=\mathbb{R}^{\perp} \subset \mathbb{K}$.

Lemma 2.1. If $a \in \mathbb{K}^{\prime}$ and $|a|=1$, then $a(a x)=-x$ for all $x \in \mathbb{K}$, in particular $a^{2}=-1$.

Proof. $(1+a)((1-a) x)=(1-a) x+a(x-a x)=x-a(a x)$ and $|1+a||1-a||x|=2|x|$. But from $|a(a x)|=|x|$ we see that the equality $|x-a(a x)|=2|x|$ can hold only if the vectors x and $-a(a x)$ point in the same direction, see figure.

Corollary 2.2. For all $b \in \mathbb{K}^{\prime}$ and $x \in \mathbb{K}$ we have $b(b x)=-|b|^{2} x$ and $b^{2}=-|b|^{2}$.
Proof. Apply Lemma 2.1 to $a=b /|b|$ when $b \neq 0$.

[^4]Lemma 2.3. If $a, b \in \mathbb{K}^{\prime}$ and $a \perp b$, then $a b \in \mathbb{K}^{\prime}$ and $a b \perp a, b$ and $a b=-b a$.

Proof. We may assume $|a|,|b|=1$. Since multiplications with a, b are orthogonal, we have $b \perp a \Rightarrow a b \perp a^{2}=-1$ and $b \perp 1 \Rightarrow a b \perp a$, and $a \perp 1 \Rightarrow a b \perp b$. Further, $(a+b)^{2}=-|a+b|^{2}=-2$ by Cor. 2.2, hence

$$
-2=(a+b)^{2}=a^{2}+b^{2}+a b+b a=-2+(a b+b a)
$$

and thus $a b+b a=0$.
Corollary 2.4. Orthonormal $a, b \in \mathbb{K}^{\prime}$ generate a subalgebra isomorphic to the quaternion algebra \mathbb{H}.

Proof. Hamilton's units $1, i, j, k$ are mapped to $1, a, b, a b$, since $(a b)^{2}=$ -1 and $(a b) a=-a(a b)=b$ according to Lemma 2.3.

Lemma 2.5. Let $\mathbb{H} \subset \mathbb{O}$ be any subalgebra isomorphic to the quaternions. If $c \perp \mathbb{H}$, then $c \mathbb{H}=\mathbb{H} c \perp \mathbb{H}$.

Proof. For $a, b \in \mathbb{H} \cap \mathbb{K}^{\prime}$ and $|a|=1$ we have $c a \perp b$, since $(c a) a=$ $-c \perp b a$.

Lemma 2.6. If $a, b, c \in \mathbb{K}^{\prime}$ are orthogonal and $c \perp a b$ (a so called Cayley triple), then $(a b) c=-a(b c)$.

Proof. According to Lemma 2.5, we also have $b c \perp a$ and therefore $a(b c)=-(b c) a=(c b) a$. Hence we have to show $(a b) c=-(c b) a$. On the one hand, $((a+c) b)(a+c)=(a b+c b)(a+c)=(a b) a+(c b) a+$ $(a b) c+(c b) c=2 b+(c b) a+(a b) c$, on the other hand using Corollary 2.2 we have $((a+c) b)(a+c)=|a+c|^{2} b=2 b$, hence $(c b) a+(a b) c=0$.

Remark. This figure shows the multiplication table (the "clock" on page 5) in terms of an orthonormal Cayley triple, i, j, l where $i j=k$. In fact,

$$
\begin{align*}
& k(j l)=-(k j) l \\
&(j l)(l k)=-((j l) l) k \tag{2.2}\\
&(l k)= \\
& j l, \\
&(i l)= \\
&(k l)(l i)= \\
&(i l) i=-i((k l) l) i=k i \\
&=-i(i l) \\
&= l .
\end{align*}
$$

Lemma 2.7. Orthonormal $c, d \in A^{\prime}$ with $c \perp \mathbb{H}$ and $d \perp(\mathbb{H}+c \mathbb{H}) d o$ not exist.

Proof. Let $a, b \in A^{\prime} \cap \mathbb{H}$ be orthonormal. Then on the one hand,

$$
\begin{equation*}
a(b(c d))=-a((b c) d)=(a(b c)) d \tag{A}
\end{equation*}
$$

since the triples (b, c, d) and $(a, b c, d)$ are anti-associative, according to Lemma 2.6. But on the other hand:

$$
\begin{equation*}
a(b(c d))=-(a b)(c d)=((a b) c) d=-(a(b c)) d \tag{B}
\end{equation*}
$$

since the triples $(a, b, c d),(a b, c, d)$ and (a, b, c) are anti-associative. But (A) und (B) contradict each other!

Now we have proved:
Theorem 2.8. (A. Hurwitz 1898) ${ }^{11} \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ are the only normed algebras, and $\mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O}$.

It remains to see that \mathbb{K} is a division algebra. We first introduce the conjugation $\kappa: \mathbb{K} \rightarrow \mathbb{K}$. For any $a \in \mathbb{K}=\mathbb{R} \oplus \mathbb{K}^{\prime}$ let $a=\alpha+a^{\prime}$ be the corresponding decomposition $\left(\alpha \in \mathbb{R}, a^{\prime} \in \mathbb{K}^{\prime}\right)$. We define an involution

$$
\begin{equation*}
\kappa: a=\alpha+a^{\prime} \mapsto \bar{a}=\alpha-a^{\prime} \tag{2.3}
\end{equation*}
$$

(the reflection at the real axis) called conjugation.
Proposition 2.9. κ is an anti-automorphism of \mathbb{K}, that is $\overline{a b}=\bar{b} \bar{a}$ for all $a, b \in \mathbb{K}$, and $a \bar{a}=\bar{a} a=|a|^{2}$.
Proof. (A) Consider first the case $a, b \in \mathbb{K}^{\prime}$. We may suppose $a \neq 0$, even $|a|=1$. Then $b=\lambda a+b^{\perp}$ with $\lambda \in \mathbb{R}$ and $b^{\perp} \perp a$, and $a b=$ $-\lambda+a b^{\perp}$ while $\bar{b} \bar{a}=b a=-\lambda+b^{\perp} a \stackrel{2.3}{=}-\lambda-a b^{\perp}=\overline{a b}$.
(B) In the general case $a=\alpha+a^{\prime}$ and $b=\beta+b^{\prime}$ we have

$$
\begin{aligned}
\bar{b} \bar{a} & =\beta \alpha-\beta a^{\prime}-\alpha b^{\prime}+b^{\prime} a^{\prime}, \\
a b & =\alpha \beta+\alpha b^{\prime}+\beta a^{\prime}+a^{\prime} b^{\prime}, \\
\overline{a b} & =\alpha \beta-\alpha b^{\prime}-\beta a^{\prime}+\overline{a^{\prime} b^{\prime}} \stackrel{(A)}{=} \bar{b} \bar{a}
\end{aligned}
$$

If $b=\bar{a}=\alpha-a^{\prime}$, then $a b=\alpha^{2}-\alpha a^{\prime}+\alpha a^{\prime}-a^{\prime} a^{\prime}=\alpha^{2}+\left|a^{\prime}\right|^{2}=|a|^{2}$.
Corollary 2.10. Any normed algebra \mathbb{K} (with unit 1) is a division algebra: The solutions of the equations $a x=b$ and $x a=b$ with $a \neq 0$ are $x=a^{-1} b$ and $x=b a^{-1}$ with

$$
\begin{equation*}
a^{-1}=\bar{a} /|a|^{2} . \tag{2.4}
\end{equation*}
$$

[^5]Proof. $|a|^{2} x=\bar{a} a x \stackrel{a x=b}{=} \bar{a} b \Rightarrow x=\frac{\bar{a}}{|a|^{2}} b$,
and $x|a|^{2}=x a \bar{a}^{\stackrel{x a=b}{=} b \bar{a} \Rightarrow x=b \frac{\bar{a}}{|a|^{2}} \text {. } . ~ . ~ . ~}$
Remark. The product $\bar{a} a x$ (as well as $x a \bar{a}$) needs no parentheses since $\bar{a}=-a+2 \alpha$, hence $(\bar{a} a) x=-a a x+2 \alpha a x=\bar{a}(a x)$.

3. The automorphism groups of the normed algebras

An automorphism of an \mathbb{R}-algebra \mathbb{K} is a linear isomorphism $\phi: \mathbb{K} \rightarrow$ \mathbb{K} which preserves the product,

$$
\begin{equation*}
\phi(a) \phi(b)=\phi(a b) \tag{3.1}
\end{equation*}
$$

For $\mathbb{K}=\mathbb{R}$, the only automorphism is the identity since the basis element $1 \in \mathbb{R}$ must be fixed. More generally, an automorphism of any algebra \mathbb{K} fixes $\mathbb{R}=\mathbb{R} \cdot 1 \subset \mathbb{K}$.

For $\mathbb{K}=\mathbb{C}$, any automorphism ϕ satisfies $\phi(i)= \pm i$ since $\phi(i)^{2}=$ $\phi(-1)=-1$. Thus $\operatorname{Aut}(\mathbb{C})=\{\mathrm{id}, \kappa\}$ where $\kappa(a)=\bar{a}$ is complex conjugation.

For $\mathbb{K}=\mathbb{H}$ and $\mathbb{K}=\mathbb{O}$, any automorphism ϕ preserves $\mathbb{K}^{\prime}=\{a \in \mathbb{K}:$ $\left.a^{2} \in \mathbb{R}_{\leq 0}\right\}$ (see 2.2). ${ }^{12}$ Thus ϕ preserves the eigenspaces \mathbb{R} and \mathbb{K}^{\prime} of the conjugation κ defined by (2.3), hence ϕ and κ commute. Consequently, $|\phi(a)|^{2}=\phi(a) \kappa(\phi(a))=\phi(a \kappa(a))=|a|^{2}$, thus ϕ is orthogonal. Therefore, $\operatorname{Aut}(\mathbb{H}) \subset O_{3}$ and $\operatorname{Aut}(\mathbb{O}) \subset O_{7}$. We will compute $\operatorname{Aut}(\mathbb{K})$ by replacing it with a a submanifold of a Stiefel manifold of orthonormal frames on which it acts simply transitively.

For $\mathbb{K}=\mathbb{H}$, any orthonormal 2 -frame (a, b) in \mathbb{K}^{\prime} can be mapped by a unique automorphism to (i, j), hence $\operatorname{Aut}(\mathbb{H})$ can be viewed as the set $V_{2}\left(\mathbb{R}^{3}\right)$ or orthonormal 2-frames in $\mathbb{K}^{\prime}=\mathbb{R}^{3}$. Since (a, b) can be uniquely extended to the oriented 3 -frame $(a, b, a b)$, this set is the group $S O_{3}$. In fact, the unit sphere $\mathbb{S}^{3} \subset \mathbb{H}$ acts on \mathbb{H}^{\prime} by conjugation $x \mapsto a x \bar{a}$, and the kernel of this action is precisely $\{ \pm 1\}$. Thus Aut (\mathbb{H}) is the group $S O_{3}=\mathbb{S}^{3} / \pm$ acting on \mathbb{K}^{\prime} by conjugation.

The automorphism group acts also on the set of subalgebras isomorphic to \mathbb{C}, and the isotropy group of the standard $\mathbb{C} \subset \mathbb{H}$ corresponds to the pairs $(\pm i, b)$ with $b \perp i$ which is O_{2}. Thus the manifold of subalgebras isomorphic to \mathbb{C} is $S O_{3} / O_{2}=\mathbb{R P}^{2}$.

For $\mathbb{K}=\mathbb{O}$, we replace the 2 -frames (a, b) by orthonormal Cayley triples (a, b, c) in $\mathbb{O}^{\prime}=\mathbb{R}^{7}$. Again, there is a unique automorphism

[^6]sending (a, b, c) to the standard triple (i, j, l), thus $\operatorname{Aut}(\mathbb{O})$ acts simply transitively on the set C of all Cayley triples. The map $(a, b, c) \mapsto(a, b)$ defines a fibre bundle over the Stiefel manifold $V_{2}\left(\mathbb{R}^{7}\right)$. Given a, b, the third vector c is an arbitrary unit vector perpendicular to $a, b, a b$. But $(a, b, a b)^{\perp} \cong \mathbb{R}^{4}$, thus the fibre (the set of all c) is a 3 -sphere \mathbb{S}^{3}. Hence C is an \mathbb{S}^{3}-bundle over $V_{2}\left(\mathbb{R}^{7}\right)$ which is itself an \mathbb{S}^{5}-bundle over \mathbb{S}^{6} (the unit sphere in \mathbb{O}^{\prime}). In particular, $\operatorname{Aut}(\mathbb{O})$ is connected and has dimension $6+5+3=14$. We also see that $\operatorname{Aut}(\mathbb{O})$ contains the finite group $G L_{3}\left(\mathbb{Z}_{2}\right)$ which permutes the Cayley triples among the basis elements (where the standard Cayley triple (i, j, l) is identified with ($100,010,001$), see right figure on page 5).

The group $\operatorname{Aut}(\mathbb{O})$ acts also on the set of all subalgebras isomorphic to \mathbb{H}, and the isotropy group $K=\operatorname{Aut}(\mathbb{O})_{\mathbb{H}}$ consists of the triples (a, b, c) with $a, b \in \mathbb{H}$, that is $(a, b) \in V_{2}\left(\mathbb{R}^{3}\right)=S O_{3}$. In particular, K acts transitively on the set of unit vectors $c \perp \mathbb{H}$, thus on $\mathbb{S}^{3} \subset \mathbb{H}^{\perp}$. The stabilizer in K for the standard element $c=l$ is $\operatorname{Aut}(\mathbb{H})=S O_{3}$, thus $\mathbb{S}^{3}=K / S O_{3}$ whence $K=S O_{4}$ with its standard action on $\mathbb{H}^{\perp}=$ \mathbb{R}^{4}. In other words, each automorphism $\operatorname{Ad}(q)$ of \mathbb{H} is extended to an automorphism ϕ of \mathbb{O} by putting $\phi(l)=p l$ for an arbitrary $p \in \mathbb{H}$, $|p|=1$, and hence for any $a, b \in \mathbb{H}$ we have

$$
\begin{equation*}
\phi(a+b l)=\phi(a)+\phi(b) \phi(l)=q a q^{-1}+\left(q b q^{-1}\right)(p l) . \tag{3.2}
\end{equation*}
$$

Choosing $q, p \in \mathbb{S}^{1} \subset \mathbb{C} \subset \mathbb{H}$, we find a maximal torus T of $\operatorname{Aut}(\mathbb{O})$ within $K \cong S O_{4}$.

The next figure shows the three triangles ("lines", quaternionic subalgebras) between the basis elements with $1(=i)$ as one vertex.

The end point pairs of the edges $24,37,56$ opposite to 1 span three 2-dimensional T-modules since the pairs are preserved by left and right multiplications by i. Putting

$$
\begin{equation*}
J_{a b}: e_{b} \mapsto e_{a}, e_{a} \mapsto-e_{b}, e_{c} \mapsto 0 \text { for all } c \neq a, b \tag{3.3}
\end{equation*}
$$

(with $a, b, c \in\{1, \ldots, 7\}$), the Lie algebra of T is

$$
\begin{equation*}
\mathfrak{t}=\left\{\alpha J_{24}+\beta J_{37}+\gamma J_{56}: \alpha+\beta+\gamma=0\right\} . \tag{3.4}
\end{equation*}
$$

In fact, T consists of automorphisms $\phi=\phi_{s t}$ of type (3.2) with $q=$ $e^{i s / 2}$ and $p=e^{i t}$ whose infinitesimal generators X, Y are $X(a+b l)=$ $\frac{1}{2}([i, a]+[i, b] l)$ and $Y(a+b l)=b(i l)$. Thus the endpoint pairs of the edges opposite to i are mapped by X and Y as follows:

$$
\begin{aligned}
&(j, k),(l, i l),(j l, l k) \stackrel{X}{\mapsto} \\
&(j, k),(l, i l),(j l, l k) \stackrel{Y}{\mapsto}(0,-j),(0,0),(-i l, l),(k l,-l j) \\
&(k l j)
\end{aligned}
$$

Hence $X=J_{56}-J_{24} \in \mathfrak{t}$ and $Y=J_{56}-J_{37} \in \mathfrak{t}$, see (3.4), and $\mathfrak{t}=\operatorname{span}(X, Y)$ since X, Y form a basis of \mathfrak{t}.

Similarly, we define the subspaces $V_{a} \subset \mathfrak{a u t}(\mathbb{O})$ replacing 1 by any $a \in\{1, \ldots, 7\}$. This defines a decomposition of the Lie algebra of $\operatorname{Aut}(\mathbb{O})$ into seven 2-dimensional subspaces. The action of T or $\mathfrak{t}=V_{1}$ leaves $V_{a}+V_{b}$ invariant for every pair $(a, b) \in\{(2,4),(3,7),(5,6)\}$, and its complexification is decomposed into the root spaces for \mathfrak{t} (see [7], page 29). ${ }^{13}$

In fact, recall that $\left[J_{a b}, J_{c d}\right]=0$ when a, b, c, d are distinct (as in $\left.\mathfrak{s o}_{4}\right)$, and $\left[J_{a b}, J_{b c}\right]=J_{a c}$ while $\left[J_{a b}, J_{a c}\right]=-J_{b c}\left(\right.$ as in $\left.\mathfrak{s o}_{3}\right)$. Hence the complex matrices $J_{a c}+i J_{b c}$ and $J_{b c}-i J_{a c}$ are eigenvectors for $\operatorname{ad}\left(J_{a b}\right)$ with eigenvalue i since $\left[J_{a b}, J_{b c}-i J_{a c}\right]=J_{a c}+i J_{b c}=i\left(J_{b c}-i J_{a c}\right)$. E.g. consider V_{2} and V_{4} which are spanned by the differences of $35,41,67$ and $57,63,12$ (denoting J_{35} by 35 etc.) respectively.

Thus we have the following i-eigenvectors,

$\operatorname{ad}(24)$	$\operatorname{ad}(37)$	$\operatorname{ad}(56)$
$21+41 i$	$35+75 i$	$53+63 i$
$=i(\underline{41+12 i})$	$=\underline{35-57 i}$	$=-(\underline{35+36 i})$
	$36+76 i$	$57+67 i$
	$=-i(\underline{67+36 i})$	$=i(\underline{67-57 i})$

[^7]while the complex conjugates belong to the eigenvalue $-i$. Let
\[

$$
\begin{aligned}
& v_{-}=35-57 i-(67+36 i)=35-36 i-(67+57 i) \\
& v_{+}=35-57 i+(67+36 i)=35+36 i+(67-57 i) \\
& v_{o}=41+12 i
\end{aligned}
$$
\]

Then

$$
\begin{aligned}
{\left[\alpha \cdot 24+\beta \cdot 37+\gamma \cdot 56, v_{-}\right] } & =i(\beta-\gamma) v_{-} \\
{\left[\alpha \cdot 24+\beta \cdot 37+\gamma \cdot 56, v_{+}\right] } & =i(\beta+\gamma) v_{+} \\
{\left[\alpha \cdot 24+\beta \cdot 37+\gamma \cdot 56, v_{o}\right] } & =i \alpha v_{o} .
\end{aligned}
$$

Hence $v_{-} \in\left(V_{2}+V_{4}\right) \otimes \mathbb{C}$ is an eigenvector of $\operatorname{ad}(\alpha \cdot 24+\beta \cdot 37+\gamma \cdot 56)$ for the eigenvalue $\beta-\gamma$. On the other hand, $v_{+}-2 v_{o} \in\left(V_{2}+V_{4}\right) \otimes \mathbb{C}$ is an eigenvector for the eigenvalue $\beta+\gamma$, provided that $\alpha+\beta+\gamma=0$:

$$
\begin{aligned}
{\left[\alpha \cdot 24+\beta \cdot 37+\gamma \cdot 56,-2 v_{o}+v_{+}\right] } & =-2 i \alpha v_{o}+i(\beta+\gamma) v_{+} \\
& =i(\beta+\gamma)\left(-2 v_{o}+v_{+}\right)
\end{aligned}
$$

when $\alpha=-(\beta+\gamma)$. Analogous statements hold for the complex conjugate vectors. Now $\left(V_{2}+V_{4}\right) \otimes \mathbb{C}$ is decomposed into eigenspaces of $\operatorname{ad}(\alpha \cdot 24+\beta \cdot 37+\gamma \cdot 56)$ with eigenvalues (roots) $\pm(\beta-\gamma), \pm(\beta+\gamma)$.

