
GEOMETRY OF OCTONIONS

J.-H. ESCHENBURG

Abstract. The simple classical compact groups SOn, SUn, Spn
are related to the division algebras R,C,H (reals, complex num-
bers, quaternions). The exceptional groups G2, F4, E6, E7, E8 are
somehow related to the remaining normed division algebra, the oc-
tonions O, but the relation is not quite easy to understand, except
for G2 = Aut(O).

We will start with Hurwitz’ theorem stating that R,C,H,O are
all possible normed division algebras over the reals (construction
included). Then we will turn to the octonionic projective plane
and its connection to F4 and E6. I tell what I know about the
relation to E7 and E8. I also explain the relation of the octonions
to real Bott periodicity.
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1. The discovery of the 4 normed division algebras

From ancient times on there was a link between numbers and ge-
ometry. Numbers came into geometry as ratio of two parallel straight
line segments: How often fits the smaller segment into the larger one?
Around 500 B.C., students of Pythagoras noticed that sometimes such
ratio cannot be represented as a ratio of two integers. Thus the idea
of (positive) real numbers representing the one-dimensional continuum
was born.
Around 1570, the water engineer Rafael Bombelli from Bologna dis-

covered the complex numbers when he tried to apply Cardano’s solution
formula for the cubic equation x3 + 3ax = 2b,

x =
3

√
b+

√
D +

3

√
b−

√
D, D = a3 + b2.

There is a situation where D is no longer positive. E.g. x3 − 6x =

4 has D = −4. Cardano’s formula would give x = 3

√
2 +

√
−4 +

3

√
2−

√
−4, but this seemed to be senseless since negative numbers

are never squares. But still Bombelli dared to use these “imaginary”
numbers like ordinary ones and succeeded. He noticed that 2 ±

√
−4

was a cubic number: (−1±
√
−1)3 = 2±

√
−4. Thus x = −1+

√
−1+

(−1)−
√
−1 = −2 which was correct: (−2)3 − 6 · (−2) = 4.

Yet imaginary numbers remained mysterious for several centuries to
come. Even C.F. Gauß in his Ph.D. thesis on the Fundamental Theo-
rem of Algebra avoided them as late as 1799. But around that time,
two amateur mathematicians found a geometric model for these num-
bers, the Danish surveyor Caspar Wessel (1797)1 and independently
the French accountant Jean-Robert Argand (1806).2 While the reals
correspond to the line, the complex numbers correspond to the plane
with the imaginary numbers sitting on the vertical axis. Of course this
was known also to Gauß but as in other cases he was too cautious to
publish it.
In 1835 William Rowan Hamilton,3 an Irish mathematician and as-

tronomer, discovered independently the relation between complex num-
bers and planar geometry. But he wanted to go beyond. In the words

1Caspar Wessel, 1745 (Vestby, Norway) - 1818 (Copenhagen)
2Jean-Robert Argand, 1768 (Genf) - 1822 (Paris)
3Sir William Rowan Hamilton, 1805 - 1865 (Dublin)
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of John Baez, a mathematical physicist who has worked with octo-
nions:4 “Fascinated by the relation between complex numbers and 2-
dimensional geometry, he tried for many years to invent a bigger algebra
that would play a similar role in 3-dimensional geometry. In modern
language, it seems he was looking for a 3-dimensional normed division
algebra. His quest built to its climax in October 1843. He later wrote
to his son:

Every morning in the early part of the above-cited month,
on my coming down to breakfast, your (then) little brother
William Edwin, and yourself, used to ask me: ‘Well,
Papa, can you multiply triplets?’ Whereto I was always
obliged to reply, with a sad shake of the head: ‘No, I
can only add and subtract them’.

The problem was that there exists no 3-dimensional normed division
algebra. He really needed a 4-dimensional algebra. Finally, on the
16th of October, 1843, while walking with his wife along the Royal
Canal to a meeting of the Royal Irish Academy in Dublin, he made his
momentous discovery:

That is to say, I then and there felt the galvanic circuit
of thought close; and the sparks which fell from it were
the fundamental equations between i, j, k; exactly such
as I have used them ever since.

And in a famous act of mathematical vandalism, he carved these equa-
tions into the stone of the Brougham (Broom) Bridge: i2 = j2 = k2 =
ijk = −1.” John Baez further describes his finally successfull efforts
in 2005 to find this bridge near Dublin and to photograph the famous
plate with the inscription:

Here as he walked by on the 16th of October 1843 Sir
William Rowan Hamilton in a flash of genius discovered
the fundamental formula for quaternion multiplication
i2 = j2 = k2 = ijk = −1 & cut it on a stone of this
bridge.

The Irish mathematicians celebrate this event on the 16th october of
each year at this place near Dublin.

4http://math.ucr.edu/home/baez/octonions/node24.html, see also
https://en.wikipedia.org/wiki/John C. Baez
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These equations define a multiplication of the four basis vectors
1, i, j, k and thus an algebra structure on R4. This is called quaternion
algebra, denoted by the symbol H in honour of Hamilton. However,
he was not the first to use quaternions. A few years before, 1840, the
French banker and mathematician Benjamin Olinde Rodrigues5 had
already introduced them in order to parametrize rotations in 3-space,
but he did not introduce the multiplicative structure, and his discovery
was not very well known at that time.

Remark. A faithful representation of the algebra H is the matrix
algebra

R · SU2 = {
(
a −b̄
b ā

)
: a, b ∈ C}

(similar to C = R · SO2 = {
(
a −b
b a

)
: a, b ∈ R}) where i, j, k are rep-

resented by the Pauli spin matrices ( −i
i ), (

−1
1 ), ( i

i ). This shows
the associativity of H, and further that every nonzero element a ∈ H

has an inverse a−1. Thus H is a division algebra which means that any
linear equation ax = b or xa = b with given a, b ∈ H and a 6= 0 has a
unique solution x = a−1b or x = ba−1.

5Benjamin Olinde Rodrigues, 1795 (Bordeaux) - 1851 (Paris)
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We keep citing John Baez from an 2004 interview:6 “Among the
mathematicians working in this area was John Graves,7 a friend of
Hamilton. It was Graves who had first got Hamilton interested in
the problem of describing the complex numbers as pairs of ordinary
numbers. When Hamilton told Graves about the quaternions, Graves’
immediate question was: if you’re allowed make up a way of multiplying
lists of 4 numbers, why not more? And the day after Christmas of that
same year, he sent a letter to Hamilton saying he had succeeded in
coming up with a number system that we now call the octonions (O),
which are lists of 8 numbers, and that he had a way of multiplying
them that also allowed him to divide. ‘Hamilton wrote back saying,
just because it’s bigger I don’t know if it is better,’ says Baez. ‘He said
something like, I have a horse with four legs, I don’t know if your horse
with eight legs will run twice as fast!’
Back then, Baez explains, to publish a paper you would need a mem-

ber of a learned society to give a talk about it at a meeting of the society,
and it would appear in the society’s journal, in the transcript of the
meeting. Hamilton promised Graves he would talk about octonions at
a meeting of the Royal Irish Academy, but he was so excited about the
quaternions he kept forgetting. But, a few years later, Arthur Cay-
ley8 reinvented the octonions and published before Graves ever got any
credit for it! Then Hamilton gave a talk saying actually Graves thought
of them first, but they wound up being called the Cayley numbers for
a long time. So Graves missed out on his credit.”
The algebra structure of O is more complicated than that of H since

there are 7 “imaginary” directions i, j, k, l, p, q, r or e1, . . . , e7 or 1, . . . 7
for short, and when one chooses the right ordering, the multiplication
table is given by the following figure where each of the triangles 124,
235, 346, etc. denotes a quaternionic subalgebra, e1e2 = e4 etc.

45

27

36

1

45

27

36

1   100

010101

111 001

011 110

6https://plus.maths.org/content/os/issue33/features/baez/index
7John Thomas Graves, 1806 (Dublin) - 1870 (Cheltenham, England)
8Arthur Cayley, 1821 (Richmond, Surrey, England) - 1895 (Cambridge)
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The figure in the center contains all secants of the heptagon and half
of all triangles with three different types of secants.9 It is a model of
the Fano projective plane Z2P

2 with 7 points and 7 lines which are rep-
resented by the triangles, see the right figure (where, say, 110 denotes
the homogeneous vector [1, 1, 0] ∈ Z2P

2). The automorphism group of
this situation is the group GL3(Z2) which is the second smallest simple
finite group (with 168 elements), .