We may use symmetry to compute the remaining roots. The group of automorphisms of \mathbb{O} preserving the basis e_{1}, \ldots, e_{7} of \mathbb{O}^{\prime} is $G L_{3}\left(\mathbb{Z}_{2}\right) \subset$ $\operatorname{Aut}(\mathbb{O})$. The stabilizer of e_{1} inside this group permutes the oriented secants $\{24,37,56\} .{ }^{14}$ Thus it preserves the torus T and permutes α, β, γ, hence the full set of roots is $\pm \alpha \pm \beta, \pm \beta \pm \gamma, \pm \gamma \pm \alpha$ where $\alpha+\beta+\gamma=0$. Now we have proved that the root system has Dynkin type G_{2}, see subsequent figure.

The maximal torus T is a maximal abelian subgroup of $\operatorname{Aut}(\mathbb{O})$, but not the only one (up to conjugacy). There is a maximal abelian subgroup of type $\left(\mathbb{Z}_{2}\right)^{3}$, a maximal " 2 -group", which is not contained in any maximal torus of $\operatorname{Aut}(\mathbb{O})$. In fact, each of the seven secant triangles in

[^8]the figure on page 5 defines a quaternionic subalgebra $\mathbb{H}_{a}, a=1, \ldots, 7$, and the reflection at \mathbb{H}_{a} is an automorphism. E.g. the reflection at \mathbb{H}_{1} maps the Cayley triple (i, j, l) onto the Cayley triple $(i, j,-l)$; it corresponds to $-I \in S O_{4} \subset \operatorname{Aut}(\mathbb{O})$. Thus we have seven reflections along certain coordinate 3 -planes in $\mathbb{O}^{\prime}=\mathbb{R}^{7}$. They commute and define a subgroup isomorphic to $\left(\mathbb{Z}_{2}\right)^{3}$ which is maximal abelian, see Borel-Hirzebruch [4], p. 531. The subgroup $G L_{3}\left(\mathbb{Z}_{2}\right) \subset \operatorname{Aut}(\mathbb{O})$ permutes the seven quaternionic subalgebras, and it is the normalizer of $\left(\mathbb{Z}_{2}\right)^{3}$ in $\operatorname{Aut}(\mathbb{O})$, similar to the Weyl group which is the normalizer (made effective) of the maximal torus. This is essential for computing the \mathbb{Z}_{2}-cohomology (Borel) and the Stiefel-Whitney classes (see [4] and references therein).

4. Hermitian 3×3-matrices over \mathbb{K}

Grassmannians over a division algebra \mathbb{K} can be represented in the space of hermitian matrices over \mathbb{K} where each subspace $E \subset \mathbb{K}^{n}$ (an element of the Grassmannian) is mapped to the orthogonal projection onto E. This is the hermitian matrix P over \mathbb{K} with $P^{2}=P$ and image E. This construction still works for $\mathbb{K}=\mathbb{O}$.

Let $M_{n}=\mathbb{K}^{n \times n}$ be the space of $n \times n$-Matrices over \mathbb{K}. It carries the standard inner product

$$
\langle X, Y\rangle=\operatorname{Re} \operatorname{trace}\left(X^{*} Y\right)=\sum \bar{X}_{i j} Y_{i j}=\langle Y, X\rangle
$$

For any $A=\left(A_{i j}\right) \in M_{n}$ we define the adjoint matrix $A^{*} \in M_{n}$ with

$$
A_{i j}^{*}=\kappa\left(A_{j i}\right)=\overline{A_{j i}} .
$$

The map $X \mapsto X^{*}$ is an anti-automorphism of the matrix algebra M_{n}. In fact, for any $A, B \in M_{n}$ we have $\left(B^{*} A^{*}\right)_{i k}=\sum_{j} B_{i j}^{*} A_{j k}^{*}=$ $\sum_{j} \kappa\left(B_{j i}\right) \kappa\left(A_{k j}\right)=\sum_{j} \kappa\left(A_{k j} B_{j i}\right)=\kappa(A B)_{k i}=(A B)_{i k}^{*}$.

Further, for all $X, Y, Z \in M_{n}$ we have

$$
\begin{equation*}
\langle X Y, Z\rangle=\operatorname{Re} \operatorname{trace}(X Y)^{*} Z=\operatorname{Re} \operatorname{trace} Y^{*} X^{*} Z=\left\langle Y, X^{*} Z\right\rangle \tag{4.1}
\end{equation*}
$$

In fact, recall that Re trace $(A B C)$ is associative:

$$
((A B) C)_{i i}=\sum\left(A_{i j} B_{j k}\right) C_{k i} \text { and }(A(B C))_{i i}=\sum A_{i j}\left(B_{j k} C_{k i}\right) .
$$

Thus the difference is a sum of associators $\left[A_{i j}, B_{j k}, C_{k i}\right]$ where

$$
\begin{equation*}
[a, b, c]=(a b) c-a(b c) \tag{4.2}
\end{equation*}
$$

for all $a, b, c \in \mathbb{K}$. The associator is always imaginary ${ }^{15}$ and antisymmetric (since it vanishes whenever two arguments are equal). In particular, the real part of the associator vanishes.

We let

$$
H_{n}=\left\{X \in M_{n}: X^{*}=X\right\} \text { and } A_{n}=\left\{X \in M_{n}: X^{*}=-X\right\}
$$

be the subspaces of hermitian and anti-hermitian matrices. We let

$$
\begin{equation*}
\mathrm{G}_{k}\left(\mathbb{K}^{n}\right)=\left\{P \in H_{n}: P^{2}=P, \text { trace } P=k\right\} \subset H_{n} \tag{4.3}
\end{equation*}
$$

be the Grassmannian of k-dimensional subspaces of \mathbb{K}^{n}. If $\mathbb{K}=\mathbb{O}$, there are no subspaces (submodules) since \mathbb{O}^{n} is not a module over \mathbb{O}, by lack of associativity. But still

$$
\begin{equation*}
\mathbb{O P}^{2}:=\mathrm{G}_{1}\left(\mathbb{O}^{3}\right) \subset H_{3}(\mathbb{O}) \tag{4.4}
\end{equation*}
$$

is defined in the sense of (4.3), called the octonionic projective plane.
The vector space H_{n} becomes an algebra with the commutative product

$$
X \circ Y=\frac{1}{2}(X Y+Y X)
$$

In fact, $X \circ Y \in H_{n}$ since $(X Y+Y X)^{*}=Y X+X Y$. Further, there is an inner product and a 3 -form

$$
(X, Y, Z)=\langle X \circ Y, Z\rangle=\langle Z, X \circ Y\rangle
$$

which is symmetric: it is invariant under transposition of X and Y, and it is invariant under cyclic permutations (using Re trace $(U V)=$ Re trace ($V U$)):

$$
\begin{aligned}
2(X, Y, Z) & =\operatorname{Re} \operatorname{trace}(Z X Y+\underline{Z Y} X) \\
& =\operatorname{Re} \operatorname{trace}(Z X Y+X \underline{Z Y}) \\
& =2(Z, X, Y)
\end{aligned}
$$

5. The automorphism group of $H_{3}(\mathbb{O})$

Again we are interested in the automorphism group of this structure, more precisely in the group $\operatorname{Aut}\left(H_{n}\right)$ of orthogonal automorphisms of H_{n}. Clearly, this group leaves $\mathrm{G}_{k}\left(\mathbb{K}^{n}\right) \subset H_{n}$ invariant since the defining equations $P^{2}=P$ and $k=$ trace $X=\langle X, I\rangle$ are invariant under orthogonal automorphisms. For $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$, this group is well known: its identity component is the unitary group

$$
U_{n}(\mathbb{K})=\left\{g \in \mathbb{K}^{n \times n}: g^{*} g=I\right\}
$$

[^9](devided by its center) acting on $H_{n}(\mathbb{K})$ by conjugation, note that $g X g^{-1}=g X g^{*} \in H_{n}$ for all $X \in H_{n}$. However, for $\mathbb{K}=\mathbb{O}$ this group is very small in general (it always contains $\operatorname{Aut}(\mathbb{O})$ and the permutation group S_{n}), but for $n=3$ it is large: it is the exceptional group of Dynkin type F_{4} as we will see.

Also A_{n} is an algebra with the anti-commutative product

$$
[A B]=A B-B A
$$

Further any $A \in A_{n}$ acts on H_{n} by

$$
\begin{equation*}
[A X]=A X-X A \tag{5.1}
\end{equation*}
$$

since $(A X-X A)^{*}=-X A+A X=A X-X A$, hence $[A X] \in H_{n}$ for all $X \in H_{n}$. If \mathbb{K} is associative, this action is by derivations. Recall that a derivation of an algebra \mathcal{A} is a linear map $\delta: \mathcal{A} \rightarrow \mathcal{A}$ with

$$
\begin{equation*}
\delta(a b)=(\delta a) b+a(\delta b) \tag{5.2}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$. Derivations are derivatives of one-parameter groups of automorphisms: if $\phi_{t}, t \in \mathbb{R}$, is a family of automorphisms of \mathcal{A} with $\phi_{0}=I=\mathrm{id}$ and $\left.\frac{d}{d t}\right|_{t=0} \phi_{t}=\delta$, then differentiation of $\phi_{t}(a b)=$ $\phi_{t}(a) \phi_{t}(b)$ at $t=0$ gives (5.2). Thus the derivations form the Lie algebra (the tangent space at I) of the $\operatorname{group} \operatorname{Aut}(\mathcal{A})$.
Lemma 5.1. If \mathbb{K} is associative, then A_{n} acts by derivations on H_{n}. Proof.

$$
\begin{aligned}
2 \operatorname{ad}_{A}(X \circ Y)= & {[A,(X Y+Y X)] } \\
= & A(X Y)+A(Y X)-(X Y) A-(Y X) A, \\
2\left(\operatorname{ad}_{A} X \circ Y+X \circ \operatorname{ad}_{A} Y\right)= & {[A X] Y+Y[A X]+X[A Y]+[A Y] X } \\
= & \underline{(A X) Y}-(X A) Y+Y(A X)-\underline{Y(X A)} \\
& +\overline{X(A Y)}-\underline{X(Y A)}+\underline{(A Y) X}-\underline{(Y A) X} .
\end{aligned}
$$

In fact, the underlined terms are those of $\operatorname{ad}_{A}(X \circ Y)$, and the remaining ones cancel each other (provided that one can neglect parentheses).
This claim is true also because in the associative case A_{n} acting by (5.1) is the Lie algebra of the group $U_{n}(\mathbb{K})$ acting by conjugation as a group of automorphisms of H_{n}.
Nothing of this remains true for $\mathbb{K}=\mathbb{O}$. Invertible matrices over (1) do not even form a group, by lack of associativity, and A_{n} is not a Lie algebra (Jacobi identity fails). Moreover, in the above proof associativity was often used. But still the claim remains true for $n=3$; this is one of the miracles of this theory. We only have to restrict our attention to

$$
A_{n}^{o}:=\left\{A \in A_{n}: \text { trace } A=0\right\}
$$

Theorem 5.2. $A_{3}^{o}(\mathbb{O})$ acts on $H_{3}(\mathbb{O})$ by skew-adjoint derivations, that is: $\operatorname{ad}(A): X \mapsto[A X]$ is a skew adjoint derivation for any $A \in A_{3}^{o}$.

The main observation for the proof (see [Freudenthal]) is the following
Lemma 5.3. For every $X \in H_{3}$ and $A \in A_{3}$ with trace $A=0$ we have

$$
\begin{equation*}
\left\langle[A X], X^{2}\right\rangle=0 \tag{5.3}
\end{equation*}
$$

Proof of Theorem 5.2. Polarizing (5.3) ${ }^{16}$ we obtain the derivation property, using the symmetry of $\tau(X, Y, Z)=\langle X \circ Y, Z\rangle$:

$$
\begin{aligned}
0 & =\langle[A X], Y \circ Z\rangle+\langle[A Y], Z \circ X\rangle+\langle[A Z], X \circ Y\rangle \\
& =\langle[A X] \circ Y, Z\rangle+\langle X \circ[A Y], Z\rangle+\langle X \circ Y,[A Z]\rangle \\
& =\langle[A X] \circ Y+X \circ[A Y]-[A, X \circ Y], Z\rangle .
\end{aligned}
$$

In the last step we have used that $\operatorname{ad}(A)$ is skew adjoint. Proof:

$$
\langle[A W], Z\rangle+\langle W,[A Z]\rangle=\operatorname{Re} \operatorname{trace}(\underline{A W Z}-W A Z+W A Z-\underline{W Z A})=0
$$

Proof of Lemma 5.3. We show for all $X \in H_{3}$

$$
\begin{equation*}
X^{2} X-X X^{2}=a I, \quad a \in \mathbb{K}^{\prime}=\{x \in \mathbb{K} ; x \perp 1\} . \tag{5.4}
\end{equation*}
$$

Then the claim follows:

$$
\left\langle A X, X^{2}\right\rangle \stackrel{(4.1)}{=}\left\langle A, X^{2} X\right\rangle \stackrel{(5.4)}{=}\left\langle A, X X^{2}\right\rangle \stackrel{(4.1)}{=}\left\langle X A, X^{2}\right\rangle
$$

where we have used $\langle A, a I\rangle=\langle\bar{a} A, I\rangle=-a$ trace $A=0$. To prove (5.4) we consider the matrix

$$
D=X^{2} X-X X^{2}
$$

with entries

$$
d_{i j}=\sum_{k l}\left(\left(x_{i k} x_{k l}\right) x_{l j}-x_{i k}\left(x_{k l} x_{l j}\right)\right)=\sum_{k l}\left[x_{i k}, x_{k l}, x_{l j}\right]
$$

(see (4.2)). When one of the three coefficients $x_{i k}, x_{k l}, x_{l j}$ is real or if two of them are conjugate, then $\left[x_{i k}, x_{k l}, x_{l j}\right]=0$. Since $x_{k k}$ is real and $x_{k l}=\bar{x}_{l k}$, both index triples (i, k, l) and (k, l, j) must be pairwise distinct when $d_{i j} \neq 0$. But there are only three indices, hence $i=j$. Thus $d_{i j}=0$ for $i \neq j$ and

$$
d_{i i}=\left[x_{i k}, x_{k l}, x_{l i}\right]+\left[x_{i l}, x_{l k}, x_{k i}\right]
$$

with $\{i, j, k\}=\{1,2,3\}$, e.g.

$$
d_{11}=\left[x_{12}, x_{23}, x_{31}\right]+\left[x_{13}, x_{32}, x_{21}\right]
$$

[^10]Since the associator is antisymmetric and therefore invariant under cyclic permutations, we have $d_{11}=d_{22}=d_{33}$. Each associator is imaginary, so (5.4) is proved and the claim follows.
Remark. For the associator of any $a, b, c \in \mathbb{O}$ we have

$$
\overline{[a, b, c]}=\overline{(a b) c}-\overline{a(b c)}=\bar{c}(\bar{b} \bar{a})-(\bar{c} \bar{b}) \bar{a}=-[\bar{c}, \bar{b}, \bar{a}] .
$$

Hence $\left[x_{13}, x_{32}, x_{21}\right]=\left[\bar{x}_{31}, \bar{x}_{23}, \bar{x}_{12}\right]=-\left[x_{12}, x_{23}, x_{31}\right]$ and therefore

$$
d_{11}=\left[x_{12}, x_{23}, x_{31}\right]-\overline{\left[x_{12}, x_{23}, x_{31}\right]}=2\left[x_{12}, x_{23}, x_{31}\right]
$$

since $\left[x_{12}, x_{23}, x_{31}\right] \in \mathbb{O}^{\prime}$.
One might wonder why only trace-zero matrices in A_{n} are considered. What about the complement, the scalar matrices $A=a I, a \in \mathbb{K}^{\prime}$? Obviously, equation (5.3) remains true for $A=a I$ when \mathbb{K} is associative since then $X X^{2}=X^{2} X$. But then $\operatorname{ad}(a I)$ is a derivation of \mathbb{K} itself (the derivative of the conjugation $\left.\phi_{t}(x)=e^{t a} x e^{-t a}\right)$. Clearly automorphisms of \mathbb{K}, applied to each coefficient of a matrix, are also automorphisms of H_{n}, and similar for derivations. But when $\mathbb{K}=\mathbb{O}, \operatorname{ad}(a I)$ is no longer a derivation (since (5.3) is not true anymore), and in general, conjugations are not automorphisms, by lack of associativity. However it remains true that $\operatorname{ad}\left(A_{3}^{o}\right)$ is a complement of $\mathfrak{a u t}(\mathbb{K})$ in the Lie algebra of $\operatorname{Aut}\left(H_{3}\right)$. First recall a well known fact for the associative case, the Jacobi identity:
Lemma 5.4. If \mathbb{K} is associative, then for all $A, B \in A_{n}$

$$
\begin{equation*}
\operatorname{ad}[A, B]=[\operatorname{ad}(A), \operatorname{ad}(B)] . \tag{5.5}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
{[[A B] X]=} & A B X-B A X-X A B+X B A, \\
{[A[B X]]-[B[A X]]=} & A B X-\underline{A X B}-B A X+\underline{B X A} \\
& -\underline{B X A}+\underline{X B A}+\underline{A X B}-\underline{X A B} .
\end{aligned}
$$

The underlined summands cancel each other, and the remaining terms are those of the first line.

In $A_{3}(\mathbb{O})$, (5.5) is no longer true. But for any $A, B \in A_{n}^{o}$ we have $[\operatorname{ad}(A), \operatorname{ad}(B)] \in \mathfrak{a u t}\left(H_{n}\right)$ and $\operatorname{ad}\left([A, B]^{o}\right) \in \mathfrak{a u t}\left(H_{n}\right)$ where C^{o} denotes the trace-free part of $C \in A_{n}$, that is $C^{o}=C-c I$ with $c=\operatorname{trace} C / n$. The proof of Lemma 5.5 shows that

$$
\delta=[\operatorname{ad}(A), \operatorname{ad}(B)]-\operatorname{ad}[A, B]^{o}
$$

satisfies $\delta(X)=0$ for any real $X \in H_{n}$ (only products of at most two non-real octonionic factors occur), thus $\delta \in \mathfrak{a u t}(\mathbb{K})$ by the next proposition. We have no longer $[\operatorname{ad}(A), \operatorname{ad}(B)]=\operatorname{ad}([A, B])$ if $\mathbb{K}=\mathbb{O}$
(this is the Jacobi identity which needs associativity of \mathbb{K}), but still $[\operatorname{ad}(A), \operatorname{ad}(\mathfrak{B})] \equiv \operatorname{ad}[A, B]^{o} \bmod \mathfrak{a u t}(\mathbb{K})$. Hence $\mathfrak{a u t}\left(H_{n}\right)=\operatorname{ad}\left(A_{n}^{o}\right) \oplus$ $\mathfrak{a u t}(\mathbb{K})($ where $n=3$ when $\mathbb{K}=\mathbb{O})$. We have $\operatorname{dim} A_{3}^{o}(\mathbb{O})=3 \cdot 8+2 \cdot 7=$ 38 and $\operatorname{dim} \operatorname{Aut}(\mathbb{O})=14$, thus $\operatorname{dim} \operatorname{Aut}\left(H_{3}(\mathbb{O})\right)=38+14=52$, see 5.7 below. This is the dimension of the simple group with Dynkin diagram F_{4}.
Proposition 5.5. An automorphism ϕ of $H_{n}(\mathbb{K})$ fixing $H_{n}(\mathbb{R})$ lies in $\operatorname{Aut}(\mathbb{K})$.
Lemma 5.6. Let $H_{k l} \subset H_{n}(\mathbb{K})$ be the set of matrices X with $X_{i j}=0$ when $\{i j\} \not \subset\{k l\}$. Let $P_{j} \in H_{n}(\mathbb{R})$ with $\left(P_{j}\right)_{j j}=1$ and all other entries $\left(P_{j}\right)_{k l}=0$. Then

$$
\begin{equation*}
H_{k l}=\left\{X \in H_{n}: X \circ P_{j}=0 \text { for all } j \neq k, l\right\} . \tag{5.6}
\end{equation*}
$$

Proof. We put $X=\left(\begin{array}{cc}\alpha & v^{*} \\ v & X^{\prime}\end{array}\right)$ with $\alpha \in \mathbb{R}$ and $v \in \mathbb{K}^{n-1}$ and $X^{\prime} \in H_{n-1}$. Then

$$
2 X \circ P_{1}=2\left(\begin{array}{ll}
\alpha & v^{*} \\
v & X^{\prime}
\end{array}\right) \circ\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
2 \alpha & v^{*} \\
v & 0
\end{array}\right) .
$$

Thus $X \circ P_{1}=0 \Longleftrightarrow \alpha=0$ and $v=0$. Similarly, $X \circ P_{j}=0$ if and only if the j-th row and column are zero. Thus only the k-th and l-th row and column survive if $X \circ P_{j}$ for all $j \neq k, l$.
Proof of Proposition 5.5. Let ϕ be an automorphism of $H_{n}(\mathbb{K})$ fixing $H_{n}(\mathbb{R})$. Since the characterization (5.6) is invariant under such automorphisms, ϕ leaves each $H_{k l}$ invariant $(k \neq l)$, and the same holds for $H_{k l}^{\prime}:=H_{k l} \cap H_{n}(\mathbb{R})^{\perp}=\mathbb{K}^{\prime} \cdot J_{k l}$, see (3.3). Thus for any pair $k \neq l$ there is a $\operatorname{map} \varphi_{k l} \in O(\mathbb{K})$ fixing 1 such that $\phi(X)_{k l}=\varphi_{k l}\left(X_{k l}\right)$ for any $X=\left(X_{k l}\right) \in H_{n}(\mathbb{K})$. We apply this to $X=\left(-_{-}^{x}\right)$ and $Y=\left({ }_{-y}^{y}\right)$ with $x, y \in \mathbb{K}^{\prime}$. Then we have (with new notation $\varphi, \varphi^{\prime}, \varphi^{\prime \prime}$ instead $\varphi_{k l}$)
whence $\varphi^{\prime}(x) \varphi^{\prime \prime}(y)=\varphi(x y)$. Specializing to $x=1$ or $y=1$ we see $\varphi^{\prime}=\varphi=\varphi^{\prime \prime}$. Thus $\varphi(x) \varphi(y)=\varphi(x y)$ which shows $\varphi \in \operatorname{Aut}(\mathbb{K})$.
Lemma 5.7. Let $\tilde{A}_{n}^{o}:=\left\{\operatorname{ad}(A): A \in A_{n}^{o}\right\}$. Then $\tilde{A}_{n}^{o}(\mathbb{K}) \cap \mathfrak{a u t}(\mathbb{K})=$ $\{0\}$.
Proof. We have $\operatorname{ad}(A) \in \tilde{A}_{n}^{o} \cap \mathfrak{a u t}(\mathbb{K}) \Longleftrightarrow \operatorname{ad}(A) H_{n}(\mathbb{R})=0$ which implies $A=0$: note that

$$
\left[\left(\begin{array}{ll}
& -\bar{x} \\
x &
\end{array}\right),\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)\right]=\left(\begin{array}{cc}
& 2 \bar{x} \\
2 x &
\end{array}\right)
$$

$$
\left[\left(\begin{array}{ll}
a & \\
& b
\end{array}\right),\left(\begin{array}{ll}
& 1 \\
1 &
\end{array}\right)\right]=\left(\begin{array}{cc}
& a-b \\
b-a &
\end{array}\right)
$$

Since $\operatorname{ad}(A)$ vanishes on real matrices, all off-diagonal entries of A vanish $(x=0)$ and all diagonal entries are equal $(a=b)$. But trace $A=$ 0 , hence $A=0$.

Corollary 5.8. Let $\mathfrak{f} \subset \mathfrak{a u t}\left(H_{3}(\mathbb{O})\right)$ be the Lie subalgebra generated by \tilde{A}_{3}^{o}. Then $\mathfrak{f}=\tilde{A}_{3}^{o} \oplus \mathfrak{a u t}(\mathbb{O})$.

Proof. Since $\delta=[\operatorname{ad}(A), \operatorname{ad}(B)]-\operatorname{ad}\left([A, B]^{o}\right) \in \mathfrak{a u t}(\mathbb{O}) \cap \mathfrak{f}$ for any $A, B \in A_{3}^{o}(\mathbb{O})$, we have $\mathfrak{f} \subset \hat{\mathfrak{f}}:=\tilde{A}_{3}^{o} \oplus \mathfrak{a u t}(\mathbb{O})$ (the sum is direct by Lemma 5.7). Further, $\operatorname{Aut}(\mathbb{O})$ acts on \mathfrak{f} by conjugation: for any $A \in A_{3}^{o}(\mathbb{O})$ and $\phi \in \operatorname{Aut}(\mathbb{O})$ we have $\phi A \phi^{-1}=\phi(A) \in A_{3}^{o}(\mathbb{O})$ where $\phi(A)_{i j}=\phi\left(A_{i j}\right)$, thus \mathfrak{f} is an ideal in $\hat{\mathfrak{f}}$ containing \tilde{A}_{3}^{o}. Therefore $\mathfrak{f} \cap \mathfrak{a u t}(\mathbb{O})$ is a nonzero ideal in $\mathfrak{a u t}(\mathbb{O})$. But $\mathfrak{a u t}(\mathbb{O})$ is simple, thus $\hat{\mathfrak{f}} \cap \mathfrak{a u t}(\mathbb{O})=\mathfrak{a u t}(\mathbb{O})$ and hence $\mathfrak{f}=\hat{\mathfrak{f}}$.

6. $\mathbb{O P}^{2}$ IS A SYMMETRIC SPACE

We show first that $\mathbb{O P}^{2} \subset H_{3}(\mathbb{O})$ is an orbit of the group $F=$ $\exp \mathfrak{f} \subset \operatorname{Aut}\left(H_{3}(\mathbb{O})\right)$. However, we do not even know yet that it is a submanifold. But consider the defining equation $P^{2}=P$. If we let $P=\left(\begin{array}{ccc}\alpha & \bar{x} & \bar{y} \\ x & \beta & z \\ y & z & \gamma\end{array}\right)$, we have

$$
\begin{aligned}
& x=P_{21}=\left(P^{2}\right)_{21}=(\alpha+\beta) x+\bar{z} y \\
& y=P_{31}=\left(P^{2}\right)_{31}=(\alpha+\gamma) y+z x \\
& z=P_{32}=\left(P^{2}\right)_{32}=(\beta+\gamma) z+y \bar{x}
\end{aligned}
$$

Thus $z y$ is a multiple of x etc., hence x, y, z lie in a common quaternionic subalgebra $\mathbb{H} \subset \mathbb{O}$. Consequently, P is a rank-one projection matrix on $\tilde{\mathbb{H}}^{3}$. When $\tilde{\mathbb{H}}=\mathbb{H}$, these matrices form the orbit $\mathbb{H P}^{2} \subset H_{3}(\mathbb{H})$ of $S p_{3}=\exp \left(A_{3}(\mathbb{H})\right)$. Since $A_{3}^{o}(\mathbb{H}) \subset A_{3}^{o}(\mathbb{O}) \subset \mathfrak{f}$ and $\mathbb{H}^{\prime} \cdot I \subset \mathfrak{a u t}(\mathbb{H}) \subset \mathfrak{a u t}(\mathbb{O}) \subset \mathfrak{f}$, we have $A_{3}(\mathbb{H})=A_{3}^{o}(\mathbb{H})+\mathbb{H}^{\prime} \cdot I \subset \mathfrak{f}$ and thus $S p_{3} \subset F$. Thus a subgroup of F acts transitively on $\mathbb{H} \mathbb{P}^{2}$. Further, the group $G_{2}=\operatorname{Aut}(\mathbb{O}) \subset F$ acts transitively on the space $G_{2} / S O_{4}$ of quaternionic subalgebras. Thus $\tilde{\mathbb{H}}=g \mathbb{H}$ for some $g \in \operatorname{Aut}(\mathbb{O}$ and $\tilde{\mathbb{H}} \mathbb{P}^{2}=g\left(\mathbb{H}^{2}\right)$, hence F acts transitively on $\mathbb{O} \mathbb{P}^{2}$.

Now we can determine the tangent space T_{P} of $\mathbb{O} \mathbb{P}^{2} \subset H_{3}(\mathbb{O})$ for $P=\left(\begin{array}{cc}1 & \\ & 0 \\ & 0\end{array}\right)$. It is obtained by applying the full Lie algebra \mathfrak{f} to P. However, we only know the subset $A_{3}^{o} \subset \mathfrak{f}$. For any $A=\left(\begin{array}{cc}a & -v^{*} \\ v & A^{\prime}\end{array}\right) \in A_{3}^{o}$
with $v \in \mathbb{O}^{2}$ and $A^{\prime} \in A_{2}(\mathbb{O})$ we have

$$
[A P]=\left(\begin{array}{ll}
& v^{*} \tag{6.1}\\
v &
\end{array}\right)=: \hat{v}
$$

Thus $T_{P} \supset \hat{\mathbb{O}}^{2}=\left\{\hat{v}: v \in \mathbb{O}^{2}\right\} \subset H_{3}(\mathbb{O})$. From the defining equation $P^{2}=P$ we obtain the converse inclusion: Let $P(t)$ be a smooth family in $\mathbb{O P}^{2}$ with $P(0)=P=\left(\begin{array}{ll}1 & \\ & 0 \\ & 0\end{array}\right)$ and $P^{\prime}(0)=X=\left(\begin{array}{ll}\alpha & v^{*} \\ v & X^{\prime}\end{array}\right)$ with $v \in \mathbb{O}^{2}$ and $X^{\prime} \in H_{2}(\mathbb{O})$. From $P^{2}=P$ we obtain $P^{\prime} P+P P^{\prime}=P^{\prime}$, hence $2 P \circ X=X$. But $2 P \circ X=2\binom{1}{0} \circ\left(\begin{array}{cc}\alpha & v^{*} \\ v & X^{\prime}\end{array}\right)=\left(\begin{array}{c}2 \alpha \\ v \\ v^{*}\end{array}\right)$. Thus $2 P \circ X=X$ implies $\alpha=0$ and $X^{\prime}=0$, hence $X \in \hat{\mathbb{O}}^{2}$ and $T_{P} \subset \hat{\mathbb{O}}^{2}$, hence $T_{P}=\hat{\mathbb{O}}^{2}$ and consequently $N_{P}=\left\{\left({ }^{\alpha}{ }^{X^{\prime}}\right): \alpha \in \mathbb{R}, X^{\prime} \in H_{2}(\mathbb{O})\right\}$.

Further we see that $\mathbb{O P}^{2}$ is a symmetric space, more precisely, it is extrinsic symmetric, that is: for any $P \in \mathbb{O} \mathbb{P}^{2}$, the reflection s_{P} along the normal space N_{P} at P keeps $\mathbb{O P}^{2}$ invariant. Then s_{P} is called extrinsic symmetry.

In fact, the group SO_{3} acts on $\mathrm{H}_{3}(\mathbb{O})$ by conjugations $\operatorname{Ad}(U): X \mapsto$ $U X U^{-1}$ (with $U \in S O_{3}$ and $X \in H_{3}(\mathbb{D})$). Each $\operatorname{Ad}(U)$ is an automorphism on $H_{3}(\mathbb{O})$, thus it keeps $\mathbb{O} \mathbb{P}^{2}$ invariant. In particular this holds for $\operatorname{Ad}(S)$ with $S=\left({ }^{1}{ }_{-I}\right)$, and clearly N_{P} and T_{P} are the +1 and -1 eigenspaces of $\operatorname{Ad}(S)$. Thus $\operatorname{Ad}(S)$ is the extrinsic symmetry at P, and the extrinsic symmetry at an arbitrary point $g P$ with $g \in F$ is $g \operatorname{Ad}(S) g^{-1}$. Since F acts transitively, $\mathbb{O} \mathbb{P}^{2}$ is extrinsic symmetric. We will see in the next section that $\operatorname{Ad}(S)$ even belongs to $F \subset \operatorname{Aut}\left(H_{3}(\mathbb{O})\right)$.

7. The isotropy group of $\mathbb{O P}^{2}$ Is Spin $_{9}$

We fix the element $P=\binom{1}{0} \in \mathbb{O P}^{2} \subset H_{3}(\mathbb{O})\left(\right.$ with $0=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$) as before. For $A=\left(\begin{array}{cc}a & -v^{*} \\ v & A^{\prime}\end{array}\right) \in A_{3}^{o}$ with $v \in \mathbb{O}^{2}$ we have $[A P]=\binom{v^{*}}{v}=\hat{v}$ (see (6.1)). This vanishes if and only if $v=0$, hence $A=\left({ }^{a}{ }_{A^{\prime}}\right)$ with $A^{\prime}=\left(\begin{array}{cc}b & -\bar{x} \\ x & c\end{array}\right)$ for $a, b, c \in \mathbb{O}^{\prime}$ with $a+b+c=0$ and $x \in \mathbb{O}$. As it will turn out later, it suffices to consider only the case $a=b=c=0$, and for those A and all $v \in \mathbb{O}^{2}$ we have

$$
\begin{equation*}
[A \hat{v}]=\widehat{A^{\prime} v} \text { where } A^{\prime}=\left({ }_{x}^{-\bar{x}}\right) . \tag{7.1}
\end{equation*}
$$

We will see that the space of all such A^{\prime} generates the Lie algebra of the group Spin_{9} acting on $T_{P} \cong \mathbb{O}^{2}$ by the spin representation.

Recall that the Clifford algebra $C l_{n}$ is the associative algebra with 1 generated by euclidean n-space such that any orthogonal matrix on \mathbb{R}^{n} extends naturally to an algebra isomorphism of $C l_{n}$. The defining relations are

$$
\begin{equation*}
v w+w v=-2\langle v, w\rangle \cdot 1 \tag{7.2}
\end{equation*}
$$

for all $v, w \in \mathbb{R}^{n}$, or equivalently,

$$
\begin{equation*}
e_{i} e_{j}+e_{j} e_{i}=-2 \delta_{i j} \tag{7.3}
\end{equation*}
$$

for any orthonormal basis e_{1}, \ldots, e_{n} of \mathbb{R}^{n}. It contains euclidean $(n+1)$ space $\mathbb{R}^{n+1}=\mathbb{R} \cdot 1 \oplus \mathbb{R}^{n}$ whose unit sphere

$$
\mathbb{S}^{n}=\left\{(\lambda, v)=\lambda \cdot 1+v: \lambda^{2}+|v|^{2}=1\right\}
$$

consists of invertible elements: $(\lambda+v)(\lambda-v)=\lambda^{2}+|v|^{2}=1$. They generate a subgroup of $C l_{n}^{\times}$(the group of invertible elements in $C l_{n}$) which is the spin group $\operatorname{Spin}_{n+1}$. The tangent space at 1 of \mathbb{S}^{n} is \mathbb{R}^{n}; it is contained in the Lie algebra $T_{1} \operatorname{Spin}_{n+1}=\mathfrak{s p i n}_{n+1}$. Thus \mathbb{R}^{n} generates $\mathfrak{s p i n}_{n+1}$ as a Lie algebra since \mathbb{S}^{n} generates $S_{p i n_{n+1}}$ as a group: note that $\mathbb{S}^{n}=\exp \left(T_{I} \mathbb{S}^{n}\right)$ since for any $v \in \mathbb{R}^{n}, e^{t v}=\cos t+v \sin t$ is a one-parameter group in $C l_{n}^{\times}$and at the same time a great circle in \mathbb{S}^{n}. As a vector space, $\mathfrak{s p i n}_{n+1}$ is spanned by all e_{i} and $e_{i} e_{j}$ with $i<j$ where e_{1}, \ldots, e_{n} is an orthonormal basis of \mathbb{R}^{n}. Thus $\operatorname{dim} \operatorname{Spin}_{n+1}=$ $n+\frac{1}{2} n(n-1)=\frac{1}{2} n(n+1)$. In fact, for $j \neq k$ we have $e_{j} e_{k}=-e_{k} e_{j}$, hence $\left[e_{j}, e_{k}\right]=2 e_{j} e_{k}$, and when i, j, k are distinct, $\left[e_{i},\left[e_{j}, e_{k}\right]\right]=2\left[e_{i}, e_{j} e_{k}\right]=$ 0 , while $\left[e_{i}\left[e_{j}, e_{i}\right]\right]=2 e_{i}\left(e_{j} e_{i}-e_{i} e_{j}\right)=4 e_{j}$.

The generating elements e_{i} and $e_{i j}:=e_{i} e_{j}$ satisfy $e_{i j}^{2}=-e_{i}^{2} e_{j}^{2}=-1$, thus $\exp \left(t e_{i j}\right)=\cos t+e_{i j} \sin t=1 \Longleftrightarrow t \in 2 \pi \mathbb{Z}$. We will call them unit generators of $\mathfrak{s p i n}_{n+1}$.
Remark. Originally, $S p i n_{n+1}$ was defined as a subset of $C l_{n+1}^{+}$(the space of even elements in $C l_{n+1}$), and we have used the algebra isomorphism $C l_{n} \rightarrow C l_{n+1}^{+}, e_{i} \mapsto e_{i} e_{n+1}$ to embed it into $C l_{n}$. Then the above basis elements $e_{i}, e_{i} e_{j}$ of $\mathfrak{s p i n}_{n+1}$ are replaced by $e_{i} e_{n+1}, e_{i} e_{j}$ (where $i, j \leq n, i<j$). This embedding shows better the connection to $S O_{n+1}$. Recall the subgroup $\operatorname{Pin}_{n+1} \subset C l_{n+1}^{\times}$generated by $\mathbb{S}^{n} \subset \mathbb{R}^{n+1} \subset C l_{n+1}$. It acts on \mathbb{R}^{n+1} by conjugation $\operatorname{Ad}(v): x \mapsto$ $-v x v=v x v^{-1}, v \in \mathbb{S}^{n}, x \in \mathbb{R}^{n+1}$. We have $v x v=x$ when $x \perp v$ while $v x v=-x$ when $x \in \mathbb{R} v$, thus $-\operatorname{Ad}(v)$ is the reflection along the hyperplane v^{\perp}. Since the orthogonal group O_{n+1} is generated by hyperplane reflections, we have $\operatorname{Ad}\left(\operatorname{Pin}_{n+1}\right)=O_{n+1}$. Now $S p i n_{n+1}$ is the subgroup of Pin_{n+1} consisting of products with an even number
of factors. Hence $\operatorname{Ad}\left(S p i n_{n+1}\right)=S O_{n+1}$. This is a 2:1 covering with kernel $\{ \pm 1\} .{ }^{17}$

A representation of $C l_{n}$ is an algebra homomorphism ϕ into some matrix algebra, $\phi: C l_{n} \rightarrow \mathbb{R}^{p \times p}$, making the vector space \mathbb{R}^{p} a $C l_{n^{-}}$ module. By (7.3), a representation is given by any system of anticommuting complex structures J_{1}, \ldots, J_{n} on \mathbb{R}^{p}, that means $J_{i}^{2}=-I$ and $J_{i} J_{k}=-J_{k} J_{i}$ for $k \neq i$. There is essentially just one irreducible representation for each $C l_{n}$; in particular, its dimension p is uniquely determined. Only if $n+1$ is a multiple of 4 , there are two such representations: they differ by the automorphism of $C l_{n}$ induced by $-I$ on \mathbb{R}^{n}, and both are not faithful (only their direct sum is). When restricted to $S p i n_{n+1} \subset C l_{n}$, this representation is called half spin representation if $4 \mid(n+1)$ and spin representation otherwise.

Example $n=8$. The irreducible $C l_{8}$-module is $\mathbb{O}^{2}=\mathbb{R}^{16}$, and $\mathbb{O}=$ $\mathbb{R}^{8} \subset C l_{8}$ acts on \mathbb{O}^{2} as the space $\hat{\mathbb{O}}$ which we already have met in (7.1):

$$
\hat{\mathbb{O}}=\left\{\left({ }_{x}-\bar{x}\right): x \in \mathbb{O}\right\} .
$$

This is a block matrix where the entries are left multiplications in \mathbb{O}, that is x stands for the (8×8)-matrix $L(x)$ which is the linear map $u \mapsto x u$ on \mathbb{O}. We check the Clifford relations (7.2):

$$
\left(L_{L(x)}^{-L(\bar{x})}\right) \circ\left({ }_{L(y)}^{-L(\bar{y})}\right)=-\langle x, y\rangle \cdot\left({ }^{1}{ }_{1}\right) .
$$

Here we have used the octonionic identity

$$
\begin{equation*}
L(\bar{x}) L(y)+L(\bar{y}) L(x)=2\langle x, y\rangle \cdot I=L(\bar{x} y+\bar{y} x) \tag{7.4}
\end{equation*}
$$

In fact, when $x, y \in \mathbb{O}^{\prime},(7.4)$ is the polarization of 2.2 , page 6 which says $L(\bar{x}) L(x)=-L(x)^{2}=\langle x, x\rangle I$ for $x \in \mathbb{O}^{\prime}$, and in the general case $x=\xi+x^{\prime}, y=\eta+y^{\prime}$ we have $L(\bar{x}) L(y)+L(\bar{y}) L(x)=2 \xi \eta+2\left\langle x^{\prime}, y^{\prime}\right\rangle=$ $2\langle x, y\rangle$.