2. The normed division algebras

By an algebra over R we understand a finite dimensional real vector
space K with a bilinear map K × K → K, (a, b) 7→ a · b = ab called
multiplication. The algebra K is called a normed algebra or composition
algebra if K carries a euclidean norm (denoted by |a|)10 such that

|ab| = |a||b| (2.1)

for all a, b ∈ K. This is an extremely strong hypothesis. Assume
further that K has a unit element 1 and hence a canonical embedding
of R = R · 1 into K. Let K′ = R⊥ ⊂ K.

Lemma 2.1. If a ∈ K′ and |a| = 1, then a(ax) = −x for all x ∈ K, in
particular a2 = −1.

−a(ax)x

−a(ax)?

x−a(ax)?

Proof. (1 + a) ((1− a)x) = (1 − a)x + a(x − ax) = x − a(ax) and
|1+ a||1− a||x| = 2|x|. But from |a(ax)| = |x| we see that the equality
|x − a(ax)| = 2|x| can hold only if the vectors x and −a(ax) point in
the same direction, see figure. �

Corollary 2.2. For all b ∈ K′ and x ∈ K we have b(bx) = −|b|2x and
b2 = −|b|2.
Proof. Apply Lemma 2.1 to a = b/|b| when b 6= 0. �

9Precisely those triangles occur where short, medium and long secants appear in
a clockwise ordering.

10“Euclidean” is unneccessary to assume since this follows from (2.1): the norm
has a large group of norm-preserving linear maps given by left and right translations
with unit elements in K – in particular it acts transitively.
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Lemma 2.3. If a, b ∈ K′ and a ⊥ b, then ab ∈ K′ and ab ⊥ a, b and
ab = −ba.

Proof. We may assume |a|, |b| = 1. Since multiplications with a, b are
orthogonal, we have b ⊥ a ⇒ ab ⊥ a2 = −1 and b ⊥ 1 ⇒ ab ⊥ a, and
a ⊥ 1 ⇒ ab ⊥ b. Further, (a+ b)2 = −|a+ b|2 = −2 by Cor. 2.2, hence

−2 = (a+ b)2 = a2 + b2 + ab+ ba = −2 + (ab+ ba)

and thus ab+ ba = 0. �

Corollary 2.4. Orthonormal a, b ∈ K′ generate a subalgebra isomor-
phic to the quaternion algebra H.

Proof. Hamilton’s units 1, i, j, k are mapped to 1, a, b, ab, since (ab)2 =
−1 and (ab)a = −a(ab) = b according to Lemma 2.3. �

Lemma 2.5. Let H ⊂ O be any subalgebra isomorphic to the quater-
nions. If c ⊥ H, then cH = Hc ⊥ H.

Proof. For a, b ∈ H ∩ K′ and |a| = 1 we have ca ⊥ b, since (ca)a =
−c ⊥ ba. �

Lemma 2.6. If a, b, c ∈ K′ are orthogonal and c ⊥ ab (a so called
Cayley triple), then (ab)c = −a(bc).

Proof. According to Lemma 2.5, we also have bc ⊥ a and therefore
a(bc) = −(bc)a = (cb)a. Hence we have to show (ab)c = −(cb)a. On
the one hand, ((a + c)b)(a + c) = (ab + cb)(a + c) = (ab)a + (cb)a +
(ab)c+(cb)c = 2b+(cb)a+(ab)c , on the other hand using Corollary 2.2
we have ((a+ c)b)(a+ c) = |a+ c|2b = 2b, hence (cb)a+ (ab)c = 0. �

kjl

llk

i
jil

Remark. This figure shows the multiplication table (the “clock” on
page 5) in terms of an orthonormal Cayley triple, i, j, l where ij = k.
In fact,

k(jl) = −(kj)l = il,
(jl)(lk) = −((jl)l)k = jk = i,
(lk)(il) = (kl)(li) = −((kl)l)i = ki = j,
(il)i = −i(il) = l.

(2.2)
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Lemma 2.7. Orthonormal c, d ∈ A′ with c ⊥ H and d ⊥ (H+ cH) do
not exist.

Proof. Let a, b ∈ A′ ∩H be orthonormal. Then on the one hand,

a(b(cd)) = −a((bc)d) = (a(bc))d , (A)

since the triples (b, c, d) and (a, bc, d) are anti-associative, according to
Lemma 2.6. But on the other hand:

a(b(cd)) = −(ab)(cd) = ((ab)c)d = −(a(bc))d , (B)

since the triples (a, b, cd), (ab, c, d) and (a, b, c) are anti-associative. But
(A) und (B) contradict each other! �

Now we have proved:

Theorem 2.8. (A. Hurwitz 1898)11 R,C,H,O are the only normed
algebras, and R ⊂ C ⊂ H ⊂ O.

It remains to see that K is a division algebra. We first introduce
the conjugation κ : K → K. For any a ∈ K = R ⊕ K′ let a = α + a′

be the corresponding decomposition (α ∈ R, a′ ∈ K′). We define an
involution

κ : a = α + a′ 7→ ā = α− a′ (2.3)

(the reflection at the real axis) called conjugation.

Proposition 2.9. κ is an anti-automorphism of K, that is ab = b̄ā for
all a, b ∈ K, and aā = āa = |a|2.
Proof. (A) Consider first the case a, b ∈ K′. We may suppose a 6= 0,
even |a| = 1. Then b = λa + b⊥ with λ ∈ R and b⊥ ⊥ a, and ab =

−λ+ ab⊥ while b̄ā = ba = −λ+ b⊥a
2.3
= −λ− ab⊥ = ab.

(B) In the general case a = α + a′ and b = β + b′ we have

b̄ā = βα− βa′ − αb′ + b′a′,
ab = αβ + αb′ + βa′ + a′b′,

ab = αβ − αb′ − βa′ + a′b′
(A)
= b̄ā

If b = ā = α−a′, then ab = α2−αa′+αa′−a′a′ = α2+ |a′|2 = |a|2. �

Corollary 2.10. Any normed algebra K (with unit 1) is a division
algebra: The solutions of the equations ax = b and xa = b with a 6= 0
are x = a−1b and x = ba−1 with

a−1 = ā/|a|2. (2.4)

11Adolf Hurwitz, 1858 (Hildesheim) - 1919 (Zürich)
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Proof. |a|2x = āax
ax=b
= āb ⇒ x = ā

|a|2
b,

and x|a|2 = xaā
xa=b
= bā ⇒ x = b ā

|a|2
. �

Remark. The product āax (as well as xaā) needs no parentheses since
ā = −a+ 2α, hence (āa)x = −aax+ 2αax = ā(ax).

3. The automorphism groups of the normed algebras

An automorphism of an R-algebra K is a linear isomorphism φ : K →
K which preserves the product,

φ(a)φ(b) = φ(ab). (3.1)

For K = R, the only automorphism is the identity since the basis
element 1 ∈ R must be fixed. More generally, an automorphism of any
algebra K fixes R = R · 1 ⊂ K.
For K = C, any automorphism φ satisfies φ(i) = ±i since φ(i)2 =

φ(−1) = −1. Thus Aut(C) = {id, κ} where κ(a) = ā is complex
conjugation.
For K = H and K = O, any automorphism φ preserves K′ = {a ∈ K :

a2 ∈ R≤0} (see 2.2).12 Thus φ preserves the eigenspaces R and K′ of the
conjugation κ defined by (2.3), hence φ and κ commute. Consequently,
|φ(a)|2 = φ(a)κ(φ(a)) = φ(aκ(a)) = |a|2, thus φ is orthogonal. There-
fore, Aut(H) ⊂ O3 and Aut(O) ⊂ O7. We will compute Aut(K) by
replacing it with a a submanifold of a Stiefel manifold of orthonormal
frames on which it acts simply transitively.
For K = H, any orthonormal 2-frame (a, b) in K′ can be mapped

by a unique automorphism to (i, j), hence Aut(H) can be viewed as
the set V2(R

3) or orthonormal 2-frames in K′ = R3. Since (a, b) can
be uniquely extended to the oriented 3-frame (a, b, ab), this set is the
group SO3. In fact, the unit sphere S3 ⊂ H acts on H′ by conjugation
x 7→ axā, and the kernel of this action is precisely {±1}. Thus Aut(H)
is the group SO3 = S3/± acting on K′ by conjugation.
The automorphism group acts also on the set of subalgebras isomor-

phic to C, and the isotropy group of the standard C ⊂ H corresponds
to the pairs (±i, b) with b ⊥ i which is O2. Thus the manifold of
subalgebras isomorphic to C is SO3/O2 = RP2.