By (7.1), the group $S p i n_{9} \subset C l_{8}$ generated by $\hat{\mathbb{S}}^{8}=\exp \hat{\mathbb{O}}$ is contained in the isotropy group of F at $P=\left(\begin{array}{cc}1 & \\ 0 & 0\end{array}\right)$. Counting dimensions we see that it is the full isotropy group (which is connected since $\mathbb{O} \mathbb{P}^{2}$ is simply connected) since $\operatorname{dim} \mathfrak{f}-\operatorname{dim} \mathfrak{s o}_{9}=52-36=16=\operatorname{dim} \mathbb{O P}^{2}$. Further, the symmetry s_{P} corresponds to $-I \in \operatorname{Spin}_{9}$, hence $s_{P} \in$

[^11]Spin $_{9} \subset F$. Therefore F contains all symmetries of $\mathbb{O} \mathbb{P}^{2}$ and in particular it contains the identity component of its isometry group. Thus it is the identity component of $\operatorname{Aut}\left(H_{3}(\mathbb{O})\right)$ which acts isometrically and effectively on $\mathbb{O} \mathbb{P}^{2}$.

We have seen that the isotropy group of $\mathbb{O P}^{2}$ is the group $\operatorname{Spin}_{9} \subset$ $C l_{8} \cong \mathbb{R}^{16 \times 16}$ which is generated by the unit sphere $\hat{\mathbb{S}}^{8}$ in

$$
\hat{\mathbb{R}}^{9}=\widehat{\mathbb{O} \oplus \mathbb{R}}=\left\{\left(\begin{array}{cc}
\lambda & -\bar{x} \tag{7.5}\\
x & \lambda
\end{array}\right): x \in \mathbb{O}, \lambda \in \mathbb{R}\right\}
$$

Following the recent doctoral thesis of Erich Dorner [3] we will generalize (7.5) in a way which was first suggested by Boris Rosenfeld [15]. According to the classification of É. Cartan there are three exceptional symmetric spaces with dimensions $32,64,128$, whose transvection groups ${ }^{18}$ are the exceptional groups E_{6}, E_{7}, E_{8}. These are the so called Rosenfeld planes. Rosenfeld tried to describe them as projective planes over the algebra $\mathbb{O} \otimes \mathbb{L}$ with $\mathbb{L}=\{\mathbb{C}, \mathbb{H}, \mathbb{O}\}$ (see also [2, page 313]. This did not work out properly, but still the isotropy group of these spaces can be described in terms of $\mathbb{O} \otimes \mathbb{L}$. We have to extend the coefficients λ in (7.5) from \mathbb{R} to \mathbb{L} and consider the space of matrices

$$
\hat{\mathbb{R}}^{8+l}=\widehat{\mathbb{O} \oplus \mathbb{L}}=\left\{\left(\begin{array}{cc}
\lambda & -\bar{x} \tag{7.6}\\
x & \bar{\lambda}
\end{array}\right): x \in \mathbb{O}, \lambda \in \mathbb{L}\right\}
$$

which are matrices over the algebra $\mathbb{O} \otimes \mathbb{L}=\left\{\sum_{k=0}^{7} \lambda_{k} e_{k}: \lambda_{k} \in \mathbb{L}\right\}$ (where $\lambda_{k}=1 \otimes \lambda_{k}$ and $e_{k}=e_{k} \otimes 1$). The unit sphere in $\widehat{\mathbb{O} \oplus \mathbb{L}}$ will generate the group $\operatorname{Spin}_{8+l}$ where $l=\operatorname{dim} \mathbb{L}$. Again, the Clifford relations (7.2) are valid since the matrix $\left({ }^{\lambda}{ }_{-\lambda}\right)$ for $\lambda \in \mathbb{L}^{\prime}$ squares to $-|\lambda|^{2} I$ and anticommutes with $\left({ }_{x}{ }^{-\bar{x}}\right)$.

Unlike the octonionic plane, the Rosenfeld planes cannot be constructed easily as submanifolds of euclidean space. But we know its tangent space at one point together with its isotropy representation, and these data suffice to reconstruct the symmetric space. More precisely, the isotropy representation of a symmetric space $P=G / K$ determines P up to coverings. But of course there are much more representations than symmetric spaces, and only few of them, the so called s-representations, are isotropy representations of a symmetric space. We have to address the question why this representation of Spin $_{8+l}$ is an s-representation. In fact this is not even quite true: We

[^12]first have to enlarge this matrix group by right multiplications with those unit elements of \mathbb{L} which commute with all left multiplications.

8. Representations of certain Clifford algebras

We generalize the representation of Spin_{9} from the previous section to $\operatorname{Spin}_{k+l}$ with $k, l \in\{1,2,4,8\}$ as follows. The $C l_{k+l-1}$ module is $(\mathbb{K} \otimes \mathbb{L})^{2}$ where $\mathbb{K} \otimes \mathbb{L}$ denotes the tensor product over \mathbb{R} for arbitrary normed algebras \mathbb{K} and \mathbb{L}. The representation is determined by the following embedding of $\mathbb{R}^{k+l}=\mathbb{K} \oplus \mathbb{L}$ into $(\mathbb{K} \otimes \mathbb{L})^{2 \times 2}$, the space of 2×2-matrices with coefficients in $\mathbb{K} \otimes \mathbb{L}$, which can be viewed as real $(2 k l \times 2 k l)$-matrices:

$$
\mathbb{K} \oplus \mathbb{L} \ni(x, \lambda) \mapsto\left(\begin{array}{cc}
\lambda & -\bar{x} \tag{8.1}\\
x & \bar{\lambda}
\end{array}\right)
$$

where $x \in \mathbb{K}=\mathbb{K} \otimes 1$ and $\lambda \in \mathbb{L}=1 \otimes \mathbb{L}$. Thus the representation of $\mathbb{K} \oplus \mathbb{L}$ is spanned by the identity matrix I and $k+l-1$ anticommuting complex structures

$$
\left(\begin{array}{cc}
\mu & \tag{8.2}\\
& -\mu
\end{array}\right),\left(\begin{array}{ll}
& -1 \\
1 &
\end{array}\right),\left(\begin{array}{ll}
f
\end{array}\right)
$$

where μ and f run through standard orthonormal bases of the imaginary parts of \mathbb{K} and \mathbb{L}. The latter matrices span the tangent space of $\mathbb{S}^{n-1} \subset \operatorname{Spin}_{n}$, and together with their Lie products they generate a matrix representation of the whole Lie algebra $\mathfrak{s p i n}_{k+l}$ which we call $\underline{\mathfrak{s p i n}}_{k+l}$. Commutators of these anticommuting matrices are twice their products which are again either diagonal or anti-diagonal. Thus the full Lie algebra $\mathfrak{s p i n}_{k+l}$ is spanned by the matrices in (8.2) together with the following ones:

$$
\left(\begin{array}{ll}
& \mu \tag{8.3}\\
\mu &
\end{array}\right),\left(\begin{array}{ll}
f & \\
& -f
\end{array}\right),\left(\begin{array}{ll}
\mu \nu & \\
& \mu \nu
\end{array}\right),\left(\begin{array}{ll}
e f & \\
& e f
\end{array}\right),\left(\begin{array}{ll}
& \mu f \\
\mu f &
\end{array}\right)
$$

where $e f$ means $L(e) L(f)$ (with $e<f$ with respect to the natural ordering of the orthonomal basis). We may assume that $\mathbb{L} \subset \mathbb{K}$ and that the chosen orthonormal basis of $\operatorname{Im} \mathbb{L}$ is contained in that of $\operatorname{Im} \mathbb{K}$.

Allowing now e, f, μ, ν to run through the full basis of \mathbb{K} and \mathbb{L}, including the unit element 1 , we can combine (8.2) and (8.3) to the following set of generators of $\underline{\mathfrak{s p i n}}_{k+l}$ as a vector space:

$$
\left(\begin{array}{cc}
\mu \nu & \tag{8.4}\\
& \bar{\mu} \bar{\nu}
\end{array}\right),\left(\begin{array}{cc}
e f & \\
& \bar{e} \bar{f}
\end{array}\right),\left(\begin{array}{ll}
& -\bar{\mu} \bar{f} \\
\mu f &
\end{array}\right) .
$$

Let $\underline{S p i n}_{k+l} \subset \mathbb{R}^{2 k l \times 2 k l}$ be the represented group. As mentioned above, this is not yet the isotropy representation of a symmetric space,
but we have to enlarge it by certain right multiplications: we put

$$
S_{\mathbb{K}}=\left\{\begin{array}{cc}
\{R(x): x \in \mathbb{K},|x|=1\} & \text { for } \mathbb{K}=\mathbb{C}, \mathbb{H} \\
\{I\} & \text { for } \mathbb{K}=\mathbb{R}, \mathbb{O}
\end{array}\right.
$$

and we consider the matrix group

$$
\begin{equation*}
K=\underline{\operatorname{Spin}}_{k+l} \cdot S_{\mathbb{K}} \cdot S_{\mathbb{L}}^{\prime} \tag{8.5}
\end{equation*}
$$

acting on $(\mathbb{K} \otimes \mathbb{L})^{2}$. Similarly we define $S_{\mathbb{L}}^{\prime}$ with $R(x), x \in \mathbb{K}$ replaced by $R\left(y^{\prime}\right)$, $y \in \mathbb{L}$. In the next two sections we will prove:

Theorem 8.1. This representation of K is an s-representation, the isotropy representation of a symmetric space which we call the generalized Rosenfeld plane $(\mathbb{K} \otimes \mathbb{L}) \mathbb{P}^{2}$.

To understand the strategy of the proof we first have to recall how a simply connected symmetric space is reconstructed from its isotropy representation. The construction goes back to É. Cartan and was used by Ernst Witt [18] for the construction of the exceptional Lie group E_{8}.

In order to prove the theorem, we have to show that the vector space $\mathfrak{g}:=\mathfrak{k} \oplus V$ with $V=(\mathbb{K} \otimes \mathbb{L})^{2}$ carries a Lie bracket extending the one on \mathfrak{k}, and \mathfrak{k} and V are the (± 1)-eigenspaces of an involution on \mathfrak{g}, a Lie algebra automorphism σ with $\sigma^{2}=\mathrm{id}$. The idea is simple: for all $A \in \mathfrak{k}$ and $v, w \in V$ we let $[A, v]=-[v, A]=A v$ and define $[v, w] \in \mathfrak{k}$ by its inner product with any elements in \mathfrak{k} :

$$
\begin{equation*}
[v, w] \in \mathfrak{k}, \quad\langle A,[v, w]\rangle_{\mathfrak{k}}:=\langle A v, w\rangle \text { for all } A \in \mathfrak{k} . \tag{8.6}
\end{equation*}
$$

The inner product $\langle,\rangle_{\mathfrak{k}}$ on \mathfrak{k} must be invariant under the adjoint action of K and such that at the end it is the restriction of an $\operatorname{Ad}(G)$-invariant inner product on \mathfrak{g}. E.g. one can always choose the trace metric for the representation of K on $\mathfrak{g}=\mathfrak{k} \oplus V$, but there are other choices. If \mathfrak{k} is simple, there is just one $\operatorname{Ad}(K)$-invariant metric on \mathfrak{k} up to a scalar factor. In any case, this "Lie bracket" is invariant under K. Even more is true: it is invariant under the normalizer of K within the orthogonal group of V :

Lemma 8.2. Let (V, K) be any representation, and V carries the Lie triple product. Let \hat{K} be the normalizer of K in the orthogonal group of V. Then \hat{K} consists of automorphisms of the "Lie triple" given by (8.6), that means for all $k \in \hat{K}$ and $v, w \in V$,

$$
\begin{equation*}
[k v, k w]=k[v, w] k^{-1} . \tag{8.7}
\end{equation*}
$$

Proof. For all $A \in \mathfrak{k}$ we put $A^{\prime}=k^{-1} A k \in \mathfrak{k}$. then

$$
\begin{aligned}
\left\langle A, k[v, w] k^{-1}\right\rangle_{\mathfrak{k}} & =\left\langle A^{\prime},[v, w]\right\rangle \\
& \stackrel{(8.6)}{=}\left\langle A^{\prime} v, w\right\rangle \\
= & \langle A k v, k w\rangle \\
& \stackrel{(8.6)}{=}\langle A,[k v, k w]\rangle_{\mathfrak{k}}
\end{aligned}
$$

So far, this construction is quite general. It depends only on a representation (K, V) of any compact Lie group K and an $\operatorname{Ad}(K)$-invariant inner product on \mathfrak{k}. The decisive point to check is the Jacobi identity (5.5) for the new "Lie bracket" (8.6) which fails for most representations. However, by (8.7) it is enough to prove (5.5) on V,

$$
\begin{equation*}
[v, w] u+[w, u] v+[u, v] w=0 \text { for all } u, v, w \in V \tag{8.8}
\end{equation*}
$$

In our case this will follow easily using subrepresentations which are already known to be s-representations, see next section. When (8.8) holds, V is called a Lie triple.

9. $(\mathbb{K} \otimes \mathbb{L})^{2}$ is always a Lie triple

Let us first consider the largest associative algebra of type $\mathbb{K} \otimes \mathbb{L}$, that is $\mathbb{H} \otimes \mathbb{H}$. This occurs as a subalgebra of the largest case $\mathbb{O} \otimes \mathbb{O}$ which is the main observation for the proof of Theorem 8.1, see Theorem 9.4 below. Now the two tensor factors will play a symmetric rôle, so we cannot stay with our convention denoting the first factor by latin and the second one by greek letters. Instead we will put $x=x \otimes 1$ and $x^{\prime}=1 \otimes x$ for each $x \in \mathbb{H}$, and we will stop using the notation x^{\prime} for the imaginary part of x.

Lemma 9.1. The representation of $K=\underline{S p i n}_{8} \cdot S_{\mathbb{H}} \cdot S_{\mathbb{H}}^{\prime}$ on the vector space $(\mathbb{H} \otimes \mathbb{H})^{2}$ is isomorphic to the isotropy representation of the Grassmannian $\mathrm{G}_{4}\left(\mathbb{R}^{12}\right)$.
Proof. We consider the two involutions $R\left(i i^{\prime}\right)$ and $R\left(j j^{\prime}\right)$ in $S S^{\prime}:=$ $S_{\mathbb{H}} \cdot S_{\mathbb{H}}^{\prime}=\left(\mathbb{S}^{3} \times \mathbb{S}^{3}\right) / \pm$. Since they commute with each other, they have a common eigenspace decomposition

$$
V=E_{++}+E_{+-}+E_{-+}+E_{--}
$$

where E_{++}is the intersection of the $(+1)$-eigenspaces of $R\left(i i^{\prime}\right)$ and $R\left(j j^{\prime}\right)$ etc. On the other hand, $R(j), R(k)$ and $R(i), R(k)$ anticommute with $R\left(i i^{\prime}\right)$ and $R\left(j j^{\prime}\right)$ respectively, thus they change the signs of the eigenvalues and permute the eigenspaces. So all eigenspaces have the same dimension $\frac{1}{4} \cdot 32=8$. The matrix group $\underline{\text { Spin }_{8}} \subset K$ commutes
with all right translations, thus it keeps these four subspaces invariant. We put $E=E_{++}$and consider the linear map

$$
\begin{equation*}
F: E \otimes \mathbb{H} \rightarrow(\mathbb{H} \otimes \mathbb{H})^{2}: v \otimes p \mapsto v p=v \bar{p}^{\prime} \tag{9.1}
\end{equation*}
$$

(recall that $R(p)=-R\left(p^{\prime}\right)$ on E for all imaginary $p \in \mathbb{H}$). The action of Spin $_{8}$ lives only on $E \cong \mathbb{R}^{8}$; it is a nontrivial homomorphism Spin $_{8} \rightarrow$ SO_{8} which must be surjective since $\mathfrak{s p i n}_{8}=\mathfrak{s o}_{8}$ is a simple Lie algebra. On the other hand, the action of $S S^{\prime}$ transforms only the scalar p in (9.1): for any $a, b \in S_{\mathbb{H}}=\mathbb{S}^{3}$ and $v \in E$, the action of (a, b) on $v p$ is by

$$
a . v p:=v p \bar{a}, \quad b . v p:=v p \bar{b}^{\prime}=v \bar{b}^{\prime} p=v b p .
$$

In other words, $\pm(a, b) \in S S^{\prime}$ acts only on the second tensor factor of $E \otimes \mathbb{H}$, and it acts by $p \mapsto b p \bar{a}$, which is the standard action of

$$
S O_{4}=\left\{L(b) R(\bar{a}): b, a \in \mathbb{S}^{3}\right\}
$$

on $\mathbb{H}=\mathbb{R}^{4}$. The linear map F in (9.1) is a linear isomorphism (onto and the same dimensions 32 for domain and range) which is K-equivariant with respect to the representation of $K=\underline{S p i n}_{8} \cdot S S^{\prime}$ as tensor representation of $\mathrm{SO}_{8} \times \mathrm{SO}_{4}$ on $\mathrm{E} \otimes \mathbb{H}$. But this is the isotropy representation of the Grassmannian $\mathrm{G}_{4}\left(\mathbb{R}^{12}\right)$.
Lemma 9.2. K is contained in Spin $_{16}$, and the inner products on $\mathfrak{k} \cong \mathfrak{s p i n}_{8} \oplus \mathfrak{s p i n}_{4}$ induced from Ad-invariant inner products on $\mathfrak{s p i n}_{16}$ and on $\mathfrak{s p i n}_{12}$ are proportional.

Proof. Clearly $\underline{S p i n}_{4+4} \subset \underline{S p i n}_{8+8}$. Left translations with unit basis elements acting on $\mathbb{O} \otimes \mathbb{O}$ have squared norm $\operatorname{dim}(\mathbb{O} \otimes \mathbb{O})=64$, thus all the generators of the Lie algebra in (8.4) have the same squared norm 128 in the trace metric of $\underline{S p i n}_{16}$.

We have to show first that $S S^{\prime} \subset \underline{S p i n}_{16}$. We observe that for any $q \in \mathbb{H}$, the right translation $R(q)$ on \mathbb{H} can be replaced by a composition of octonionic left translations:

$$
\begin{equation*}
R(q)=-L(l) L(\bar{q} l) \tag{9.2}
\end{equation*}
$$

where $\mathbb{O}=\mathbb{H} \oplus l \mathbb{H}$ with $l^{2}=-1$. In fact, if $q \in \mathbb{R}$, this holds trivially. If $q \perp \mathbb{R}$ (that is $\bar{q}=-q$) and $|q|=1$, then $l \perp l q$, and for any $x \in \mathbb{H}$ we have

$$
L(l) L(q l) x=l((q l) x)=\left\{\begin{array}{ccccc}
-l^{2} q & = & q & \text { if } & x=1 \\
-l^{2} q^{2} & = & -1 & \text { if } & x=q \\
l^{2} q x & = & -q x & \text { if } & x \perp 1, q
\end{array}\right\}=x q
$$

where we have used anti-associativity $l((l q) x)=-(l(l q)) x$ in the case $x \perp 1, q$. A similar statement holds for l^{\prime} and q^{\prime} instead of l and q. By (8.3), the matrices ef $\cdot\left({ }^{1}{ }_{1}\right)$ and $e^{\prime} f^{\prime} \cdot\left({ }^{1}{ }_{1}\right)$ with $e=-l$ and $f=l q$ are
contained in $\underline{s p i n}_{16}$ and hence ${ }^{19}$ the group $S S^{\prime}$ of unit $(\mathbb{H} \otimes \mathbb{H})$-scalar multiplications is contained in Spin_{16}.

The three components of $\mathfrak{k} \cong \mathfrak{s p i n}_{8} \oplus \mathfrak{s p i n}_{3} \oplus \mathfrak{s p i n}_{3}$ are perpendicular with respect to every $\operatorname{Ad}(K)$-invariant inner product since they are inequivalent submodules for the adjoint representation. The unit generators of the Lie algebra of $S S^{\prime}$ are matrices of type (L_{L}) with $L=L(e) L(f)$ or $L\left(e^{\prime}\right) L\left(f^{\prime}\right)$ where $e, f \in \operatorname{Im} \mathbb{O}$ are certain elements of the standard basis $B_{\mathbb{C}}$. Every left multiplication with an element of $B_{\mathbb{O}}$ is a permutation of $B_{\mathbb{O}}$ up to signs, hence the same holds for L, and its squared norm is the dimension 64 of $\mathbb{O} \otimes \mathbb{O}$. Thus in $\underline{\mathfrak{p p i n}}_{16}$, the unit generators of the Lie algebra of $S S^{\prime}$ have the same squared norm 128 as the unit generators of $\underline{\mathfrak{s p i n}}_{8}$.

Further, the standard basis elements $e_{i} e_{j}, 1 \leq i<j \leq 12$ of $\mathfrak{s p i n}_{12} \subset$ $C l_{12}^{+}$have all the same length. In particular this holds for those $e_{i} e_{j}$ with $i, j \leq 8$ or $i, j \geq 9$ which are the unit generators of $\mathfrak{s p i n}_{8}$ and $\mathfrak{s p i n}_{4}$. Thus the metrics on \mathfrak{k} induced by $\mathfrak{s p i n}_{16}$ and $\mathfrak{s p i n}_{12}$ are proportional.

Corollary 9.3. Let $\mathbb{H}_{1}, \mathbb{H}_{2} \subset \mathbb{O}$ two subalgebras isomorphic to \mathbb{H}. Then (8.8) holds on the subtriple $\left(\mathbb{H}_{1} \otimes \mathbb{H}_{2}\right)^{2} \subset(\mathbb{O} \otimes \mathbb{O})^{2}$.

Proof. By the preceding two lemmas, the "Lie triple" (8.6) restricted to $\left(\mathbb{H}_{1} \otimes \mathbb{H}_{2}\right)^{2}$ is proportional to the Lie triple of the Grassmannian $\mathrm{G}_{4}\left(\mathbb{R}^{12}\right)$ where (8.8) holds.

Theorem 9.4. For any $\mathbb{K}, \mathbb{L} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\}$, the action of the group $K=\underline{S p i n}_{k+l} \cdot S_{\mathbb{K}} \cdot S_{\mathbb{L}}^{\prime}$ on $V=(\mathbb{K} \otimes \mathbb{L})^{2}$ is an s-representation. The Lie triple product on V is given by (8.6) for the metric on $\mathfrak{k} \subset \underline{\mathfrak{s p i n}}_{16}$ which is induced from the trace inner product on $\underline{\mathfrak{s p i n}}_{16}$.
Proof. Since we always take the same inner product induced from the trace on $\underline{s p i n}_{16}$, we have to check (8.8) only for $(\mathbb{O} \otimes \mathbb{O})^{2}$, then it holds also for $(\mathbb{K} \otimes \mathbb{L})^{2} \subset(\mathbb{O} \otimes \mathbb{O})^{2}$. It is enough to check (8.8) when a, b, c are basis elements. We consider the orthonormal basis

$$
\begin{equation*}
\hat{B}=B \mathbf{e}_{1} \cup B \mathbf{e}_{2} \tag{9.3}
\end{equation*}
$$

of $V=(\mathbb{O} \otimes \mathbb{O})^{2}$ where $\mathbf{e}_{1}=\binom{1}{0}$ and $\mathbf{e}_{2}=\binom{0}{1}$ and where B is the basis of $\mathbb{O} \otimes \mathbb{O}$ given by the tensor products of the standard basis of \mathbb{O}

$$
\begin{equation*}
B_{\mathbb{O}}=\{1, i, j, k, l, i l, j l, k l\} \tag{9.4}
\end{equation*}
$$

[^13]in each tensor factor. Using the equivariance for $K=\underline{S p i n}_{16}$ (see (8.7)), we may assume that $c=\mathbf{e}_{1}=\binom{1}{0}$. In fact, after applying one of the anti-diagonal matrices in (8.4) if necessary (all matrices in (8.4) lie in the intersection $\underline{S p i n}_{16} \cap \underline{\mathfrak{s p i n}}_{16}$ since the commutator of these matrices is twice their product), we may assume that $c=\gamma \mathbf{e}_{1}$ for some $\gamma=e \otimes f=e f^{\prime}$. Applying the inverse of $\operatorname{diag}(e,-e) \cdot \operatorname{diag}\left(f^{\prime},-f^{\prime}\right)$ we change c to \mathbf{e}_{1}, and $\pm \hat{B}$ is kept invariant under this transformation.

The remaining basis elements are $a=\alpha \mathbf{e}_{i}$ and $b=\beta \mathbf{e}_{j}$ (where $i, j \in$ $\{1,2\}$) with $\alpha=u v^{\prime}$ and $\beta=w x^{\prime}$ in B. But the two octonions u, w lie in a common quaternionic subalgebra $\mathbb{H}_{1} \subset \mathbb{O}$, and similarly $v, x \in \mathbb{H}_{2}$. Thus we are in a "classical" subspace of the form $\left(\mathbb{H}_{1} \otimes \mathbb{H}_{2}\right)^{2} \subset(\mathbb{O} \otimes \mathbb{O})^{2}$ where the Jacobi identity already holds, see the previous corollary. Thus we have established a Lie triple structure on $V=(\mathbb{K} \otimes \mathbb{L})^{2}$ and Lie algebra structure on $\mathfrak{g}=\mathfrak{k} \oplus V$ in all cases.

10. Rosenfeld lines

First we restrict our representation of K on $V=(\mathbb{K} \otimes \mathbb{L})^{2}$ to the subspace $V_{1}=(\mathbb{K} \otimes \mathbb{L})^{1}$ which consists of the vectors $\binom{x}{y} \in V$ with $y=0$. This is the fixed space of the reflection $r=\left({ }^{1}{ }_{-1}\right)$ on $(\mathbb{K} \otimes$ $\mathbb{L})^{2}$ which normalizes K : it commutes with the diagonal matrices in (8.4) while conjugation with the antidiagonal matrices by r changes sign. By Lemma 8.2, r is an automorphism of the Lie triple, hence V_{1} is a Lie subtriple, and the corresponding symmetric subspace of the generalized Rosenfeld plane $(\mathbb{K} \otimes \mathbb{L}) \mathbb{P}^{2}$ is called (generalized) Rosenfeld line $(\mathbb{K} \otimes \mathbb{L}) \mathbb{P}^{1}$.

Theorem 10.1. Up to coverings, the Rosenfeld line $(\mathbb{K} \otimes \mathbb{L}) \mathbb{P}^{1}$ is the Grassmannian $\mathrm{G}_{k}\left(\mathbb{R}^{k+l}\right)$ where $k=\operatorname{dim} \mathbb{K}$ and $l=\operatorname{dim} \mathbb{L}$.

Proof. The subgroup $K_{1} \subset K$ preserving this subspace consists of the diagonal matrices in K, and only the upper left entry matters. According to (8.4), the Lie algebra for this representation is spanned by $L(e), L\left(f^{\prime}\right), L(e f), L\left(e^{\prime} f^{\prime}\right)$, and $R\left(e f^{\prime}\right)$ (due to the factor $S_{\mathbb{K}} \cdot S_{\mathbb{L}}^{\prime}$, see (8.5)). Thus K_{1} acts on $\mathbb{K} \otimes \mathbb{L}$ by left and right multiplications with several elements of $\mathbb{K} \otimes 1$ and $1 \otimes \mathbb{L}$. This is a tensor representation: the left and right multiplications by $\mathbb{K}=\mathbb{K} \otimes 1$ act only on the first tensor factor \mathbb{K} while those by $\mathbb{L}^{\prime}=1 \otimes \mathbb{L}$ act only on the second tensor factor \mathbb{L}. The infinitesimal action of K_{1} on the tensor factor $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\}$ is generated by the action of $\operatorname{Im}(\mathbb{K})$ through right multiplication on \mathbb{K}. This is the natural action of $\mathrm{SO}_{1}, \mathrm{SO}_{2}, \mathrm{SO}_{4}, \mathrm{SO}_{8}$, respectively. The same holds for \mathbb{L}. Thus the image of the representation of K_{1} on $\mathbb{K} \otimes \mathbb{L}$ is the tensor product action of $S O_{k} \times S O_{l}$ on $\mathbb{K} \otimes \mathbb{L}$,
which is the isotropy representation of the Grassmannian $\mathrm{G}_{k}\left(\mathbb{R}^{k+l}\right)$ of k-dimensional linear subspaces in \mathbb{R}^{k+l}. ${ }^{20}$

11. The Lie triple on $(\mathbb{K} \otimes \mathbb{L})^{2}$

The Lie triple can be computed by (8.6): For any $v, w \in V=(\mathbb{K} \otimes \mathbb{L})^{2}$ we have $[v, w] \in \mathfrak{k}$ with

$$
\begin{equation*}
\langle A,[v, w]\rangle_{\mathfrak{e}}=\langle A v, w\rangle \tag{11.1}
\end{equation*}
$$

for all $A \in{\underset{\mathfrak{s p i n}}{k+l}}$, see (8.4). As inner product on \mathfrak{k} we choose the one induced by the trace inner product on $\mathfrak{s p i n}_{16}$. Using the orthonormal basis \mathfrak{B} of $\underline{\mathfrak{s p i n}}_{16}$ as given in (8.4) we see $[v, w]=\sum_{j}\left\langle A_{j} v, w\right\rangle A_{j}$ and

$$
\begin{equation*}
[u,[v, w]]=-[v, w] u=-\sum_{j}\left\langle A_{j} v, w\right\rangle A_{j} u \tag{11.2}
\end{equation*}
$$

where $A_{j} \in \mathfrak{B}$ with $\left\langle A_{j} v, w\right\rangle \neq 0$. Since we want that $(\mathbb{K} \otimes \mathbb{L})^{2}$ is a Lie subtriple of $(\mathbb{O} \otimes \mathbb{O})^{2}$, we may compute the Lie triple product $[u,[v, w]]$ for all $u, v, w \in(\mathbb{K} \otimes \mathbb{L})^{2}$ within $\mathbb{O} \otimes \mathbb{O}$. The base \mathfrak{B} of $\mathfrak{s p i n}_{16}$ acts on $\pm \hat{B}$ of $(\mathbb{O} \otimes \mathbb{O})^{2}$, see (9.3): any $A \in \mathfrak{B}$ permutes \hat{B} up to sign.

1. Let us compute $\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]$. We have to look for $A \in \mathfrak{B}$ with $\left\langle A,\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]\right\rangle=\left\langle A \mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle \neq 0$. The only $A \in \mathfrak{B}$ carrying \mathbf{e}_{1} to a real multiple of \mathbf{e}_{2} is $A=\left(1^{-1}\right)$ with $A \mathbf{e}_{1}=\mathbf{e}_{2}$, thus $\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]=\left(1^{-1}\right)$. Further,

$$
\left[\mathbf{e}_{1},\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]\right]=-A \mathbf{e}_{1}=-\mathbf{e}_{2} .
$$

More generally, we have:
Lemma 11.1. Let B be the canonical orthonormal basis of $\mathbb{K} \otimes \mathbb{L}$. Then for any $\alpha, \beta \in B$ we have

$$
\begin{equation*}
\left[\alpha \mathbf{e}_{1}, \beta \mathbf{e}_{2}\right]=\left({ }_{\beta \bar{\alpha}}^{-\alpha \bar{\beta}}\right) \neq 0 . \tag{11.3}
\end{equation*}
$$

Proof. According to (8.4), we have $\left\langle A,\left[\alpha \mathbf{e}_{1}, \beta \mathbf{e}_{2}\right]\right\rangle=\left\langle A \alpha \mathbf{e}_{1}, \beta \mathbf{e}_{2}\right\rangle \neq 0$ $\Longleftrightarrow A=A_{\gamma}:=\left(\gamma^{-\bar{\gamma}}\right)$ with $\gamma \alpha=\beta$, hence $\gamma=\beta \bar{\alpha}$.

[^14]$$
((A, B), v \otimes w) \mapsto A v \otimes B w .
$$
2. Next we compute $\left[\mathbf{e}_{1}, i \mathbf{e}_{1}\right]$. This is tangent to the Rosenfeld line whose structure as a symmetric space we already know, but we still have to see the induced metric. In most cases, the metric is unique up to a factor (by irreducibility), but it remains to determine this factor. Again we have to look for all $A \in \mathfrak{B}$ with $\left\langle A e_{1}, i e_{1}\right\rangle \neq 0$. This time, there are four such matrices A, and they satisfy $A \mathbf{e}_{1}=i \mathbf{e}_{1}$: these are $\left({ }^{i}{ }_{-i}\right)$ and $\left({ }^{L_{s}}{ }_{L_{s}}\right), s=1,2,3$, where $L_{1}=L(j) L(k)$ and $L_{2}=L(l) L(i l)$ and $L_{3}=L(k l) L(j l)$. In fact, there are four possibilities to represent i as a product of two octonions in $B_{\mathbb{@}}$:
$$
i=1 \cdot i=j k=l(i l)=(k l)(j l) .
$$

The three representations by imaginary octonions correspond to the three triangles through each vertex in our heptagon, see figure on page 10. Thus $\left[\mathbf{e}_{1}, i \mathbf{e}_{1}\right]$ has a component in each of these four basis matrices A_{1}, \ldots, A_{4}, it is the sum of these four matrices:

$$
\left[e_{1}, i e_{1}\right]=\sum_{j}\left\langle A_{j},\left[e_{1}, i e_{1}\right]\right\rangle A_{j}=\sum_{j}\left\langle A_{j} e_{1}, i e_{1}\right\rangle A_{j}=\sum_{j} A_{j}
$$

where the metric is normalized so that the basis elements (8.4) have unit length (trace metric divided by 128). Since $A_{j} e_{1}=i e_{1}$ for all four j, we obtain

$$
\left[\mathbf{e}_{1},\left[\mathbf{e}_{1}, i \mathbf{e}_{1}\right]\right]=-4 i \mathbf{e}_{1} .
$$

Thus the operator $-\operatorname{ad}\left(\mathbf{e}_{1}\right)^{2}$ measuring the curvature has eigenvalues 1 and 4 as we know already in $\mathbb{C P}^{2}$.

12. Maximal abelian subspace and roots

Changing our previous convention we now assume $\mathbb{K} \subset \mathbb{L}$. The Lie triple of the Grassmannian $\mathrm{G}_{k}\left(\mathbb{R}^{k+l}\right)$ with $l \geq k$ is $V_{1}=\mathbb{R}^{k \times l}=\mathbb{R}^{k} \otimes \mathbb{R}^{l}$, and its maximal abelian subspace is the set $\Sigma \subset V_{1}$ of matrices $(D, 0)$ where $D=\operatorname{diag}\left(t_{1}, \ldots, t_{k}\right)$ is any real diagonal matrix. Thus a basis of Σ is given by $\left\{e_{i} \otimes e_{i}: i=1, \ldots, k\right\}$. In our representation as Rosenfeld lines we have $V_{1}=\mathbb{K} \otimes \mathbb{L}$, and a basis of Σ is given by $e \otimes e=e e^{\prime}$ where e runs through the standard basis $B_{\mathbb{K}}=B_{\mathbb{O}} \cap \mathbb{K}$ of \mathbb{K}. In the algebra $\mathbb{K} \otimes \mathbb{L}$, the subset Σ is a commutative and associative subalgebra.

Now we observe that Σ is also maximal abelian for V where $\mathbb{K} \otimes \mathbb{L}$ is viewed as a subspace of $V=(\mathbb{K} \otimes \mathbb{L})^{2}$ in the natural way. This is a consequence of Lemma 11.1. In fact, for $0 \neq \delta=\sum t_{i} \beta_{i}$ with $\beta_{i} \in B$ and $t_{i} \in \mathbb{R}$ we have

$$
\left[\mathbf{e}_{1}, \delta \mathbf{e}_{2}\right]=\sum_{i} t_{i}\left(\begin{array}{ll}
\beta_{i} & -\bar{\beta}_{i}
\end{array}\right)=\left(\begin{array}{ll}
& -\bar{\delta} \\
\delta &
\end{array}\right) .
$$

Thus $\mathbf{e}_{1} \in \Sigma$ does not commute with $\delta \mathbf{e}_{2}$ which shows that the abelian subspace Σ cannot be enlarged.

Now we want to compute the common eigenspace decomposition on V for $-\operatorname{ad}(\gamma)^{2}$ for all $\gamma \in \Sigma$ (not just in $\Sigma \cap B$). The square roots of those values are the roots of the corresponding symmetric space, see [9]. The eigenspaces in $V_{1}=\mathbb{K} \mathbb{L} \mathbf{e}_{1}$ are already known from the Rosenfeld lines. It remains to compute $-\operatorname{ad}(\alpha) \operatorname{ad}(\beta)$ on $V_{2}=\mathbb{K} \mathbb{L} \mathbf{e}_{2}$ for any $\alpha, \beta \in \Sigma \cap B$. For all $\omega \in \mathbb{K} \mathbb{L}$ we have

$$
-\left[\alpha \mathbf{e}_{1},\left[\beta \mathbf{e}_{1}, \omega \mathbf{e}_{2}\right]\right]=-\left[\alpha \mathbf{e}_{1}, A_{\omega \beta}\right]=(\omega \beta) \alpha \mathbf{e}_{2}=R(\alpha) R(\beta) \omega \mathbf{e}_{2}
$$

(Note that $\bar{\beta}=\beta$ when $\beta \in \Sigma \cap B=\left\{e e^{\prime}: e \in B_{\mathbb{K}}\right\}$ where $B_{\mathbb{K}}=\mathbb{K} \cap B_{\mathbb{O}}$ is the standard basis of \mathbb{K}.) Consequently:

Lemma 12.1. For all $\gamma \in \Sigma$ we have

$$
\begin{equation*}
-\operatorname{ad}\left(\gamma \mathbf{e}_{1}\right)^{2} \omega \mathbf{e}_{2}=\left(R(\gamma)^{2} \omega\right) \mathbf{e}_{2} \tag{12.1}
\end{equation*}
$$

Hence the roots on V_{2} are the common eigenvalues of $R(\gamma), \gamma \in \Sigma$.
Thus we just need to find the common eigenspaces of $R(\Sigma)$ on $\mathbb{K} \mathbb{L}$. First we look for the eigenspaces inside Σ. We are using the standard bases $B_{\mathbb{O}}=\{1, i, j, i j, l, i l, j l,(i j) l\}$ for \mathbb{O} and $B_{\mathbb{K}}=B_{\mathbb{O}} \cap \mathbb{K}$ for $\mathbb{K} \subset \mathbb{O}$. In the case $\mathbb{K}=\mathbb{O}$ we choose $s_{i}, s_{j}, s_{l} \in\{ \pm 1\}$ arbitrary, obtaining eight elements $\nu \in \Sigma$,

$$
\begin{align*}
\nu & =\left(1+s_{i} \hat{i}\right)\left(1+s_{j} \hat{j}\right)\left(1+s_{l} \hat{l}\right) \tag{12.2}\\
& =1+s_{i} \hat{i}+s_{j} \hat{j}+s_{i} s_{j} \hat{i} \hat{j}+s_{l} \hat{l}+s_{i} s_{l} \hat{i} \hat{l}+s_{j} s_{l} \hat{j} \hat{l}+s_{i} s_{j} s_{l} \hat{i} \hat{j} \hat{l} \\
& =\sum_{e \in B_{0}} s_{e} \hat{e}
\end{align*}
$$

where $\hat{i}:=i i^{\prime}$ etc. and where the other s_{e} are multiplicative: $s_{1}=$ $1, s_{i j}=s_{i} s_{j}, s_{i l}=s_{i} s_{l}, s_{j l}=s_{j} s_{l}, s_{i j l}=s_{i} s_{j} s_{l}$. From (12.2) we see: multiplying ν by \hat{i}, \hat{j}, or \hat{l} gives ν back, multiplied by s_{i}, s_{j}, s_{l}, respectively (remind that Σ is commutative and $\hat{e}^{2}=1$ for any $\hat{e} \in \Sigma \cap B)$. By the multiplicativity of the s_{e} the same is true for arbitrary basis elements: $\nu \hat{e}=s_{e} \nu$. Thus for any $\tau=\sum t_{e} \hat{e} \in \Sigma$ we have

$$
\begin{equation*}
R(\tau) \nu=\lambda(\tau) \nu, \quad \lambda(\tau)=\sum s_{e} t_{e} \tag{12.3}
\end{equation*}
$$

Thus we obtain 8 perpendicular common eigenvectors $\nu \in \Sigma$ for $R(\tau)$, $\tau \in \Sigma$. The corresponding eigenvalues ("roots") are the linear forms $\hat{e} \mapsto s_{e}$ on Σ. Note that the number of negative s_{e} is zero or four.