For K = O, we replace the 2-frames (a, b) by orthonormal Cayley
triples (a, b, c) in O′ = R7. Again, there is a unique automorphism

12Conversely, a 6∈ K′ ⇒ a2 6∈ R≤0. In fact, let a = α + a′ with α 6= 0. Then
a2 = α2 + 2αa′ − |a′|2. When a′ 6= 0, this has a K′-component, and when a′ = 0,
then a2 = α2 > 0.
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sending (a, b, c) to the standard triple (i, j, l), thus Aut(O) acts simply
transitively on the set C of all Cayley triples. The map (a, b, c) 7→ (a, b)
defines a fibre bundle over the Stiefel manifold V2(R

7). Given a, b, the
third vector c is an arbitrary unit vector perpendicular to a, b, ab. But
(a, b, ab)⊥ ∼= R4, thus the fibre (the set of all c) is a 3-sphere S3. Hence
C is an S3-bundle over V2(R

7) which is itself an S5-bundle over S6

(the unit sphere in O′). In particular, Aut(O) is connected and has
dimension 6 + 5 + 3 = 14. We also see that Aut(O) contains the finite
group GL3(Z2) which permutes the Cayley triples among the basis
elements (where the standard Cayley triple (i, j, l) is identified with
(100, 010, 001), see right figure on page 5).
The group Aut(O) acts also on the set of all subalgebras isomorphic

to H, and the isotropy group K = Aut(O)H consists of the triples
(a, b, c) with a, b ∈ H, that is (a, b) ∈ V2(R

3) = SO3. In particular, K
acts transitively on the set of unit vectors c ⊥ H, thus on S3 ⊂ H⊥.
The stabilizer in K for the standard element c = l is Aut(H) = SO3,
thus S3 = K/SO3 whence K = SO4 with its standard action on H⊥ =
R4. In other words, each automorphism Ad(q) of H is extended to an
automorphism φ of O by putting φ(l) = pl for an arbitrary p ∈ H,
|p| = 1, and hence for any a, b ∈ H we have

φ(a+ bl) = φ(a) + φ(b)φ(l) = qaq−1 + (qbq−1)(pl). (3.2)

Choosing q, p ∈ S1 ⊂ C ⊂ H, we find a maximal torus T of Aut(O)
within K ∼= SO4.
The next figure shows the three triangles (“lines”, quaternionic sub-

algebras) between the basis elements with 1 (= i) as one vertex.

2=j

3=l

7=il

5=jl 4=k

1=i

6=lk

The end point pairs of the edges 24, 37, 56 opposite to 1 span three
2-dimensional T -modules since the pairs are preserved by left and right
multiplications by i. Putting

Jab : eb 7→ ea, ea 7→ −eb, ec 7→ 0 for all c 6= a, b (3.3)

(with a, b, c ∈ {1, . . . , 7}), the Lie algebra of T is

t = {αJ24 + βJ37 + γJ56 : α + β + γ = 0}. (3.4)
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In fact, T consists of automorphisms φ = φst of type (3.2) with q =
eis/2 and p = eit whose infinitesimal generators X, Y are X(a + bl) =
1
2
([i, a] + [i, b]l) and Y (a + bl) = b(il). Thus the endpoint pairs of the

edges opposite to i are mapped by X and Y as follows:

(j, k), (l, il), (jl, lk)
X7→ (k,−j), (0, 0), (kl,−lj)

(j, k), (l, il), (jl, lk)
Y7→ (0, 0), (−il, l), (kl,−lj)

Hence X = J56 − J24 ∈ t and Y = J56 − J37 ∈ t, see (3.4), and
t = span (X, Y ) since X, Y form a basis of t.
Similarly, we define the subspaces Va ⊂ aut(O) replacing 1 by any

a ∈ {1, . . . , 7}. This defines a decomposition of the Lie algebra of
Aut(O) into seven 2-dimensional subspaces. The action of T or t = V1

leaves Va+Vb invariant for every pair (a, b) ∈ {(2, 4), (3, 7), (5, 6)}, and
its complexification is decomposed into the root spaces for t (see [7],
page 29).13

In fact, recall that [Jab, Jcd] = 0 when a, b, c, d are distinct (as in
so4), and [Jab, Jbc] = Jac while [Jab, Jac] = −Jbc (as in so3). Hence the
complex matrices Jac + iJbc and Jbc − iJac are eigenvectors for ad(Jab)
with eigenvalue i since [Jab, Jbc − iJac] = Jac + iJbc = i(Jbc − iJac). E.g.
consider V2 and V4 which are spanned by the differences of 35, 41, 67
and 57, 63, 12 (denoting J35 by 35 etc.) respectively.

45

27

36

1

45

27

36

1

45

27

36

1

V VV2 41

Thus we have the following i-eigenvectors,

ad(24) ad(37) ad(56)
21 + 41 i 35 + 75 i 53 + 63 i

= i(41 + 12 i) = 35− 57 i = −(35 + 36 i)
36 + 76 i 57 + 67 i

= −i(67 + 36 i) = i(67− 57 i)

(3.5)

13Freudenthal uses a different counting for the seven basis vectors. Our notation
is changed into his by the permutation 1234567 7→ 1342765. Moreover, instead of
V2 + V4 he considers V5 + V6 (in our notation).
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while the complex conjugates belong to the eigenvalue −i. Let

v− = 35− 57 i − (67 + 36 i) = 35− 36 i − (67 + 57 i)
v+ = 35− 57 i + (67 + 36 i) = 35 + 36 i + (67− 57 i)
vo = 41 + 12 i

Then

[α · 24 + β · 37 + γ · 56, v−] = i(β − γ)v−
[α · 24 + β · 37 + γ · 56, v+] = i(β + γ)v+
[α · 24 + β · 37 + γ · 56, vo] = iαvo.

Hence v− ∈ (V2+V4)⊗C is an eigenvector of ad(α · 24+β · 37+ γ · 56)
for the eigenvalue β − γ. On the other hand, v+ − 2vo ∈ (V2 + V4)⊗C

is an eigenvector for the eigenvalue β+ γ, provided that α+β+ γ = 0:

[α · 24 + β · 37 + γ · 56 , −2vo + v+] = −2iαvo + i(β + γ)v+
= i(β + γ)(−2vo + v+)

when α = −(β + γ). Analogous statements hold for the complex con-
jugate vectors. Now (V2 + V4) ⊗ C is decomposed into eigenspaces of
ad(α · 24+ β · 37+ γ · 56) with eigenvalues (roots) ±(β − γ), ±(β + γ).

We may use symmetry to compute the remaining roots. The group of
automorphisms of O preserving the basis e1, . . . , e7 of O

′ is GL3(Z2) ⊂
Aut(O). The stabilizer of e1 inside this group permutes the oriented
secants {24, 37, 56}.14 Thus it preserves the torus T and permutes
α, β, γ, hence the full set of roots is ±α ± β, ±β ± γ, ±γ ± α where
α + β + γ = 0. Now we have proved that the root system has Dynkin
type G2, see subsequent figure.

α β

γ

β+γ

γ−β

α−β β−α

α+γ−β= =−α

α+β
β−γ

γ−α

α−γ =−γ

The maximal torus T is a maximal abelian subgroup of Aut(O), but
not the only one (up to conjugacy). There is a maximal abelian sub-
group of type (Z2)

3, a maximal “2-group”, which is not contained in any
maximal torus of Aut(O). In fact, each of the seven secant triangles in

14This is the subgroup GL2(Z2) ⊂ GL3(Z2) with the embedding A 7→ ( 1 A ),
A ∈ GL2(Z2) = {( 1 1 ) , (

1 1
1 ) , (

1 1
1 ) , ( 11 1 ) , (

1
1 1 ) , (

1
1 )} ∼= S3.
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the figure on page 5 defines a quaternionic subalgebra Ha, a = 1, . . . , 7,
and the reflection at Ha is an automorphism. E.g. the reflection at
H1 maps the Cayley triple (i, j, l) onto the Cayley triple (i, j,−l); it
corresponds to −I ∈ SO4 ⊂ Aut(O). Thus we have seven reflections
along certain coordinate 3-planes in O′ = R7. They commute and
define a subgroup isomorphic to (Z2)

3 which is maximal abelian, see
Borel-Hirzebruch [4], p. 531. The subgroup GL3(Z2) ⊂ Aut(O) per-
mutes the seven quaternionic subalgebras, and it is the normalizer of
(Z2)

3 in Aut(O), similar to the Weyl group which is the normalizer
(made effective) of the maximal torus. This is essential for computing
the Z2-cohomology (Borel) and the Stiefel-Whitney classes (see [4] and
references therein).

4. Hermitian 3× 3-matrices over K

Grassmannians over a division algebra K can be represented in the
space of hermitian matrices over K where each subspace E ⊂ Kn (an
element of the Grassmannian) is mapped to the orthogonal projection
onto E. This is the hermitian matrix P over K with P 2 = P and image
E. This construction still works for K = O.
Let Mn = Kn×n be the space of n×n-Matrices over K. It carries the

standard inner product

〈X, Y 〉 = Re trace (X∗Y ) =
∑

X̄ijYij = 〈Y,X〉.