Similar, in the case $\mathbb{K}=\mathbb{H}$ we use the vectors

$$
\nu=\left(1+s_{i} \hat{i}\right)\left(1+s_{j} \hat{j}\right)=1+s_{i} \hat{i}+s_{j} \hat{j}+s_{k} \hat{k}
$$

with arbitrary $s_{i}, s_{j} \in\{ \pm 1\}$ and $s_{k}=s_{i} s_{j}$, which decompose Σ into 4 common eigenspaces for $R(\hat{e}), e \in B_{\mathbb{H}}$, and the number of negative s_{e} is zero or two. Likewise for $\mathbb{K}=\mathbb{C}$ we choose

$$
\nu=1+s_{i} \hat{i}
$$

for $s_{i}= \pm 1$. These are eigenvectors of \hat{i} forming a basis of Σ, and the eigenvalue is $s_{i}= \pm 1$. If $\mathbb{K}=\mathbb{R}$, then $\Sigma=\mathbb{R} \cdot 1$ and the only eigenvector (with multiplicity l) is $\nu=1$. We omit this case in the following.

Next we observe ${ }^{21}$ that $R\left(f^{\prime}\right) \nu$ for any $f^{\prime} \in B_{\mathbb{L}} \backslash\{1\}$ is still a common eigenvector for $R(\hat{e}), e \in B_{\mathbb{K}}$. In fact, $R\left(f^{\prime}\right)$ commutes or anticommutes with $R(\hat{e})$ since

$$
R\left(e e^{\prime}\right) R\left(f^{\prime}\right)=R\left(e^{\prime}\right) R\left(f^{\prime}\right) R(e)=\left\{\begin{array}{cc}
+R\left(f^{\prime}\right) R\left(e e^{\prime}\right) & \text { if } e \in\{1, f\} \\
-R\left(f^{\prime}\right) R\left(e e^{\prime}\right) & \text { else }
\end{array}\right.
$$

Thus $R(\hat{e}) R\left(f^{\prime}\right) \nu= \pm s_{e} R\left(f^{\prime}\right) \nu$ with " + " for $e \in\{1, f\}$ and "-" otherwise. The number of orthonormal eigenvectors we obtain in this way is $k \cdot l=\operatorname{dim} V_{2}$, hence we have got a basis of V_{2} by common eigenvectors for $R(\hat{e}), e \in B_{\mathbb{K}}$. The corresponding roots are of the form

$$
\begin{equation*}
\lambda=\sum_{e \in B_{\mathbb{K}}} s_{e} \phi_{e} \tag{12.4}
\end{equation*}
$$

where $\left(\phi_{e}\right)_{e \in B_{0}}$ is the basis of Σ^{*} dual to $\hat{B}_{\mathbb{K}}=\left\{e e^{\prime}: e \in B_{\mathbb{K}}\right\}=$ $\Sigma \cap B$, and $s_{e} \in\{ \pm 1\}$. The eigenvalues s_{e} of $R(\hat{e})$ corresponding to the eigenvectors ν and $R\left(f^{\prime}\right) \nu$ are the same for $\hat{e}=1$ and $\hat{e}=\hat{f}$ and different for the other $k-2$ basis elements $\hat{e} \in B_{\mathbb{K}}$.

There are 2^{k} linear forms $\sum_{e \in B_{\mathbb{K}}} s_{e} \phi_{e}$ with $s_{e}= \pm 1$ (now without any multiplicativity). Since only λ^{2} matters, we may assume $s_{1}=1$ by changing all s_{e} to $-s_{e}$ when $s_{1}=-1$. Moreover, in the cases (DO) and $\mathbb{H} \mathbb{H}$ the number of negative s_{e} is even, that is $\prod_{e} s_{e}=1$, which reduces the number N of possible linear forms to 2^{k-2}, that is to 64 for $\mathbb{O}(1)$ and to 4 for $\mathbb{H} \mathbb{H}$. In the other cases $\mathbb{H O}$ and $\mathbb{C L}$ we obtain 2^{k-1} such forms, that is 8 and 2 , respectively. Thus all possible linear forms actually occur as roots, and their multiplicities are $\operatorname{dim} \mathbb{K} \mathbb{L} / N$ which is $64 / 64=1$ for $\mathbb{O O}, 32 / 8=4$ for $\mathbb{H O}, 16 / 4=4$ for $\mathbb{H} \mathbb{H}, 16 / 2=8$ for $\mathbb{C}(1), 8 / 2=4$ for $\mathbb{C H}$ and $4 / 2=2$ for $\mathbb{C} \mathbb{C}$.

In Table 1 below, we show the root system R_{1} and R on $V_{1}=\mathbb{K} \otimes \mathbb{L}$ and $V=(\mathbb{K} \otimes \mathbb{L})^{2}$ with multiplicities m,
(a) first the roots on V_{1} for the Rosenfeld line,
(b) then the remaining roots on V_{2} for the Rosenfeld plane.

[^15]| | | | (a) | (a) | (a) | (b) | (b) | (b) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | $\mathbb{K} \otimes \mathbb{L}$ | k | λ | m | R_{1} | λ | m | R |
| | | | | | | | | |
| 1 | $\mathbb{R} \otimes \mathbb{R}$ | 1 | none | 0 | \emptyset | ϕ_{1} | 1 | A_{1} |
| 2 | $\mathbb{R} \otimes \mathbb{C}$ | 1 | $2 \phi_{1}$ | 1 | A_{1} | ϕ_{1} | 2 | $B C_{1}$ |
| 3 | $\mathbb{R} \otimes \mathbb{H}$ | 1 | $2 \phi_{1}$ | 3 | A_{1} | ϕ_{1} | 4 | $B C_{1}$ |
| 4 | $\mathbb{R} \otimes \mathbb{O}$ | 1 | $2 \phi_{1}$ | 7 | A_{1} | ϕ_{1} | 8 | $B C_{1}$ |
| 5 | $\mathbb{C} \otimes \mathbb{C}$ | 2 | $2\left(\phi_{1} \pm \phi_{i}\right)$ | 1 | $\left(A_{1}\right)^{2}$ | $\phi_{1} \pm \phi_{i}$ | 2 | $\left(B C_{1}\right)^{2}$ |
| 6 | $\mathbb{C} \otimes \mathbb{H}$ | 2 | $2\left(\phi_{1} \pm \phi_{i}\right)$ | 1 | | | | |
| | | | $2 \phi_{1}, 2 \phi_{i}$ | 2 | B_{2} | $\phi_{1} \pm \phi_{i}$ | 4 | $B C_{2}$ |
| 7 | $\mathbb{C} \otimes \mathbb{O}$ | 2 | $2\left(\phi_{1} \pm \phi_{i}\right)$ | 1 | | | | |
| | | | $2 \phi_{1}, 2 \phi_{i}$ | 6 | B_{2} | $\phi_{1} \pm \phi_{i}$ | 8 | $B C_{2}$ |
| 8 | $\mathbb{H} \otimes \mathbb{H}$ | 4 | $2\left(\phi_{e} \pm \phi_{f}\right)$ | 1 | D_{4} | $\sum s_{e} \phi_{e}, \prod s_{e}=1$ | 4 | B_{4} |
| 9 | $\mathbb{H} \otimes \mathbb{O}$ | 4 | $2\left(\phi_{e} \pm \phi_{f}\right)$ | 1 | | | | |
| | | $2 \phi_{e}$ | 4 | B_{4} | $\sum s_{e} \phi_{e}$ | 4 | F_{4} | |
| 10 | $\mathbb{O} \otimes \mathbb{O}$ | 8 | $2\left(\phi_{e} \pm \phi_{f}\right)$ | 1 | D_{8} | $\sum s_{e} \phi_{e}, \prod s_{e}=1$ | 1 | E_{8} |

Table 1. Roots of the Rosenfeld planes

13. Periodicity of Clifford representations via octonions

The irreducible representations S_{n} of $C l_{n}$ with $n \leq 8$ are as follows. Let $B_{n} \subset B_{\mathbb{O}}$ denote the standard basis of \mathbb{R}^{n}.

n	0	1	2	3	4	5	6	7	8
S_{n}	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{H}	$\mathbb{O}=\mathbb{H}^{2}$	$\mathbb{O}=\mathbb{C}^{4}$	\mathbb{O}	\mathbb{O}	\mathbb{O}^{2}
$e \in B_{n}$	-	L_{e}	L_{e}	$\pm L_{e}$	$\left(e^{-\bar{e}}\right)$	L_{e}	L_{e}	$\pm L_{e}$	$\left(e^{-\bar{e}}\right)$
$\underline{C l}_{n}$	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{H}	$\mathbb{H}^{2 \times 2}$	$\mathbb{C}^{4 \times 4}$	$\mathbb{R}^{8 \times 8}$	$\mathbb{R}^{8 \times 8}$	$\mathbb{R}^{16 \times 16}$

Table 2. Irreducible Clifford modules

The representation of Cl_{2} is just a restriction of (any of) those for $C l_{3}$, and the representations of $C l_{4}, C l_{5}, C l_{6}$ are restrictions of (any of) those for $C l_{7}$. The complex structure on S_{5} is given by $L\left(e_{6}\right) L\left(e_{7}\right)$ which commutes with $L\left(e_{1}\right), \ldots, L\left(e_{5}\right)$, and the quaternionic structure on S_{4} comes from the anticommuting complex structures $L\left(e_{5}\right) L\left(e_{7}\right)$ and $L\left(e_{6}\right) L\left(e_{7}\right)$.

What happens for $n \geq 9$? Then we may repeat the construction of (8.1), replacing \mathbb{L} (which is the irreducible $C l_{l-1}$-module) by the irreducible $C l_{n}$-module S_{n} for arbitrary n. Then we obtain an irreducible
$C l_{8+n}$-module $\mathbb{O}^{2} \otimes S_{n}$ by putting

$$
\mathbb{O} \oplus \mathbb{R}^{n+1} \ni(x, \lambda) \mapsto\left(\begin{array}{cc}
\lambda & -\bar{x} \tag{13.1}\\
x & \bar{\lambda}
\end{array}\right)
$$

where $\mathbb{R}^{n+1}=\mathbb{R}^{n} \oplus \mathbb{R} \cdot 1 \subset C l_{n}$ and where the "conjugation" $\kappa: \lambda \mapsto \bar{\lambda}$ is the reflection at $\mathbb{R} \cdot 1$, that is $\kappa(1)=1$ and $\kappa=-I$ on \mathbb{R}^{n}. As before, the Clifford relations (7.2) are immediate. Therefore we have the following periodicity of length 8 for the irreducible representations of $C l_{n}$ - recall that there is precisely one irreducible $C l_{n}$-representation, up to equivalence and automorphisms:

Theorem 13.1. Periodicity Theorem for Clifford modules:

$$
\begin{equation*}
S_{n+8}=S_{n} \otimes \mathbb{O}^{2} \tag{13.2}
\end{equation*}
$$

This theorem together with Table 2 determines all irreducible Clifford representations.

Remark. One could do the same with $C l_{4}$ and \mathbb{H}^{2} in place of $C l_{8}$ and \mathbb{O}^{2}, but this would not give an irreducible representation. E.g. we obtain another $C l_{8}$-module $\mathbb{H}^{2} \otimes \mathbb{H}^{2}$ with dimension 64 while the irreducible module \mathbb{O}^{2} has dimension 16 . We have seen the reducibility in Lemma 9.1: the representation of Spin $_{8}$ decomposes into 4 irreducible subspaces. The representation of K becomes irreducible only through the $S_{\mathbb{H}} \cdot S_{\mathbb{H}}^{\prime}$ factor. Thus the octonions are responsible for the 8 -periodicity.

14. Vector Bundles over spheres

(Sections 14-17 contain common work with Bernhard Hanke [6].) Clifford representations have a direct connection to vector bundles over spheres and hence to K-theory. Every vector bundle $E \rightarrow \mathbb{S}^{k+1}$ is trivial over each of the two closed hemispheres $D_{+}, D_{-} \subset \mathbb{S}^{k+1}$, but along the equator $\mathbb{S}^{k}=D_{+} \cap D_{-}$the fibres over ∂D_{+}and ∂D_{-}are identified by
some map $\phi: \mathbb{S}^{k} \rightarrow O_{n}$ called clutching map. Homotopic clutching maps define equivalent vector bundles. Thus vector bundles over \mathbb{S}^{k+1} are classified by the homotopy group $\pi_{k}\left(O_{n}\right)$. When we allow for adding of trivial bundles (stabilization), n may be arbitrarily high. Let \mathcal{V}_{k} be the set of vector bundles over \mathbb{S}^{k+1} up to equivalence and adding of trivial bundles ("stable vector bundles"). Then

$$
\begin{equation*}
\mathcal{V}_{k}=\lim _{n \rightarrow \infty} \pi_{k}\left(O_{n}\right) \tag{14.1}
\end{equation*}
$$

A $C l_{k}$ module $S=\mathbb{R}^{n}$ or the corresponding Clifford system J_{1}, \ldots, J_{k} $\in O_{n}$ defines a peculiar map $\phi=\phi_{S}: \mathbb{S}^{k} \rightarrow O_{n}$ which is linear, that is a restriction of a linear map $\phi: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{n \times n}$, where we put

$$
\begin{equation*}
\phi_{S}\left(e_{k+1}\right)=I, \quad \phi_{S}\left(e_{i}\right)=J_{i} \text { for } i \leq k . \tag{14.2}
\end{equation*}
$$

The bundles defined by such clutching maps ϕ_{S} are called generalized Hopf bundles. In the cases $k=1,3,7$, these are the classical complex, quaternionic, and octonionic Hopf bundles over \mathbb{S}^{k+1}.
Remark. $C l_{k}$-modules are in 1:1 correspondence to linear maps ϕ : $\mathbb{S}^{k} \rightarrow O_{n}$ with the identity matrix in the image. In fact, let ϕ be such map and denote the linear extension $\mathbb{R}^{k+1} \rightarrow \mathbb{R}^{n \times n}$ by the same symbol. Then ϕ is isometric for the inner product $\langle A, B\rangle=\frac{1}{n}$ trace $\left(A^{T} B\right)$ on $\mathbb{R}^{n \times n}$ since it maps the unit sphere \mathbb{S}^{k} into O_{n} which is contained in the unit sphere of $\mathbb{R}^{n \times n}$. For all $A, B \in \phi\left(\mathbb{S}^{k}\right)$ we have $(A+B) \in$ $\mathbb{R} \cdot O_{n}$. On the other hand, $(A+B)^{T}(A+B)=2 I+A^{T} B+B^{T} A$, thus $A^{T} B+B^{T} A=t I$ for some $t \in \mathbb{R}$. From the inner product with I we obtain $t=2\langle A, B\rangle$. Inserting $A=I$ and $B \perp I$ yields $B+B^{T}=0$, and for any $A, B \perp I$ we obtain $A B+B A=-2\langle A, B\rangle I$. Thus $\phi \mathbb{R}^{k}$ defines a $C l_{k}$-representation on \mathbb{R}^{n}.

Atiyah, Bott and Shapiro [1] reduced the theory of vector bundles over spheres to the simple algebraic structure of Clifford modules by showing in particular:
Theorem 14.1. All vector bundles over spheres are stably equivalent to generalized Hopf bundles.

In fact, in [1] there is a refined version of this theorem which needs some notation. Let \mathcal{M}_{k} be the set of equivalence classes of $C l_{k^{-}}$ modules, modulo trivial $C l_{k}$-representations. We have a map

$$
\hat{\alpha}: \mathcal{M}_{k} \rightarrow \mathcal{V}_{k}
$$

which assigns to each $S \in \mathcal{M}_{k}$ the corresponding generalized Hopf bundle over \mathbb{S}^{k+1}, viewed as a clutching map of a vector bundle. It is additive with respect to direct sums and onto by Theorem 14.1. But
it is not 1:1. In fact, every $C l_{k+1}$-module is also a $C l_{k}$ module simply because $C l_{k} \subset C l_{k+1}$. This defines a restriction map $\rho: \mathcal{M}_{k+1} \rightarrow \mathcal{M}_{k}$. Any $C l_{k}$-module S which is in fact a $C l_{k+1}$-module gives rise to a contractible clutching map $\phi_{S}: \mathbb{S}^{k} \rightarrow S O_{n}$ and hence to a trivial vector bundle since ϕ_{S} can be extended to \mathbb{S}^{k+1} and thus contracted over one of the half spheres $D_{+}, D_{-} \subset \mathbb{S}^{k+1}$. Thus $\hat{\alpha}$ sends $\rho\left(\mathcal{M}_{k+1}\right)$ into trivial bundles and hence it descends to an additive map ${ }^{22}$

$$
\alpha: \mathcal{A}_{k}:=\mathcal{M}_{k} / \rho\left(\mathcal{M}_{k+1}\right) \rightarrow \mathcal{V}_{k} .
$$

In fact, \mathcal{A}_{k} and \mathcal{V}_{k} are abelian groups with respect to direct sum (not just semigroups). Moreover, $\mathcal{A}=\sum_{k} \mathcal{A}_{k}$ and $\mathcal{V}=\sum_{j} \mathcal{V}_{k}$ are graded rings with respect to the multiplication by tensor products. Here is the refined version of the Atiyah-Bott-Shapiro theorem [1]:

Theorem 14.2. $\alpha: \mathcal{A} \rightarrow \mathcal{V}$ is a graded ring isomorphism.
Recall from Table 2, page 34, the one or (for $k=3,7$) two generators S_{k} of \mathcal{M}_{k}.

k	0	1	2	3	4	5	6	7	8
S_{k}	\mathbb{R}	\mathbb{C}	\mathbb{H}	$\pm \mathbb{H}$	\mathbb{O}	\mathbb{O}	\mathbb{O}	$\pm \mathbb{O}$	\mathbb{O}^{2}

From this we can easily deduce the groups \mathcal{A}_{k}. If $S_{k}=\rho\left(S_{k+1}\right)$, then $\mathcal{A}_{k}=0$. This happens for $k=2,4,5,6$. For $k=0,1$ we have

$$
\rho\left(S_{k+1}\right)=S_{k} \oplus S_{k}=2 S_{k}
$$

hence $\mathcal{A}_{0}=\mathcal{A}_{1}=\mathbb{Z}_{2}$. For $k=3,7$ there are two generators for \mathcal{M}_{k}, say S_{k} and S_{k}^{\prime} (denoted \pm in the table), and $\rho\left(S_{k+1}\right)=S_{k} \oplus S_{k}^{\prime}$, thus $\mathcal{A}_{3}=\mathcal{A}_{7}=\mathbb{Z}$. Hence

$$
\begin{array}{c|cccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \tag{14.3}\\
\mathcal{A}_{k} & \mathbb{Z}_{2} & \mathbb{Z}_{2} & 0 & \mathbb{Z} & 0 & 0 & 0 & \mathbb{Z}
\end{array}
$$

and because of the periodicity we have $\mathcal{A}_{k+8}=\mathcal{A}_{k}$. Note also that by (14.1) we have for sufficiently large n :

$$
\pi_{k}\left(O_{n}\right)=\mathcal{A}_{k} .
$$

We will sketch a proof of this theorem which is different from that of [1]. We will use the original ideas of Bott and Milnor and deform the clutching map $\phi: \mathbb{S}^{k} \rightarrow G=S O_{n}$ of the given vector bundle $E \rightarrow \mathbb{S}^{k+1}$ step by step into a linear map. This will require some geometric ideas on symmetric spaces which are interesting for their own sake.

[^16]
15. Poles and Centrioles

Recall that a symmetric space is a Riemannian manifold P with an isometric point reflection s_{p} (called symmetry) at any point $p \in P$, that is $s_{p} \in \hat{G}=$ isometry group of P with $s_{p}\left(\exp _{p}(v)\right)=\exp _{p}(-v)$ for all $v \in T_{p} P$. Prominent examples are compact Lie groups with bi-invariant metrics; the symmetry s_{e} at the unit element e is the inversion.

A symmetric subspace of a symmetric space P is a submanifold $Q \subset$ P with $s_{q}(Q)=Q$ for all $q \in Q$. They are totally geodesic, that is every Q-geodesic is also a P-geodesic. ${ }^{23}$ Vice versa, any closed connected totally geodesic submanifold $Q \subset P$ is a symmetric subspace since s_{q} reverses any Q-geodesic through q and thus preserves Q. Examples of symmetric subspaces are connected components of the fixed point set of an isometry $r: P \rightarrow P$:

Otherwise short geodesic segments in the ambient space P with end points in a component of $\operatorname{Fix}(r)$ were not unique, see figure. If the isometry r is an involution $\left(r=r^{-1}\right)$, its fixed point components are called reflective.

Any symmetric space is born with an equivariant map $s: p \mapsto s_{p}$: $P \rightarrow \hat{G}$ which is called Cartan map. Its image is a connected component of the set $\left\{g \in \hat{G}: g^{-1}=g\right\}$, the fixed set of the inversion. Hence $s(P) \subset \hat{G}$ is totally geodesic and $s: P \rightarrow s(P)$ is a covering of symmetric spaces.

Two points $o, p \in P$ will be called poles if $s_{p}=s_{o}$. The notion was coined for the north and south pole of a round sphere, but there are many other spaces with poles; e.g. $P=S O_{2 n}$ with $o=I$ and $p=-I$, or the Grassmannian $P=\mathrm{G}_{n}\left(\mathbb{R}^{2 n}\right)$ with $o=\mathbb{R}^{n}$ and $p=\left(\mathbb{R}^{n}\right)^{\perp}$. A geodesic γ connecting $o=\gamma(0)$ to $p=\gamma(1)$ is reflected into itself at o and p and hence it is closed with period 2 .

Now we consider the midpoint set M between poles o and p,

$$
M=\left\{m=\gamma\left(\frac{1}{2}\right): \gamma \text { geodesic in } P \text { with } \gamma(0)=o, \gamma(1)=p\right\} .
$$

For the sphere $P=\mathbb{S}^{n}$ with north pole o, this set would be the equator, see figure below.

[^17]

The points o and p are identified by the Cartan map s. If γ is any geodesic with $\gamma(0)=o$ and $\gamma(1)=p$, it is reversed by s_{o}, and $s(\gamma)$ becomes a closed geodesic in $s(P)$ preserved by the symmetry in $s(P)$ at s_{o} (the conjugation with s_{o}). Applying s, the midpoint $m=\gamma\left(\frac{1}{2}\right)$ becomes the point on $s \circ \gamma$ opposite to s_{o}, hence it is fixed under the symmetry at s_{o}. So the components of $s(M)$ are totally geodesic, and the same holds for M since "totally geodesic" is a local property. In fact, M itself is reflective: it is fixed by $\delta \circ s_{p}$ where δ is the deck transformation of the covering $s: P \rightarrow s(P)$ interchanging o and p.

Connected components of the midpoint set M are called centrioles [5]. These are most interesting when the corresponding geodesics between o and p are shortest ("minimal centrioles"). Each such midpoint $m=\gamma\left(\frac{1}{2}\right)$ determines its geodesic γ uniquely: if there is another geodesic $\tilde{\gamma}$ from o to p through m, it can be made shorter by cutting the corner.

There exist chains of minimal centrioles (centrioles in centrioles),

$$
\begin{equation*}
P \supset P_{1} \supset P_{2} \supset \ldots \tag{15.1}
\end{equation*}
$$

Peter Quast $[16,17]$ classified all such chains with at least 3 steps starting with a compact simple Lie group $P=G$. Up to group coverings, the result is as follows. The chains $1,2,3$ occur in Milnor [11].

No.	G	P_{1}	P_{2}	P_{3}	P_{4}	restr.
1	$(S) O_{4 n}$	$S O_{4 n} / U_{2 n}$	$U_{2 n} / S p_{n}$	$\mathrm{G}_{p}\left(\mathbb{H}^{n}\right)$	$S p_{p}$	$p=\frac{n}{2}$
2	$(S) U_{2 n}$	$\mathrm{G}_{n}\left(\mathbb{C}^{2 n}\right)$	U_{n}	$\mathrm{G}_{p}\left(\mathbb{C}^{n}\right)$	U_{p}	$p=\frac{n}{2}$
3	$S p_{n}$	$S p_{n} / U_{n}$	$U_{n} / S O_{n}$	$\mathrm{G}_{p}\left(\mathbb{R}^{n}\right)$	$S O_{p}$	$p=\frac{n}{2}$
4	Spin $_{n+2}$	Q_{n}	$\left(\mathbb{S}^{1} \times \mathbb{S}^{n-1}\right) / \pm$	\mathbb{S}^{n-2}	\mathbb{S}^{n-3}	$n \geq 3$
5	E_{7}	$E_{7} /\left(\mathbb{S}^{1} E_{6}\right)$	$\mathbb{S}^{1} E_{6} / F_{4}$	$\mathbb{O P} \mathbb{P}^{2}$	-	

Table 3. Chains of minimal centrioles

By $\mathrm{G}_{p}\left(\mathbb{K}^{n}\right)$ we denote the Grassmannian of p-dimensional subspaces in \mathbb{K}^{n} for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$. Further, Q_{n} denotes the complex quadric in $\mathbb{C P}^{n+1}$ which is isomorphic to the real Grassmannian $\mathrm{G}_{2}^{+}\left(\mathbb{R}^{n+2}\right)$ of oriented 2-planes, and $\mathbb{O P}^{2}$ is the octonionic projective plane $F_{4} / S p i n_{9}$.

A chain is extendible beyond P_{k} if and only if P_{k} contains poles again. E.g. among the Grassmannians $P_{3}=\mathrm{G}_{p}\left(\mathbb{K}^{n}\right)$ only those of half dimensional subspaces ($p=\frac{n}{2}$) enjoy this property: Then $\left(E, E^{\perp}\right)$ is a pair of poles for any $E \in \mathrm{G}_{n / 2}\left(\mathbb{K}^{n}\right)$, and the corresponding midpoint set is the group $O_{n / 2}, U_{n / 2}, S p_{n / 2}$ since its elements are the graphs of orthogonal \mathbb{K}-linear maps $E \rightarrow E^{\perp}$, see figure below.

16. Minimal centrioles and Clifford modules

For compact matrix groups $P=G$ containing $-I$, there is a linear algebra interpretation for the iterated minimal centrioles P_{j}. Recall that a representation of $C l_{k}$ on a euclidean vector space V is given by k anticommuting orthogonal complex structures J_{1}, \ldots, J_{k} on V.

Theorem 16.1. Let $G \subset G L(V)$ be a compact matrix group with $-I \in$ G. Then a chain of minimal centrioles $G \supset P_{1} \supset \cdots \supset P_{k}$ corresponds to a $C l_{k}$-representation J_{1}, \ldots, J_{k} on V with $J_{j} \in G$, and each P_{j} is the connected component containing J_{j} of the set

$$
\begin{equation*}
M_{j}=\left\{J \in G: J^{2}=-I, J J_{i}=-J_{i} J \text { for } i<j\right\} \tag{16.1}
\end{equation*}
$$

Proof. A geodesic γ in G with $\gamma(0)=I$ is a one-parameter subgroup, a Lie group homomorphism $\gamma: \mathbb{R} \rightarrow G .{ }^{24}$ When $\gamma(1)=-I$, then $\gamma\left(\frac{1}{2}\right)=J$ is a complex structure, $J^{2}=-I$. Thus the midpoint set M_{1}

[^18]is the set of complex structures in G. When a connected component P_{1} of M_{1} contains antipodal points J_{1} and $-J_{1}$, there is a next minimal midpoint set $M_{2} \subset P_{1}$. It consists of points $\tilde{\gamma}\left(\frac{1}{2}\right)$ where $\tilde{\gamma}$ is a shortest geodesic in P_{1} from J_{1} to $-J_{1}$. But P_{1} ist totally geodesic in G, hence $\tilde{\gamma}$ is a geodesic in G too. Thus $\tilde{\gamma}=J_{1} \gamma$ where γ is a one-parameter subgroup in G with $\gamma(1)=-I$ which implies that $\gamma\left(\frac{1}{2}\right)=: J$ is a complex structure. Further, $\tilde{\gamma}(t)=J_{1} \gamma(t)$ is a complex structure for all t, that is $J_{1} \gamma J_{1} \gamma=-I$ or
\[

$$
\begin{equation*}
J_{1} \gamma=\gamma^{-1} J_{1} \tag{16.2}
\end{equation*}
$$

\]

In particular, J anticommutes with J_{1}. When γ is shortest in G, this condition $J_{1} J=-J J_{1}$ is sufficient for (16.2): both $J_{1} \gamma$ and $\gamma^{-1} J_{1}$ are shortest geodesics from J_{1} to $-J_{1}$ with midpoint $J_{1} J=-J J_{1}$, so they must agree. Thus (16.2) is satisfied, that is $J_{1} \gamma$ takes values in P_{1}. In particular we see that geodesics from J_{1} to $-J_{1}$ which are shortest in P_{1} are also shortest in G. Now we put $J_{2}=\tilde{\gamma}\left(\frac{1}{2}\right)=J_{1} J$; this is also a complex structure which anticommutes with J_{1} and defines a connected component P_{2} of M_{2}.

By induction hypothesis, we have anticommuting complex structures $J_{i} \in P_{i}$ for $i \leq j$, and P_{j} is the connected component through J_{j} of the set M_{j} as in (16.1). Consider a geodesic $\tilde{\gamma}$ from J_{j} to $-J_{j}$ in P_{j}. Since P_{j} is totally geodesic, $\tilde{\gamma}$ is a geodesic in G, hence $\tilde{\gamma}=J_{j} \gamma$ where γ is a oneparameter group with $\gamma(1)=-I$. As before, $J_{j+1}:=\tilde{\gamma}\left(\frac{1}{2}\right)=J_{j} \gamma\left(\frac{1}{2}\right)$ is a complex structure which anticommutes with J_{i} for $i \leq j$. When γ is shortest in G, these conditions imply $\tilde{\gamma}(t) \in M_{j+1}$ for all $t \in[0,1]$, since then $\tilde{\gamma}$ is determined by its midpoint. In particular, there are geodesics in P_{j} from J_{j} to $-J_{j}$ which are shortest in the ambient group G. Every connected component of the midpoint set of those geodesics defines a minimal centriole M_{j+1} satisfying (16.1) with j replaced by $j+1$. This finishes the induction step.

17. Deformation of Clutching maps

Let E be a vector bundle over \mathbb{S}^{k+1} and $\phi: \mathbb{S}^{k} \rightarrow G=S O_{2 n}$ its clutching map. Since we are allowed to add trivial bundles, we may assume that n is large and divisible by a high power of 2 . We declare $N=e_{k+1}$ to be the "north pole" of \mathbb{S}^{k}. First we deform ϕ such that $\phi(N)=I$ and $\phi(-N)=-I$. Thus ϕ maps each meridian from N to $-N$ in \mathbb{S}^{k} onto some path from I to $-I$ in G, an element of the path space

$$
\Lambda=\Lambda G=\left\{\lambda:[0,1] \xrightarrow{H^{1}} G: \lambda(0)=I, \lambda(1)=-I\right\} .
$$

The meridians μ_{v} are labelled by $v \in \mathbb{S}^{k-1}$ where \mathbb{S}^{k-1} is the equator of \mathbb{S}^{k}. Therefore ϕ can be viewed as a $\operatorname{map} \phi: \mathbb{S}^{k-1} \rightarrow \Lambda G$. The matrix group G is equipped with a bi-invariant Riemannian metric, e.g. the trace metric. Using the negative gradient flow for the energy function E on the path space ΛG we may shorten all $\phi\left(\mu_{v}\right)$ simultaneously to minimal geodesics from I to $-I$ and obtain a map $\tilde{\phi}: \mathbb{S}^{k-1} \rightarrow \Lambda_{o} G$ where $\Lambda_{o} G$ is the set of shortest geodesics from I to $-I$, the minimum set of E on ΛG. This simultaneous shortening process is due to the Morse theory for the energy function E on Λ,

We may decrease the energy of any path λ by applying the gradient flow of $-E$. Most elements of Λ will be flowed to the minima of E which are the shortest geodesics between I and $-I$. The only exceptions are the domains of attraction ("unstable manifolds") for the other critical points, the non-minimal geodesics between I and $-I$. The codimension of the unstable manifold is the index of the critical point, the maximal dimension of any subspace where the second derivative of E (taken at the critical point) is negative. If β denotes the smallest index of all non-minimal critical points, any continuous map $f: X \rightarrow \Lambda$ from a connected cell complex X of dimension $<\beta$ can be moved away from these unstable manifolds and flowed into a connected component of the minimum set.

How large is β ? In $G=S O_{2 n}$, a shortest geodesic from I to $-I$ is a product of n half turns, planar rotations by the angle π in n perpendicular 2-planes in $\mathbb{R}^{2 n}$. A non-minimal geodesic must make an additional full turn and thus a 3π-rotation in at least one of these planes, say in the $x_{1} x_{2}$-plane. This rotation belongs to the rotation group $S O_{3} \subset S O_{2 n}$ in the $x_{1} x_{2} x_{k}$-space for any $k \in\{3, \ldots, 2 n\}$. Using $S O_{3}=\mathbb{S}^{3} / \pm$, we lift the 3π-rotation to \mathbb{S}^{3} and obtain a $3 / 4$ great circle which can be shortened. There are $2 n-2$ coordinates x_{k} and therefore $2 n-2$ independent contracting directions, hence the index of a nonminimal geodesic in $S O_{2 n}$ is $\geq 2 n-2$ (compare [11, Lemma 24.2]).

A shortest geodesic $\gamma:[0,1] \rightarrow G$ from I to $-I$ is uniquely determined by its midpoint $m(\gamma)$. Using the midpoint map $m: \Lambda_{o} \rightarrow G$, the space of shortest geodesics from I to $-I$ can be viewed as the midpoint set $m\left(\Lambda_{o}\right)=M_{1}$, the set of complex structures in G. Thus we obtain a map $\phi_{1}=m \circ \tilde{\phi}: \mathbb{S}^{k-1} \rightarrow P_{1}$, and we may replace ϕ by the geodesic suspension over ϕ_{1} from I and $-I$.

Now we repeat this step replacing G by P_{1} and ϕ by ϕ_{1}. Again we choose a "north pole" $N_{1}=e_{k} \in \mathbb{S}^{k-1}$ and deform ϕ_{1} such that $\phi_{1}\left(\pm N_{1}\right)= \pm J_{1}$ for some $J_{1} \in P_{1}$. Now we deform the curves $\phi_{1}\left(\mu_{1}\right)$ for all meridians $\mu_{1} \subset \mathbb{S}^{k-1}$ to shortest geodesics, whose midpoints define a map $\phi_{2}: \mathbb{S}^{k-2} \rightarrow P_{2}$, and then we replace ϕ_{1} by a geodesic suspension from $\pm J_{1}$ over ϕ_{2}. This step is repeated $(k-1)$-times ${ }^{25}$ until we reach a map $\phi_{k-1}: \mathbb{S}^{1} \rightarrow P_{k-1}$. This loop can be shortened to a geodesic loop $\tilde{\gamma}=J_{k-1} \gamma:[0,1] \rightarrow P_{k-1}$ (which is a closed geodesic since P_{k-1} is symmetric) starting and ending at J_{k-1}, such that $\tilde{\gamma}$ and γ are shortest in their homotopy class.
We have $\gamma(t)=e^{2 \pi t A}$ for some skew-symmetric matrix A. From $\tilde{\gamma}^{2}=-I$ and $J_{i} \tilde{\gamma}=-\tilde{\gamma} J_{i}$ for $i<k-1$ we obtain

$$
\begin{equation*}
A J_{k-1}=-J_{k-1} A, \quad A J_{i}=J_{i} A \text { for } i<k-1 . \tag{17.1}
\end{equation*}
$$

In fact, $J_{k-1} e^{2 \pi t A}=e^{-2 \pi t A} J_{k-1} \Rightarrow J_{k-1} A=-A J_{k-1}$ and $J_{k-1} e^{2 \pi t A} J_{i}=$ $-J_{i} J_{k-1} e^{2 \pi t A} \Rightarrow J_{k-1} A J_{i}=-J_{i} J_{k-1} A=J_{k-1} J_{i} A \Rightarrow A J_{i}=J_{i} A$. Since γ is closed, the (imaginary) eigenvalues of A have the form ai with $a \in \mathbb{Z}$ and $\mathrm{i}=\sqrt{-1}$. Let $E_{a} \subset V \otimes \mathbb{C}$ be the corresponding eigenspace. Since every $J_{i}, i<k$ commutes or anticommutes with A, it keeps invariant $E_{a}+E_{-a}$ and also $\operatorname{Re}\left(E_{a}\right)=\left(E_{a}+E_{-a}\right) \cap V$. Now we split \mathbb{R}^{n} into $V_{0}=\operatorname{ker} A$ and a sum of subspaces V_{j} which are invariant under the linear maps $A, J_{1}, \ldots, J_{k-1}$ and minimal with respect to this property. In particular $V_{j} \subset E_{a_{j}}+E_{-a_{j}}$ for some integer a_{j}. Hence on V_{j} we have

[^19]$A=a_{j} J$ for some complex structure J anticommuting with J_{k-1} and commuting with $J_{i}, i<k-1$, and
\[

$$
\begin{equation*}
J_{k}:=J_{k-1} J \tag{17.2}
\end{equation*}
$$

\]

is a complex structure which anticommutes with J_{1}, \ldots, J_{k-1}. Hence V_{j} is an irreducible $C l_{k}$-module with the dimension $m_{k}=\operatorname{dim} S_{k}$ independent of j. By the choice of the sign of a_{j} we can assume that all V_{j} are equivalent $C l_{k}$-modules. In other words, $V=V_{0} \oplus V^{\prime}$ with $V^{\prime}=V_{1} \otimes \mathbb{R}^{p}$ where V_{1} is an irreducible $C l_{k}$ module given by J_{1}, \ldots, J_{k} (living only on V_{1}) while $A=J \otimes \operatorname{diag}\left(a_{1}, \ldots, a_{p}\right)$ with $J:=J_{k} J_{k-1}$. If two of the integers a_{i}, a_{j} differ by two or more, we can use the p extra dimensions to shorten γ within P_{k-1}, see the subsequent Lemma 17.1. But this is impossible since γ is shortest in its homotopy class. Since we may always assume that, say, $a_{1}=0$ (by adding a trivial bundle if necessary), all nonzero a_{j} must be 1 , (or all -1 , but this is a matter of choice of J_{k}), thus $A=J$ on V^{\prime}.

After this deformation our vector bundle E over \mathbb{S}^{k+1} splits as $E=$ $E_{0} \oplus E^{\prime}$ where E_{0} is trivial and E^{\prime} is the generalized Hopf bundle for the Clifford system J_{1}, \ldots, J_{k} on $V^{\prime}=V_{1} \otimes \mathbb{R}^{p}$, see subsequent remark.

Thus the map $\alpha: \mathcal{M}_{k} / \rho\left(\mathcal{M}_{k+1}\right) \rightarrow \mathcal{V}_{k}$ assigning to each Clifford module its generalized Hopf bundle is onto. It remains to show its injectivity which is done by Lemma 17.2 at the end of this section. This finishes the proof of Theorem 14.2.

Remark. We want to check explicitly that $\tilde{\gamma}(t)=J_{k-1} e^{2 \pi t J}$ with $J=J_{k} J_{k-1}$ as defined in the previous proof is part of the linear map $\phi: \mathbb{S}^{k} \rightarrow S O_{n}$ defined by the $C l_{k}$-representation J_{1}, \ldots, J_{k}.

Recall that ϕ is mapping the unit basis $e_{1}, \ldots, e_{k}, e_{k+1}$ of \mathbb{R}^{k+1} onto $J_{1}, \ldots, J_{k}, I \in S O_{n}$. The closed geodesic $\tilde{\gamma}:[0,1] \rightarrow S O_{n}$ is the restriction of ϕ to the intersection of \mathbb{S}^{k} with the $e_{k-1} e_{k}$-plane, using the parametrization $x(t)=e_{k-1} \cos (2 \pi t)+e_{k} \sin (2 \pi t)$ for $t \in[0,1]$, more precisely, $\tilde{\gamma}(t)=\phi(x(t))$. It must satisfy (1) $\tilde{\gamma}(0)=J_{k-1}$ and (2) $\tilde{\gamma}\left(\frac{1}{2}\right)=-J_{k-1}$ while (3) $\tilde{\gamma}\left(\frac{1}{4}\right)=J_{k}$. Putting $\tilde{\gamma}(t)=J_{k-1} e^{2 \pi t J}$ for some complex structure J, the first two conditions are satisfied while
$\tilde{\gamma}\left(\frac{1}{4}\right)=J_{k-1} e^{(\pi / 4) J}=J_{k-1} J .{ }^{26}$ Hence condition (3) holds if and only if $J_{k}=J_{k-1} J$ as in (17.2) above.