For any A = (Aij) ∈ Mn we define the adjoint matrix A∗ ∈ Mn with

A∗
ij = κ(Aji) = Aji.

The map X 7→ X∗ is an anti-automorphism of the matrix algebra
Mn. In fact, for any A,B ∈ Mn we have (B∗A∗)ik =

∑
j B

∗
ijA

∗
jk =∑

j κ(Bji)κ(Akj) =
∑

j κ(AkjBji) = κ(AB)ki = (AB)∗ik.

Further, for all X, Y, Z ∈ Mn we have

〈XY,Z〉 = Re trace (XY )∗Z = Re trace Y ∗X∗Z = 〈Y,X∗Z〉. (4.1)

In fact, recall that Re trace (ABC) is associative:

((AB)C)ii =
∑

(AijBjk)Cki and (A(BC))ii =
∑

Aij(BjkCki).

Thus the difference is a sum of associators [Aij , Bjk, Cki] where

[a, b, c] = (ab)c− a(bc) (4.2)
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for all a, b, c ∈ K. The associator is always imaginary15 and anti-
symmetric (since it vanishes whenever two arguments are equal). In
particular, the real part of the associator vanishes.
We let

Hn = {X ∈ Mn : X∗ = X} and An = {X ∈ Mn : X∗ = −X}
be the subspaces of hermitian and anti-hermitian matrices. We let

Gk(K
n) = {P ∈ Hn : P 2 = P, trace P = k} ⊂ Hn (4.3)

be the Grassmannian of k-dimensional subspaces of Kn. If K = O,
there are no subspaces (submodules) since On is not a module over O,
by lack of associativity. But still

OP
2 := G1(O

3) ⊂ H3(O) (4.4)

is defined in the sense of (4.3), called the octonionic projective plane.

The vector spaceHn becomes an algebra with the commutative prod-
uct

X ◦ Y =
1

2
(XY + Y X).

In fact, X ◦ Y ∈ Hn since (XY + Y X)∗ = Y X +XY . Further, there
is an inner product and a 3-form

(X, Y, Z) = 〈X ◦ Y, Z〉 = 〈Z,X ◦ Y 〉
which is symmetric: it is invariant under transposition of X and Y ,
and it is invariant under cyclic permutations (using Re trace (UV ) =
Re trace (V U)):

2(X, Y, Z) = Re trace (ZXY + ZY X)
= Re trace (ZXY +XZY )
= 2(Z,X, Y ).

5. The automorphism group of H3(O)

Again we are interested in the automorphism group of this structure,
more precisely in the group Aut(Hn) of orthogonal automorphisms of
Hn. Clearly, this group leaves Gk(K

n) ⊂ Hn invariant since the defining
equations P 2 = P and k = trace X = 〈X, I〉 are invariant under or-
thogonal automorphisms. For K ∈ {R,C,H}, this group is well known:
its identity component is the unitary group

Un(K) = {g ∈ K
n×n : g∗g = I}

15〈(ab)c, 1〉 = 〈ab, c̄〉 while 〈a(bc), 1〉 = 〈bc, ā〉 = 〈b, āc̄〉 = 〈ab, c̄〉 when a, b, c are
unit octonions.
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(devided by its center) acting on Hn(K) by conjugation, note that
gXg−1 = gXg∗ ∈ Hn for all X ∈ Hn. However, for K = O this group is
very small in general (it always contains Aut(O) and the permutation
group Sn), but for n = 3 it is large: it is the exceptional group of
Dynkin type F4 as we will see.

Also An is an algebra with the anti-commutative product

[AB] = AB −BA.

Further any A ∈ An acts on Hn by

[AX] = AX −XA (5.1)

since (AX −XA)∗ = −XA+ AX = AX −XA, hence [AX] ∈ Hn for
all X ∈ Hn. If K is associative, this action is by derivations. Recall
that a derivation of an algebra A is a linear map δ : A → A with

δ(ab) = (δa)b+ a(δb) (5.2)

for all a, b ∈ A. Derivations are derivatives of one-parameter groups
of automorphisms: if φt, t ∈ R, is a family of automorphisms of A
with φ0 = I = id and d

dt

∣∣
t=0

φt = δ, then differentiation of φt(ab) =
φt(a)φt(b) at t = 0 gives (5.2). Thus the derivations form the Lie
algebra (the tangent space at I) of the group Aut(A).

Lemma 5.1. If K is associative, then An acts by derivations on Hn.

Proof.

2 adA(X ◦ Y ) = [A, (XY +Y X)]
= A(XY ) + A(Y X)− (XY )A− (Y X)A,

2 (adAX ◦ Y +X ◦ adAY ) = [AX]Y + Y [AX] +X[AY ] + [AY ]X
= (AX)Y − (XA)Y + Y (AX)− Y (XA)

+X(AY )−X(Y A) + (AY )X − (Y A)X.

In fact, the underlined terms are those of adA(X◦Y ), and the remaining
ones cancel each other (provided that one can neglect parentheses). �

This claim is true also because in the associative case An acting by
(5.1) is the Lie algebra of the group Un(K) acting by conjugation as a
group of automorphisms of Hn.

Nothing of this remains true for K = O. Invertible matrices over
O do not even form a group, by lack of associativity, and An is not
a Lie algebra (Jacobi identity fails). Moreover, in the above proof
associativity was often used. But still the claim remains true for n = 3;
this is one of the miracles of this theory. We only have to restrict our
attention to

Ao
n := {A ∈ An : trace A = 0}.



16 J.-H. ESCHENBURG

Theorem 5.2. Ao
3(O) acts on H3(O) by skew-adjoint derivations, that

is: ad(A) : X 7→ [AX] is a skew adjoint derivation for any A ∈ Ao
3.

The main observation for the proof (see [Freudenthal]) is the following

Lemma 5.3. For every X ∈ H3 and A ∈ A3 with trace A = 0 we have

〈[AX], X2〉 = 0. (5.3)

Proof of Theorem 5.2. Polarizing (5.3)16 we obtain the derivation prop-
erty, using the symmetry of τ(X, Y, Z) = 〈X ◦ Y, Z〉:

0 = 〈[AX], Y ◦ Z〉+ 〈[AY ], Z ◦X〉+ 〈[AZ], X ◦ Y 〉
= 〈[AX] ◦ Y, Z〉+ 〈X ◦ [AY ], Z〉+ 〈X ◦ Y, [AZ]〉
= 〈[AX] ◦ Y +X ◦ [AY ]− [A,X ◦ Y ] , Z〉.

In the last step we have used that ad(A) is skew adjoint. Proof:

〈[AW ], Z〉+〈W, [AZ]〉 = Re trace (AWZ−WAZ+WAZ−WZA) = 0

Proof of Lemma 5.3. We show for all X ∈ H3

X2X −XX2 = aI, a ∈ K
′ = {x ∈ K; x ⊥ 1}. (5.4)

Then the claim follows:

〈AX,X2〉 (4.1)
= 〈A,X2X〉 (5.4)

= 〈A,XX2〉 (4.1)
= 〈XA,X2〉

where we have used 〈A, aI〉 = 〈āA, I〉 = −a trace A = 0. To prove
(5.4) we consider the matrix

D = X2X −XX2

with entries

dij =
∑

kl

((xikxkl)xlj − xik(xklxlj)) =
∑

kl

[xik, xkl, xlj]

(see (4.2)). When one of the three coefficients xik, xkl, xlj is real or if
two of them are conjugate, then [xik, xkl, xlj] = 0. Since xkk is real
and xkl = x̄lk, both index triples (i, k, l) and (k, l, j) must be pairwise
distinct when dij 6= 0. But there are only three indices, hence i = j.
Thus dij = 0 for i 6= j and

dii = [xik, xkl, xli] + [xil, xlk, xki]

with {i, j, k} = {1, 2, 3}, e.g.
d11 = [x12, x23, x31] + [x13, x32, x21]

16The cubic form f(X) = 〈[AX], X ◦X〉 is the diagonal of the symmetric 3-form
(its 3rd derivative) τ(X,Y, Z) = 1

3 (〈[AX], Y ◦Z〉+ 〈[AY ], Z ◦X〉+ 〈[AZ], X ◦ Y 〉),
that means f(X) = τ(X,X,X). The 3-form τ is symmetric since it is invariant
under cyclic permutation and under the exchange of Y and Z.
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Since the associator is antisymmetric and therefore invariant under
cyclic permutations, we have d11 = d22 = d33. Each associator is
imaginary, so (5.4) is proved and the claim follows. �

Remark. For the associator of any a, b, c ∈ O we have

[a, b, c] = (ab)c− a(bc) = c̄(b̄ā)− (c̄b̄)ā = −[c̄, b̄, ā].

Hence [x13, x32, x21] = [x̄31, x̄23, x̄12] = −[x12, x23, x31] and therefore

d11 = [x12, x23, x31]− [x12, x23, x31] = 2[x12, x23, x31]

since [x12, x23, x31] ∈ O′.

One might wonder why only trace-zero matrices in An are considered.
What about the complement, the scalar matrices A = aI, a ∈ K′?
Obviously, equation (5.3) remains true for A = aI whenK is associative
since thenXX2 = X2X. But then ad(aI) is a derivation of K itself (the
derivative of the conjugation φt(x) = etaxe−ta). Clearly automorphisms
of K, applied to each coefficient of a matrix, are also automorphisms
of Hn, and similar for derivations. But when K = O, ad(aI) is no
longer a derivation (since (5.3) is not true anymore), and in general,
conjugations are not automorphisms, by lack of associativity. However
it remains true that ad(Ao

3) is a complement of aut(K) in the Lie algebra
of Aut(H3). First recall a well known fact for the associative case, the
Jacobi identity:

Lemma 5.4. If K is associative, then for all A,B ∈ An

ad[A,B] = [ad(A), ad(B)]. (5.5)

Proof.

[[AB]X] = ABX −BAX −XAB +XBA,
[A[BX]]− [B[AX]] = ABX − AXB − BAX + BXA

−BXA+XBA+ AXB −XAB.

The underlined summands cancel each other, and the remaining terms
are those of the first line. �

In A3(O), (5.5) is no longer true. But for any A,B ∈ Ao
n we have

[ad(A), ad(B)] ∈ aut(Hn) and ad([A,B]o) ∈ aut(Hn) where C
o denotes

the trace-free part of C ∈ An, that is C
o = C− cI with c = trace C/n.

The proof of Lemma 5.5 shows that

δ = [ad(A), ad(B)]− ad[A,B]o

satisfies δ(X) = 0 for any real X ∈ Hn (only products of at most
two non-real octonionic factors occur), thus δ ∈ aut(K) by the next
proposition. We have no longer [ad(A), ad(B)] = ad([A,B]) if K = O
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(this is the Jacobi identity which needs associativity of K), but still
[ad(A), ad(B)] ≡ ad[A,B]o mod aut(K). Hence aut(Hn) = ad(Ao

n) ⊕
aut(K) (where n = 3 when K = O). We have dimAo

3(O) = 3 ·8+2 ·7 =
38 and dimAut(O) = 14, thus dimAut(H3(O)) = 38+14 = 52, see 5.7
below. This is the dimension of the simple group with Dynkin diagram
F4.

Proposition 5.5. An automorphism φ of Hn(K) fixing Hn(R) lies in
Aut(K).

Lemma 5.6. Let Hkl ⊂ Hn(K) be the set of matrices X with Xij = 0
when {ij} 6⊂ {kl}. Let Pj ∈ Hn(R) with (Pj)jj = 1 and all other
entries (Pj)kl = 0. Then

Hkl = {X ∈ Hn : X ◦ Pj = 0 for all j 6= k, l}. (5.6)

Proof. We put X =
(
α v∗

v X′

)
with α ∈ R and v ∈ Kn−1 and X ′ ∈ Hn−1.

Then

2X ◦ P1 = 2

(
α v∗

v X ′

)
◦
(
1 0
0 0

)
=

(
2α v∗

v 0

)
.

Thus X ◦ P1 = 0 ⇐⇒ α = 0 and v = 0. Similarly, X ◦ Pj = 0 if and
only if the j-th row and column are zero. Thus only the k-th and l-th
row and column survive if X ◦ Pj for all j 6= k, l. �

Proof of Proposition 5.5. Let φ be an automorphism of Hn(K) fixing
Hn(R). Since the characterization (5.6) is invariant under such auto-
morphisms, φ leaves each Hkl invariant (k 6= l), and the same holds
for H ′

kl := Hkl ∩Hn(R)
⊥ = K′ · Jkl, see (3.3). Thus for any pair k 6= l

there is a map ϕkl ∈ O(K) fixing 1 such that φ(X)kl = ϕkl(Xkl) for any

X = (Xkl) ∈ Hn(K). We apply this to X =
(

x
−x

)
and Y =

(
y

−y

)

with x, y ∈ K′. Then we have (with new notation ϕ, ϕ′, ϕ′′ instead ϕkl)

φ(X ◦ Y ) = φ
((

x
−x

)
◦
(

y
−y

))
=

(
ϕ(xy)

ϕ(yx)

)
,

φ(X) ◦ φ(Y ) =
(

ϕ′x
−ϕ′x

)
◦
(

ϕ′′y
−ϕ′′y

)
=

(
ϕ′(x)ϕ′′(y)

ϕ′′(y)ϕ′(x)

)

whence ϕ′(x)ϕ′′(y) = ϕ(xy). Specializing to x = 1 or y = 1 we see
ϕ′ = ϕ = ϕ′′. Thus ϕ(x)ϕ(y) = ϕ(xy) which shows ϕ ∈ Aut(K). �

Lemma 5.7. Let Ão
n := {ad(A) : A ∈ Ao

n}. Then Ão
n(K) ∩ aut(K) =

{0}.
Proof. We have ad(A) ∈ Ão

n ∩ aut(K) ⇐⇒ ad(A)Hn(R) = 0 which
implies A = 0: note that[(

−x̄
x

)
,

(
1

−1

)]
=

(
2x̄

2x

)
,



GEOMETRY OF OCTONIONS 19

[(
a

b

)
,

(
1

1

)]
=

(
a− b

b− a

)
.

Since ad(A) vanishes on real matrices, all off-diagonal entries of A
vanish (x = 0) and all diagonal entries are equal (a = b). But trace A =
0, hence A = 0. �

Corollary 5.8. Let f ⊂ aut(H3(O)) be the Lie subalgebra generated by
Ão

3. Then f = Ão
3 ⊕ aut(O).

Proof. Since δ = [ad(A), ad(B)] − ad([A,B]o) ∈ aut(O) ∩ f for any

A,B ∈ Ao
3(O), we have f ⊂ f̂ := Ão

3 ⊕ aut(O) (the sum is direct
by Lemma 5.7). Further, Aut(O) acts on f by conjugation: for any
A ∈ Ao

3(O) and φ ∈ Aut(O) we have φAφ−1 = φ(A) ∈ Ao
3(O) where

φ(A)ij = φ(Aij), thus f is an ideal in f̂ containing Ão
3. Therefore

f ∩ aut(O) is a nonzero ideal in aut(O). But aut(O) is simple, thus

f̂ ∩ aut(O) = aut(O) and hence f = f̂. �

6. OP2 is a symmetric space

We show first that OP2 ⊂ H3(O) is an orbit of the group F =
exp f ⊂ Aut(H3(O)). However, we do not even know yet that it is a
submanifold. But consider the defining equation P 2 = P . If we let

P =
(

α x̄ ȳ
x β z̄
y z γ

)
, we have

x = P21 = (P 2)21 = (α + β)x+ z̄y
y = P31 = (P 2)31 = (α + γ)y + zx
z = P32 = (P 2)32 = (β + γ)z + yx̄

Thus zy is a multiple of x etc., hence x, y, z lie in a common quater-
nionic subalgebra H̃ ⊂ O. Consequently, P is a rank-one projec-
tion matrix on H̃3. When H̃ = H, these matrices form the orbit
HP2 ⊂ H3(H) of Sp3 = exp(A3(H)). Since Ao

3(H) ⊂ Ao
3(O) ⊂ f and

H′ · I ⊂ aut(H) ⊂ aut(O) ⊂ f, we have A3(H) = Ao
3(H) +H′ · I ⊂ f and

thus Sp3 ⊂ F . Thus a subgroup of F acts transitively on HP2. Further,
the group G2 = Aut(O) ⊂ F acts transitively on the space G2/SO4

of quaternionic subalgebras. Thus H̃ = gH for some g ∈ AutO and
H̃P2 = g(HP2), hence F acts transitively on OP2.
Now we can determine the tangent space TP of OP2 ⊂ H3(O) for

P =
(

1
0
0

)
. It is obtained by applying the full Lie algebra f to P .