Lemma 17.1. If $a_{i}-a_{j}=b \geq 2$ for some $i, j \in\{1, \ldots, p\}$, then the closed geodesic $\tilde{\gamma}(t)=J_{k-1} e^{2 \pi t A}$ can shortened by a deformation in P_{k-1}.

Proof. We have $V_{i}+V_{j}=V_{1} \otimes \mathbb{R}^{2}$, and $A=J \otimes \operatorname{diag}\left(a_{i}, a_{j}\right)$ on $V_{i}+V_{j}$ where $J=J_{k} J_{k-1}$. Then $\operatorname{diag}\left(a_{i}, a_{j}\right)=\frac{1}{2}\left(a I+b R_{o}\right)$ with $a=a_{i}+a_{j}$ and $R_{o}=\operatorname{diag}(1,-1)$. Now we deform A to A_{s} by replacing R_{o} with any planar reflection $R_{s}=\binom{\cos s \sin s}{\sin s-\cos s}$ for $s \in[0, \pi]$, that is we replace $A=\frac{1}{2} J \otimes\left(a I+b R_{o}\right)$ by $A_{s}=\frac{1}{2} J \otimes\left(a I+b R_{s}\right)$ which still satisfies (17.1). Thus $\tilde{\gamma}_{s}(t)=J_{k-1} e^{2 \pi t A_{s}} \in P_{k-1}$. Let $J_{s}=J \otimes R_{s}\left(\right.$ with $\left.J_{s}^{2}=-I\right)$. Then $\tilde{\gamma}_{s}(t)=J_{k-1} e^{\pi t a J} e^{\pi t b J_{s}}$. For $t=1 / b \leq 1 / 2$ we have $e^{\pi t b J_{s}}=e^{\pi J_{s}}=-I$, thus $\tilde{\gamma}_{s}(1 / b)$ is independent of s. All the closed geodesics $\tilde{\gamma}_{s}$ must pass through the same point $\tilde{\gamma}_{s}(1 / b)$, therefore they can be shortened by cutting the corner.

Lemma 17.2. If a bundle $\hat{\alpha}(S)$ is trivial for some $C l_{k}$-module S, then S is the restriction of a $C l_{k+1}$-module.
Proof. Let S be a $C l_{k}$-module and $\phi=\phi_{S}: \mathbb{S}^{k} \rightarrow G$ the corresponding clutching map (that is $\left.\phi\left(e_{k+1}\right)=I, \phi\left(e_{i}\right)=J_{i}\right)$. We assume that ϕ is contractible, that is it extends to $\hat{\phi}: D^{k+1} \rightarrow G$. The closed disk D^{k+1} will be considered as the northern hemisphere $D_{+}^{k+1} \subset \mathbb{S}^{k+1}$. Repeating the argument above for the surjectivity, we consider the meridians μ_{v} between $N=e_{k+1} \in \mathbb{S}^{k}$ and $-N$, but this time there are much more such meridians, not only those in \mathbb{S}^{k} but also those through the hemisphere D_{+}^{k+1}. They are labeled by $v \in D_{+}^{k}:=D_{+}^{k+1} \cap N^{\perp}$.

[^20]Applying the negative energy gradient flow we deform the curves $\phi\left(\mu_{v}\right)$ to minimal geodesics without changing those in $\phi\left(\mathbb{S}^{k}\right)$ which are already minimal. Then we obtain the midpoint map $\hat{\phi}_{1}: D_{+}^{k} \rightarrow P_{1}$ with $\phi_{1}(v)=m\left(\hat{\phi}\left(\mu_{v}\right)\right)$ which extends the given midpoint map ϕ_{1} of ϕ. This step is repeated another $k-1$ times until we reach $\hat{\phi}_{k}: D_{+}^{1} \rightarrow P_{k}$ which is a path from J_{k} to $-J_{k}$ in P_{k}. This path can be shortened to a minimal geodesic in P_{k} whose midpoint is a complex structure J_{k+1} anticommuting with J_{1}, \ldots, J_{k}. Thus we have shown that our $C l_{k^{-}}$ module S given by J_{1}, \ldots, J_{k} is extendible to a $C l_{k+1}$-module, that is $S \in \rho\left(\mathcal{M}_{k+1}\right)$. This finishes the proof of the injectivity.

18. Quaternionic exceptional symmetric spaces

Chains of minimal centrioles of a compact matrix group $G \subset G L(V)$ with $-I \in G$ are even more interesting [16] when V is a quaternionic vector space and G acts \mathbb{H}-linearly on V, in other words, it commutes with the action of $S p_{1}=\mathbb{S}^{3} \subset \mathbb{H}$ by scalar multiplication on V. Using the quaternionic scalars i, j, k, anticommuting complex structures $J_{1}, J_{2}, J_{3} \in G$ can be changed into commuting involutions $S_{1}=i J_{1}$, $S_{2}=j J_{2}, S_{3}=k J_{3}$. Then S_{1} splits V into its half dimensional eigenspaces E_{1} and $E_{1}^{\perp}=j E_{1}$ (such subspaces are called totally complex), preserved by S_{2} and S_{3}. Further, S_{2} splits E_{1} into its half dimensional eigenspaces E_{2} and $E_{2}^{\perp}=i E_{2}$ (such subspaces are called totally real), and S_{3} splits E_{2} into its eigenspaces E_{3} and E_{3}^{\perp} which may have arbitrary dimensions. Then $P_{1}=\left\{E_{1} \subset V\right\}^{\circ}$ (a connected component of all such subspaces E_{1}) and $P_{2}=\left\{E_{2} \subset E_{1}\right\}$ and $P_{3}=\left\{E_{3} \subset E_{2}\right\}$. An example is line 3 of Table 3, page 39, where $P_{3}=\mathrm{G}_{p}\left(\mathbb{R}^{n}\right)$.

Let us now consider the case where V is also a Lie triple, more precisely, the Lie triple of a quaternionic symmetric space. A symmetric space P is called quaternionic symmetric if it is quaternionic Kähler, that is each tangent space is a quaternionic vector space, and the subspace $\mathbb{H} \subset \operatorname{End}(T P)$ of quaternionic scalar multiplications on any tangent space is parallel, and further the scalar multiplication with any unit scalar $q \in \mathbb{S}^{3} \subset \mathbb{H}$ extends to a global isometry of P.

Remark. Recall that for any Riemannian manifold P, the space \mathbb{R} of real scalar multiplications is parallel, and P is symmetric if the real unit scalars $\pm 1 \in \mathbb{R}$ extend to isometries of P. It is hermitian symmetric or Kähler symmetric if it is Kähler, that is each tangent space carries a complex structure and the complex scalar multiplication is parallel, and further the complex unit scalars $\zeta \in \mathbb{S}^{1} \subset \mathbb{C}$ extend to isometries of P. Quaternionic symmetric spaces are the quaternionic analogues.

If P is quaternionic symmetric and K the isotropy group of some base point $o \in P$, then conjugation with any $k \in K$ preserves $S p_{1} \subset K$, thus $S p_{1} \subset K$ is a normal subgroup. On the Lie algebra level, $\mathfrak{s p}_{1} \subset \mathfrak{k}$ and its orthogonal complement are ideals, hence we have a decomposition into ideals $\mathfrak{k}=\mathfrak{k}^{\prime} \oplus \mathfrak{s p}_{1}$ and $K=K^{\prime} S p_{1}$ where K^{\prime} commutes with $S p_{1}$, that is, it acts \mathbb{H}-linearly on $V=T_{o} P$. We put $G=K^{\prime}$ in the above construction. Then the spaces E_{1}, E_{2}, E_{3} are fixed spaces of Lie triple automorphisms and hence subtriples, and we may characterize P_{j} as a connected component of certain Lie subtriples (totally complex, totally real, or a splitting of the latter).

Among the exceptional symmetric spaces there are 4 quaternionic symmetric spaces, namely $\left\{\mathbb{K} \mathbb{H} \mathbb{P}^{2} \subset \mathbb{K} \mathbb{O} \mathbb{P}^{2}\right\}$ (the set of all symmetric subspaces congruent to $\left.\mathbb{K} \mathbb{H P}^{2} \subset \mathbb{K} \mathbb{O} \mathbb{P}^{2}\right)$ for $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$. As coset spaces these are the types (see [9, p. 518], [2, p.313f]) $F I=F_{4} / S p_{3} S p_{1}$, $E I I=E_{6} / S U_{6} S p_{1}, E V I=E_{7} / S p i n_{12} S p_{1}, E I X=E_{8} / E_{7} S p_{1}$ with quaternionic dimension $d=7,10,16,28$. The last example appears in Table 3, line 5 on page 39, while the others are in lines 1-3 for $n=3$. The corresponding chains end with $\mathbb{K} \mathbb{P}^{2}=\mathrm{G}_{1}\left(\mathbb{K}^{3}\right)$, see also [16, p. 47].

We finish our lecture with some open questions related to this construction which combines all subjects treated in our lecture.
(1) What are the symmetric subspaces with Lie triples E_{1}, E_{2}, E_{3} ?
(2) Are there other connected components?
(3) How can we geometrically understand the description of $\mathbb{K} \mathbb{P}^{2}$ as $\left\{E_{3} \subset E_{2}\right\}$?
(4) What is the relation to Freudenthal's magic squares? The numbers $d-1$ appear in Freudenthal's work, see e.g. [8, p. 448].

References

[1] M. Atiyah, R. Bott, A. Shapiro: Clifford modules, Topology 3 (1964), 3-38
[2] A. Besse: Einstein Manifolds. Springer 1986.
[3] Erich Dorner: The isotropy representations of the Rosenfeld planes, Augsburg 2018
[4] A. Borel, F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538, http://www.maths.ed.ac.uk/~v1ranick/papers/bh1.pdf
[5] Chen, B.-Y., Nagano, T.: Totally geodesic submanifolds of symmetric spaces II, Duke Math. J. 45 (1978), $405-425$
[6] J.-H. Eschenburg, B. Hanke: it Bott Periodicity, Submanifolds, and Vector Bundles, to appear (2018)
[7] Freudenthal, Hans: Oktaven, Ausnahmegruppen und Oktavengeometrie, Utrecht 1951
http://www.maths.ed.ac.uk/~v1ranick/papers/freudselecta.pdf
[8] Freudenthal, Hans: Beziehungen der E7 und E8 zur Oktavenebene. V - IX. Indagationes Math. 21, 165-201, 447-474.
[9] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press 1978.
[10] H.B. Lawson, M.-L. Michelson: Spin Geometry, Princeton 1989
[11] J. Milnor: Morse Theory, Princeton 1963
[12] Mitchell, S. A., The Bott filtration of a loop group, in: Springer Lect. Notes Math. 1298 (1987), 215-226
[13] Mitchell, S. A.: Quillens theorem on buildings and the loops on a symmetric space, Enseign. Math. (II)34 (1988), 123-166
[14] Nagano, T., The involutions of compact symmetric spaces, Tokyo J. Math. 11 (1988), $57-79$
[15] Rosenfeld, B.: Einfache Liegruppen und nichteuklidische Geometrie. Algebraical and Topological Foundations of Geometry, Pergamon Press 1962, 135 - 155
[16] P. Quast: Complex structures and chains of symmetric spaces, Habilitationsschrift Augsburg 2010 (available from the author)
[17] P. Quast: Centrioles in Symmetric Spaces, Nagoya Math. J. 211 (2013), 51 -77
[18] E. Witt: Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe, Abh. Math. Sem. Univ. Hamburg 14 (1941), 289-322

E-mail address: eschenburg@math.uni-augsburg.de
Institut für Mathematik, Universität Augsburg, D-86135 Augsburg

[^0]: ${ }^{1}$ Caspar Wessel, 1745 (Vestby, Norway) - 1818 (Copenhagen)
 ${ }^{2}$ Jean-Robert Argand, 1768 (Genf) - 1822 (Paris)
 ${ }^{3}$ Sir William Rowan Hamilton, 1805-1865 (Dublin)

[^1]: ${ }^{4}$ http://math.ucr.edu/home/baez/octonions/node24.html, see also https://en.wikipedia.org/wiki/John_C._Baez

[^2]: ${ }^{5}$ Benjamin Olinde Rodrigues, 1795 (Bordeaux) - 1851 (Paris)

[^3]: ${ }^{6}$ https://plus.maths.org/content/os/issue33/features/baez/index
 ${ }^{7}$ John Thomas Graves, 1806 (Dublin) - 1870 (Cheltenham, England)
 ${ }^{8}$ Arthur Cayley, 1821 (Richmond, Surrey, England) - 1895 (Cambridge)

[^4]: ${ }^{9}$ Precisely those triangles occur where short, medium and long secants appear in a clockwise ordering.

 10 "Euclidean" is unneccessary to assume since this follows from (2.1): the norm has a large group of norm-preserving linear maps given by left and right translations with unit elements in \mathbb{K} - in particular it acts transitively.

[^5]: ${ }^{11}$ Adolf Hurwitz, 1858 (Hildesheim) - 1919 (Zürich)

[^6]: ${ }^{12}$ Conversely, $a \notin \mathbb{K}^{\prime} \Rightarrow a^{2} \notin \mathbb{R}_{\leq 0}$. In fact, let $a=\alpha+a^{\prime}$ with $\alpha \neq 0$. Then $a^{2}=\alpha^{2}+2 \alpha a^{\prime}-\left|a^{\prime}\right|^{2}$. When $a^{\prime} \neq 0$, this has a \mathbb{K}^{\prime}-component, and when $a^{\prime}=0$, then $a^{2}=\alpha^{2}>0$.

[^7]: ${ }^{13}$ Freudenthal uses a different counting for the seven basis vectors. Our notation is changed into his by the permutation $1234567 \mapsto 1342765$. Moreover, instead of $V_{2}+V_{4}$ he considers $V_{5}+V_{6}$ (in our notation).

[^8]: ${ }^{14}$ This is the subgroup $G L_{2}\left(\mathbb{Z}_{2}\right) \subset G L_{3}\left(\mathbb{Z}_{2}\right)$ with the embedding $A \mapsto\left({ }^{1}{ }_{A}\right)$, $A \in G L_{2}\left(\mathbb{Z}_{2}\right)=\left\{\left(\begin{array}{ll}1 & 1\end{array}\right),\left(\begin{array}{cc}1 & 1 \\ & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right),\left({ }_{1}{ }^{1}\right)\right\} \cong S_{3}$.

[^9]: ${ }^{{ }^{15}}\langle(a b) c, 1\rangle=\langle a b, \bar{c}\rangle$ while $\langle a(b c), 1\rangle=\langle b c, \bar{a}\rangle=\langle b, \bar{a} \bar{c}\rangle=\langle a b, \bar{c}\rangle$ when a, b, c are unit octonions.

[^10]: ${ }^{16}$ The cubic form $f(X)=\langle[A X], X \circ X\rangle$ is the diagonal of the symmetric 3-form (its 3rd derivative) $\tau(X, Y, Z)=\frac{1}{3}(\langle[A X], Y \circ Z\rangle+\langle[A Y], Z \circ X\rangle+\langle[A Z], X \circ Y\rangle)$, that means $f(X)=\tau(X, X, X)$. The 3-form τ is symmetric since it is invariant under cyclic permutation and under the exchange of Y and Z.

[^11]: ${ }^{17}$ Let $\alpha=v_{1} \ldots v_{k} \in \operatorname{Pin}_{n+1}$ for some $k>0$. Claim: When $\alpha e_{1}=e_{1} \alpha$ then $v_{1}, \ldots, v_{r} \perp e_{1}$. For this we write $\alpha=e_{1} \beta+\gamma$ where all terms of β and γ are products of vectors $e_{j}, j \geq 2$ of length $k-1$ and k, respectively. Comparing αe_{1} and $e_{1} \alpha$ we see $\beta=0$ which shows the claim. The same conclusion holds for any e_{j}, thus $\alpha \in \mathbb{R}$ which shows $\alpha= \pm 1$ since it is a product of unit vectors.

[^12]: ${ }^{18}$ The transvection group of a symmetric space P consists of compositions of an even number of symmetries. If P is compact, the transvection group is the identity component of the isometry group of P.

[^13]: ${ }^{19}$ If a matrix Lie algebra contains a complex structure J (that is $J^{2}=-I$), then J is also contained in the corresponding matrix group since $e^{(\pi / 2) J}=J$, like $e^{(\pi / 2) i}=i$.

[^14]: ${ }^{20}$ Recall that the k-planes in \mathbb{R}^{n} close to $\mathbb{R}^{k}=\left\{x \in \mathbb{R}^{n}: x_{k+1}=\cdots=x_{n}=0\right\}$ are just the graphs of linear maps $F: \mathbb{R}^{k} \rightarrow\left(\mathbb{R}^{k}\right)^{\perp}=\mathbb{R}^{n-k}=\mathbb{R}^{l}$. Therefore the tangent space of $\mathrm{G}_{k}\left(\mathbb{R}^{k+l}\right)$ at \mathbb{R}^{k} is $\operatorname{Hom}\left(\mathbb{R}^{k}, \mathbb{R}^{l}\right)$. The group $S O_{n}$ acts transitively on $\mathrm{G}_{k}\left(\mathbb{R}^{n}\right)$, and the isotropy group of the (oriented) k-plane $\mathbb{R}^{k} \in \mathrm{G}_{k}\left(\mathbb{R}^{n}\right)$ is $S O_{k} \times$ $S O_{l}$ acting on the tangent space $\operatorname{Hom}\left(\mathbb{R}^{k}, \mathbb{R}^{l}\right)$ by $((A, B), F) \mapsto B F A^{-1}$. Using the identification $\operatorname{Hom}\left(\mathbb{R}^{k}, \mathbb{R}^{l}\right)=\mathbb{R}^{k} \otimes \mathbb{R}^{l}$, this is the tensor representation

[^15]: ${ }^{21}$ For $f \in \mathbb{K}$ we have $R(f) \nu=\mp R\left(f^{\prime}\right) \nu$ since $R\left(f f^{\prime}\right) \nu= \pm \nu$.

[^16]: ${ }^{22}$ In fact, both \mathcal{V}_{k} and \mathcal{A}_{k} are abelian groups with respect to direct sums, not just semigroups, and α is a group homomorphism. Using the tensor product, $\mathcal{V}=\sum_{k} \mathcal{V}_{k}$ and $\mathcal{A}=\sum_{k} \mathcal{A}_{k}$ become rings and α a ring homomorphism, see [1].

[^17]: ${ }^{23}$ Let γ be a Q-geodesic with curvature vector $\eta=\nabla_{\gamma^{\prime}} \gamma^{\prime}$ at some point $q \in Q$. Then s_{q} would preserve γ and η, but on the other hand, $\left(s_{q}\right)_{*}(\eta)=-\eta$ thus $\eta=0$ and γ is also a P-geodesic.

[^18]: ${ }^{24}$ Let $\gamma: \mathbb{R} \rightarrow G$ be a smooth group homomorphism. Its curvature vector field $\eta=\nabla_{\gamma^{\prime}} \gamma^{\prime}$ is γ-invariant, $\eta(t)=\gamma(t)_{*} \eta(0)$. Thus the neighbour curve $\gamma_{s}(t)=$ $\exp _{\gamma(t)}(s \eta(t))$ is another γ-orbit, $\gamma_{s}(t)=\gamma(t) g_{s}$. Deforming in the curvature vector direction shortens a curve, thus γ_{s} is shorter than γ on any finite intervall.

 But on the other hand $\gamma_{s}=R\left(g_{s}\right) \gamma$ has the same length as γ since $R\left(g_{s}\right)$ is an isometry of G. Thus $\eta=0$.

[^19]: ${ }^{25}$ One has to show yet that the index of nonminimal geodesics is large for all P_{j}, see [11, Section 24] or [6, Thm. 4]. The index was computed in a more general case by Mitchell [12, 13].

[^20]: ${ }^{26}$ Note that for any complex structure J we have $e^{(\pi / 4) J}=J$ since the eigenvalues are $\pm \mathbf{i}$ and $e^{ \pm(\pi / 4) \mathrm{i}}= \pm \mathbf{i}$.