However, we only know the subset Ao
3 ⊂ f. For any A =

(
a −v∗

v A′

)
∈ Ao

3
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with v ∈ O2 and A′ ∈ A2(O) we have

[AP ] =

(
v∗

v

)
=: v̂. (6.1)

Thus TP ⊃ Ô2 = {v̂ : v ∈ O2} ⊂ H3(O). From the defining equation
P 2 = P we obtain the converse inclusion: Let P (t) be a smooth family

in OP2 with P (0) = P =
(

1
0
0

)
and P ′(0) = X =

(
α v∗

v X′

)
with v ∈ O2

and X ′ ∈ H2(O). From P 2 = P we obtain P ′P + PP ′ = P ′, hence
2P ◦X = X. But 2P ◦X = 2 ( 1

0 )◦
(
α v∗

v X′

)
= ( 2α v∗

v 0 ). Thus 2P ◦X = X

implies α = 0 and X ′ = 0, hence X ∈ Ô2 and TP ⊂ Ô2, hence TP = Ô2

and consequently NP = {( α
X′ ) : α ∈ R, X ′ ∈ H2(O)}.

Further we see that OP2 is a symmetric space, more precisely, it is
extrinsic symmetric, that is: for any P ∈ OP2, the reflection sP along
the normal space NP at P keeps OP2 invariant. Then sP is called
extrinsic symmetry.

OP 2

P

H O
P

s

N
P

3

TP

In fact, the group SO3 acts on H3(O) by conjugations Ad(U) : X 7→
UXU−1 (with U ∈ SO3 and X ∈ H3(O)). Each Ad(U) is an auto-
morphism on H3(O), thus it keeps OP2 invariant. In particular this
holds for Ad(S) with S = ( 1

−I ), and clearly NP and TP are the +1
and −1 eigenspaces of Ad(S). Thus Ad(S) is the extrinsic symme-
try at P , and the extrinsic symmetry at an arbitrary point gP with
g ∈ F is gAd(S)g−1. Since F acts transitively, OP2 is extrinsic sym-
metric. We will see in the next section that Ad(S) even belongs to
F ⊂ Aut(H3(O)).

7. The isotropy group of OP2 is Spin9

We fix the element P = ( 1
0 ) ∈ OP2 ⊂ H3(O) (with 0 = ( 0 0

0 0 )) as
before. For A =

(
a −v∗

v A′

)
∈ Ao

3 with v ∈ O2 we have [AP ] = ( v∗
v ) = v̂

(see (6.1)). This vanishes if and only if v = 0, hence A = ( a
A′ ) with

A′ = ( b −x̄
x c ) for a, b, c ∈ O′ with a + b + c = 0 and x ∈ O. As it will

turn out later, it suffices to consider only the case a = b = c = 0, and
for those A and all v ∈ O2 we have

[Av̂] = Â′v where A′ = ( −x̄
x ) . (7.1)
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We will see that the space of all such A′ generates the Lie algebra of
the group Spin9 acting on TP

∼= O2 by the spin representation.

Recall that the Clifford algebra Cln is the associative algebra with
1 generated by euclidean n-space such that any orthogonal matrix on
Rn extends naturally to an algebra isomorphism of Cln. The defining
relations are

vw + wv = −2〈v, w〉 · 1 (7.2)

for all v, w ∈ Rn, or equivalently,

eiej + ejei = −2δij (7.3)

for any orthonormal basis e1, . . . , en of R
n. It contains euclidean (n+1)-

space Rn+1 = R · 1⊕ Rn whose unit sphere

S
n = {(λ, v) = λ · 1 + v : λ2 + |v|2 = 1}

consists of invertible elements: (λ + v)(λ − v) = λ2 + |v|2 = 1. They
generate a subgroup of Cl×n (the group of invertible elements in Cln)
which is the spin group Spinn+1. The tangent space at 1 of S

n is Rn; it is
contained in the Lie algebra T1Spinn+1 = spinn+1. Thus R

n generates
spinn+1 as a Lie algebra since Sn generates Spinn+1 as a group: note
that Sn = exp(TIS

n) since for any v ∈ Rn, etv = cos t + v sin t is a
one-parameter group in Cl×n and at the same time a great circle in Sn.
As a vector space, spinn+1 is spanned by all ei and eiej with i < j
where e1, . . . , en is an orthonormal basis of Rn. Thus dimSpinn+1 =
n+ 1

2
n(n−1) = 1

2
n(n+1). In fact, for j 6= k we have ejek = −ekej, hence

[ej, ek] = 2ejek, and when i, j, k are distinct, [ei, [ej, ek]] = 2[ei, ejek] =
0, while [ei[ej, ei]] = 2ei(ejei − eiej) = 4ej .
The generating elements ei and eij := eiej satisfy e2ij = −e2i e

2
j = −1,

thus exp(teij) = cos t + eij sin t = 1 ⇐⇒ t ∈ 2πZ. We will call them
unit generators of spinn+1.

Remark. Originally, Spinn+1 was defined as a subset of Cl+n+1 (the
space of even elements in Cln+1), and we have used the algebra iso-
morphism Cln → Cl+n+1, ei 7→ eien+1 to embed it into Cln. Then
the above basis elements ei, eiej of spinn+1 are replaced by eien+1, eiej
(where i, j ≤ n, i < j). This embedding shows better the connec-
tion to SOn+1. Recall the subgroup Pinn+1 ⊂ Cl×n+1 generated by
Sn ⊂ Rn+1 ⊂ Cln+1. It acts on Rn+1 by conjugation Ad(v) : x 7→
−vxv = vxv−1, v ∈ Sn, x ∈ Rn+1. We have vxv = x when x ⊥ v
while vxv = −x when x ∈ Rv, thus −Ad(v) is the reflection along
the hyperplane v⊥. Since the orthogonal group On+1 is generated by
hyperplane reflections, we have Ad(Pinn+1) = On+1. Now Spinn+1 is
the subgroup of Pinn+1 consisting of products with an even number
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of factors. Hence Ad(Spinn+1) = SOn+1. This is a 2:1 covering with
kernel {±1}.17

A representation of Cln is an algebra homomorphism φ into some
matrix algebra, φ : Cln → Rp×p, making the vector space Rp a Cln-
module. By (7.3), a representation is given by any system of anti-
commuting complex structures J1, . . . , Jn on Rp, that means J2

i = −I
and JiJk = −JkJi for k 6= i. There is essentially just one irreducible
representation for each Cln; in particular, its dimension p is uniquely
determined. Only if n+1 is a multiple of 4, there are two such represen-
tations: they differ by the automorphism of Cln induced by −I on Rn,
and both are not faithful (only their direct sum is). When restricted
to Spinn+1 ⊂ Cln, this representation is called half spin representation
if 4|(n+ 1) and spin representation otherwise.

Example n = 8. The irreducible Cl8-module is O2 = R16, and O =
R8 ⊂ Cl8 acts on O2 as the space Ô which we already have met in
(7.1):

Ô = {( −x̄
x ) : x ∈ O} .

This is a block matrix where the entries are left multiplications in O,
that is x stands for the (8 × 8)-matrix L(x) which is the linear map
u 7→ xu on O. We check the Clifford relations (7.2):

(
−L(x̄)

L(x)

)
◦
(

−L(ȳ)
L(y)

)
= −〈x, y〉 · ( 1

1 ) .

Here we have used the octonionic identity

L(x̄)L(y) + L(ȳ)L(x) = 2〈x, y〉 · I = L(x̄y + ȳx). (7.4)

In fact, when x, y ∈ O′, (7.4) is the polarization of 2.2, page 6 which
says L(x̄)L(x) = −L(x)2 = 〈x, x〉I for x ∈ O′, and in the general case
x = ξ+x′, y = η+ y′ we have L(x̄)L(y)+L(ȳ)L(x) = 2ξη+2〈x′, y′〉 =
2〈x, y〉.
By (7.1), the group Spin9 ⊂ Cl8 generated by Ŝ8 = exp Ô is con-

tained in the isotropy group of F at P =
(

1
0
0

)
. Counting dimensions

we see that it is the full isotropy group (which is connected since OP2

is simply connected) since dim f− dim so9 = 52− 36 = 16 = dimOP2.
Further, the symmetry sP corresponds to −I ∈ Spin9, hence sP ∈

17Let α = v1 . . . vk ∈ Pinn+1 for some k > 0. Claim: When αe1 = e1α then
v1, . . . , vr ⊥ e1. For this we write α = e1β + γ where all terms of β and γ are
products of vectors ej , j ≥ 2 of length k − 1 and k, respectively. Comparing αe1
and e1α we see β = 0 which shows the claim. The same conclusion holds for any
ej , thus α ∈ R which shows α = ±1 since it is a product of unit vectors.
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Spin9 ⊂ F . Therefore F contains all symmetries of OP2 and in partic-
ular it contains the identity component of its isometry group. Thus it
is the identity component of Aut(H3(O)) which acts isometrically and
effectively on OP2.

We have seen that the isotropy group of OP2 is the group Spin9 ⊂
Cl8 ∼= R16×16 which is generated by the unit sphere Ŝ8 in

R̂
9 = Ô⊕ R =

{(
λ −x̄
x λ

)
: x ∈ O, λ ∈ R

}
, (7.5)

Following the recent doctoral thesis of Erich Dorner [3] we will gen-
eralize (7.5) in a way which was first suggested by Boris Rosenfeld

[15]. According to the classification of É. Cartan there are three excep-
tional symmetric spaces with dimensions 32, 64, 128, whose transvec-
tion groups18 are the exceptional groups E6, E7, E8. These are the so
called Rosenfeld planes. Rosenfeld tried to describe them as projective
planes over the algebra O ⊗ L with L = {C,H,O} (see also [2, page
313]. This did not work out properly, but still the isotropy group of
these spaces can be described in terms of O⊗L. We have to extend the
coefficients λ in (7.5) from R to L and consider the space of matrices

R̂
8+l = Ô⊕ L =

{(
λ −x̄
x λ̄

)
: x ∈ O, λ ∈ L

}
(7.6)

which are matrices over the algebra O ⊗ L = {∑7
k=0 λkek : λk ∈ L}

(where λk = 1 ⊗ λk and ek = ek ⊗ 1). The unit sphere in Ô⊕ L

will generate the group Spin8+l where l = dimL. Again, the Clifford
relations (7.2) are valid since the matrix

(
λ

−λ

)
for λ ∈ L′ squares to

−|λ|2I and anticommutes with ( −x̄
x ).

Unlike the octonionic plane, the Rosenfeld planes cannot be con-
structed easily as submanifolds of euclidean space. But we know its
tangent space at one point together with its isotropy representation,
and these data suffice to reconstruct the symmetric space. More pre-
cisely, the isotropy representation of a symmetric space P = G/K
determines P up to coverings. But of course there are much more
representations than symmetric spaces, and only few of them, the so
called s-representations, are isotropy representations of a symmetric
space. We have to address the question why this representation of
Spin8+l is an s-representation. In fact this is not even quite true: We

18The transvection group of a symmetric space P consists of compositions of an
even number of symmetries. If P is compact, the transvection group is the identity
component of the isometry group of P .
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first have to enlarge this matrix group by right multiplications with
those unit elements of L which commute with all left multiplications.

8. Representations of certain Clifford algebras

We generalize the representation of Spin9 from the previous section
to Spink+l with k, l ∈ {1, 2, 4, 8} as follows. The Clk+l−1 module is
(K⊗L)2 where K⊗L denotes the tensor product over R for arbitrary
normed algebras K and L. The representation is determined by the
following embedding of Rk+l = K ⊕ L into (K ⊗ L)2×2, the space of
2× 2-matrices with coefficients in K⊗ L, which can be viewed as real
(2kl × 2kl)-matrices:

K⊕ L ∋ (x, λ) 7→
(
λ −x̄
x λ̄

)
(8.1)

where x ∈ K = K⊗ 1 and λ ∈ L = 1⊗ L. Thus the representation of
K⊕L is spanned by the identity matrix I and k+ l−1 anticommuting
complex structures

(
µ

−µ

)
,

(
−1

1

)
,

(
f

f

)
, (8.2)

where µ and f run through standard orthonormal bases of the imag-
inary parts of K and L. The latter matrices span the tangent space
of Sn−1 ⊂ Spinn, and together with their Lie products they generate
a matrix representation of the whole Lie algebra spink+l which we call
spin

k+l
. Commutators of these anticommuting matrices are twice their

products which are again either diagonal or anti-diagonal. Thus the
full Lie algebra spink+l is spanned by the matrices in (8.2) together
with the following ones:

(
µ

µ

)
,

(
f

−f

)
,

(
µν

µν

)
,

(
ef

ef

)
,

(
µf

µf

)
, (8.3)

where ef means L(e)L(f) (with e < f with respect to the natural
ordering of the orthonomal basis). We may assume that L ⊂ K and
that the chosen orthonormal basis of Im L is contained in that of Im K.
Allowing now e, f, µ, ν to run through the full basis of K and L,

including the unit element 1, we can combine (8.2) and (8.3) to the
following set of generators of spin

k+l
as a vector space:

(
µν

µ̄ν̄

)
,

(
ef

ēf̄

)
,

(
−µ̄f̄

µf

)
. (8.4)

Let Spin
k+l

⊂ R2kl×2kl be the represented group. As mentioned

above, this is not yet the isotropy representation of a symmetric space,
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but we have to enlarge it by certain right multiplications: we put

SK =

{
{R(x) : x ∈ K, |x| = 1} for K = C,H

{I} for K = R,O

and we consider the matrix group

K = Spin
k+l

· SK · S ′
L (8.5)

acting on (K⊗ L)2. Similarly we define S ′
L with R(x), x ∈ K replaced

by R(y′), y ∈ L. In the next two sections we will prove:

Theorem 8.1. This representation of K is an s-representation, the
isotropy representation of a symmetric space which we call the gener-
alized Rosenfeld plane (K⊗ L)P2.

To understand the strategy of the proof we first have to recall how
a simply connected symmetric space is reconstructed from its isotropy
representation. The construction goes back to É. Cartan and was used
by Ernst Witt [18] for the construction of the exceptional Lie group
E8.
In order to prove the theorem, we have to show that the vector space

g := k⊕ V with V = (K⊗ L)2 carries a Lie bracket extending the one
on k, and k and V are the (±1)-eigenspaces of an involution on g, a
Lie algebra automorphism σ with σ2 = id. The idea is simple: for all
A ∈ k and v, w ∈ V we let [A, v] = −[v, A] = Av and define [v, w] ∈ k

by its inner product with any elements in k:

[v, w] ∈ k, 〈A, [v, w]〉k := 〈Av,w〉 for all A ∈ k. (8.6)

The inner product 〈 , 〉k on k must be invariant under the adjoint action
of K and such that at the end it is the restriction of an Ad(G)-invariant
inner product on g. E.g. one can always choose the trace metric for
the representation of K on g = k⊕ V , but there are other choices. If k
is simple, there is just one Ad(K)-invariant metric on k up to a scalar
factor. In any case, this “Lie bracket” is invariant under K. Even more
is true: it is invariant under the normalizer of K within the orthogonal
group of V :

Lemma 8.2. Let (V,K) be any representation, and V carries the Lie

triple product . Let K̂ be the normalizer of K in the orthogonal group
of V . Then K̂ consists of automorphisms of the “Lie triple” given by
(8.6), that means for all k ∈ K̂ and v, w ∈ V ,

[kv, kw] = k[v, w]k−1. (8.7)
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Proof. For all A ∈ k we put A′ = k−1Ak ∈ k. then

〈A, k[v, w]k−1〉k = 〈A′, [v, w]〉
(8.6)
= 〈A′v, w〉
= 〈Akv, kw〉

(8.6)
= 〈A, [kv, kw]〉k

�

So far, this construction is quite general. It depends only on a repre-
sentation (K,V ) of any compact Lie group K and an Ad(K)-invariant
inner product on k. The decisive point to check is the Jacobi identity
(5.5) for the new “Lie bracket” (8.6) which fails for most representa-
tions. However, by (8.7) it is enough to prove (5.5) on V ,

[v, w]u+ [w, u]v + [u, v]w = 0 for all u, v, w ∈ V. (8.8)

In our case this will follow easily using subrepresentations which are
already known to be s-representations, see next section. When (8.8)
holds, V is called a Lie triple.

9. (K⊗ L)2 is always a Lie triple

Let us first consider the largest associative algebra of type K⊗L, that
is H⊗H. This occurs as a subalgebra of the largest case O⊗O which
is the main observation for the proof of Theorem 8.1, see Theorem 9.4
below. Now the two tensor factors will play a symmetric rôle, so we
cannot stay with our convention denoting the first factor by latin and
the second one by greek letters. Instead we will put x = x ⊗ 1 and
x′ = 1 ⊗ x for each x ∈ H, and we will stop using the notation x′ for
the imaginary part of x.

Lemma 9.1. The representation of K = Spin
8
· SH · S ′

H on the vec-

tor space (H ⊗ H)2 is isomorphic to the isotropy representation of the
Grassmannian G4(R

12).

Proof. We consider the two involutions R(ii′) and R(jj′) in SS ′ :=
SH ·S ′

H = (S3×S3)/±. Since they commute with each other, they have
a common eigenspace decomposition

V = E++ + E+− + E−+ + E−−

where E++ is the intersection of the (+1)-eigenspaces of R(ii′) and
R(jj′) etc. On the other hand, R(j), R(k) and R(i), R(k) anticommute
with R(ii′) and R(jj′) respectively, thus they change the signs of the
eigenvalues and permute the eigenspaces. So all eigenspaces have the
same dimension 1

4
· 32 = 8. The matrix group Spin

8
⊂ K commutes
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with all right translations, thus it keeps these four subspaces invariant.
We put E = E++ and consider the linear map

F : E ⊗H → (H⊗H)2 : v ⊗ p 7→ vp = vp̄′ (9.1)

(recall that R(p) = −R(p′) on E for all imaginary p ∈ H). The action of
Spin8 lives only on E ∼= R8; it is a nontrivial homomorphism Spin8 →
SO8 which must be surjective since spin8 = so8 is a simple Lie algebra.
On the other hand, the action of SS ′ transforms only the scalar p in
(9.1): for any a, b ∈ SH = S3 and v ∈ E, the action of (a, b) on vp is by

a.vp := vpā, b.vp := vpb̄′ = vb̄′p = vbp.

In other words, ±(a, b) ∈ SS ′ acts only on the second tensor factor of
E ⊗H, and it acts by p 7→ bpā, which is the standard action of

SO4 = {L(b)R(ā) : b, a ∈ S
3}

onH = R4. The linear map F in (9.1) is a linear isomorphism (onto and
the same dimensions 32 for domain and range) which is K-equivariant
with respect to the representation of K = Spin

8
· SS ′ as tensor repre-

sentation of SO8×SO4 on E⊗H. But this is the isotropy representation
of the Grassmannian G4(R

12). �

Lemma 9.2. K is contained in Spin
16
, and the inner products on

k ∼= spin8 ⊕ spin4 induced from Ad-invariant inner products on spin16
and on spin12 are proportional.

Proof. Clearly Spin
4+4

⊂ Spin
8+8

. Left translations with unit basis

elements acting on O⊗O have squared norm dim(O⊗O) = 64, thus all
the generators of the Lie algebra in (8.4) have the same squared norm
128 in the trace metric of Spin

16
.

We have to show first that SS ′ ⊂ Spin
16
. We observe that for any

q ∈ H, the right translation R(q) onH can be replaced by a composition
of octonionic left translations:

R(q) = −L(l)L(q̄l) (9.2)

where O = H⊕ lH with l2 = −1. In fact, if q ∈ R, this holds trivially.
If q ⊥ R (that is q̄ = −q) and |q| = 1, then l ⊥ lq, and for any x ∈ H

we have

L(l)L(ql)x = l((ql)x) =





−l2q = q if x = 1
−l2q2 = −1 if x = q
l2qx = −qx if x ⊥ 1, q



 = xq

where we have used anti-associativity l((lq)x) = −(l(lq))x in the case
x ⊥ 1, q. A similar statement holds for l′ and q′ instead of l and q. By
(8.3), the matrices ef · ( 1

1 ) and e′f ′ · ( 1
1 ) with e = −l and f = lq are
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contained in spin
16

and hence19 the group SS ′ of unit (H ⊗ H)-scalar
multiplications is contained in Spin

16
.

The three components of k ∼= spin8 ⊕ spin3 ⊕ spin3 are perpendic-
ular with respect to every Ad(K)-invariant inner product since they
are inequivalent submodules for the adjoint representation. The unit
generators of the Lie algebra of SS ′ are matrices of type ( L

L ) with
L = L(e)L(f) or L(e′)L(f ′) where e, f ∈ Im O are certain elements of
the standard basis BO. Every left multiplication with an element of BO

is a permutation of BO up to signs, hence the same holds for L, and its
squared norm is the dimension 64 of O ⊗ O. Thus in spin

16
, the unit

generators of the Lie algebra of SS ′ have the same squared norm 128
as the unit generators of spin

8
.

Further, the standard basis elements eiej, 1 ≤ i < j ≤ 12 of spin12 ⊂
Cl+12 have all the same length. In particular this holds for those eiej
with i, j ≤ 8 or i, j ≥ 9 which are the unit generators of spin8 and spin4.
Thus the metrics on k induced by spin16 and spin12 are proportional.

�

Corollary 9.3. Let H1,H2 ⊂ O two subalgebras isomorphic to H.
Then (8.8) holds on the subtriple (H1 ⊗H2)

2 ⊂ (O⊗O)2.

Proof. By the preceding two lemmas, the “Lie triple” (8.6) restricted
to (H1 ⊗ H2)

2 is proportional to the Lie triple of the Grassmannian
G4(R

12) where (8.8) holds. �

Theorem 9.4. For any K,L ∈ {R,C,H,O}, the action of the group
K = Spin

k+l
· SK · S ′

L on V = (K ⊗ L)2 is an s-representation. The

Lie triple product on V is given by (8.6) for the metric on k ⊂ spin
16

which is induced from the trace inner product on spin
16
.

Proof. Since we always take the same inner product induced from the
trace on spin

16
, we have to check (8.8) only for (O⊗O)2, then it holds

also for (K ⊗ L)2 ⊂ (O ⊗ O)2. It is enough to check (8.8) when a, b, c
are basis elements. We consider the orthonormal basis

B̂ = Be1 ∪Be2 (9.3)

of V = (O ⊗ O)2 where e1 = ( 1
0 ) and e2 = ( 0

1 ) and where B is the
basis of O⊗O given by the tensor products of the standard basis of O

BO = {1, i, j, k, l, il, jl, kl} (9.4)

19If a matrix Lie algebra contains a complex structure J (that is J2 = −I),
then J is also contained in the corresponding matrix group since e(π/2)J = J , like
e(π/2)i = i.
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in each tensor factor. Using the equivariance for K = Spin
16

(see

(8.7)), we may assume that c = e1 = ( 1
0 ). In fact, after applying one

of the anti-diagonal matrices in (8.4) if necessary (all matrices in (8.4)
lie in the intersection Spin

16
∩ spin

16
since the commutator of these

matrices is twice their product), we may assume that c = γe1 for some
γ = e⊗ f = ef ′. Applying the inverse of diag(e,−e) · diag(f ′,−f ′) we

change c to e1, and ±B̂ is kept invariant under this transformation.
The remaining basis elements are a = αei and b = βej (where i, j ∈

{1, 2}) with α = uv′ and β = wx′ in B. But the two octonions u, w lie
in a common quaternionic subalgebra H1 ⊂ O, and similarly v, x ∈ H2.
Thus we are in a “classical” subspace of the form (H1⊗H2)

2 ⊂ (O⊗O)2

where the Jacobi identity already holds, see the previous corollary.
Thus we have established a Lie triple structure on V = (K ⊗ L)2 and
Lie algebra structure on g = k⊕ V in all cases. �

10. Rosenfeld lines

First we restrict our representation of K on V = (K ⊗ L)2 to the
subspace V1 = (K ⊗ L)1 which consists of the vectors ( x

y ) ∈ V with
y = 0. This is the fixed space of the reflection r = ( 1

−1 ) on (K ⊗
L)2 which normalizes K: it commutes with the diagonal matrices in
(8.4) while conjugation with the antidiagonal matrices by r changes
sign. By Lemma 8.2, r is an automorphism of the Lie triple, hence V1

is a Lie subtriple, and the corresponding symmetric subspace of the
generalized Rosenfeld plane (K⊗L)P2 is called (generalized) Rosenfeld
line (K⊗ L)P1.

Theorem 10.1. Up to coverings, the Rosenfeld line (K⊗ L)P1 is the
Grassmannian Gk(R

k+l) where k = dimK and l = dimL.

Proof. The subgroup K1 ⊂ K preserving this subspace consists of the
diagonal matrices in K, and only the upper left entry matters. Ac-
cording to (8.4), the Lie algebra for this representation is spanned by
L(e), L(f ′), L(ef), L(e′f ′), and R(ef ′) (due to the factor SK · S ′

L, see
(8.5)). Thus K1 acts on K ⊗ L by left and right multiplications with
several elements of K ⊗ 1 and 1 ⊗ L. This is a tensor representation:
the left and right multiplications by K = K ⊗ 1 act only on the first
tensor factor K while those by L′ = 1 ⊗ L act only on the second
tensor factor L. The infinitesimal action of K1 on the tensor factor
K ∈ {R,C,H,O} is generated by the action of Im (K) through right
multiplication on K. This is the natural action of SO1, SO2, SO4, SO8,
respectively. The same holds for L. Thus the image of the representa-
tion of K1 on K⊗L is the tensor product action of SOk×SOl on K⊗L,
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which is the isotropy representation of the Grassmannian Gk(R
k+l) of

k-dimensional linear subspaces in Rk+l.20

11. The Lie triple on (K⊗ L)2

The Lie triple can be computed by (8.6): For any v, w ∈ V = (K⊗L)2

we have [v, w] ∈ k with

〈A, [v, w]〉k = 〈Av,w〉 (11.1)

for all A ∈ spin
k+l

, see (8.4). As inner product on k we choose the one

induced by the trace inner product on spin16. Using the orthonormal
basis B of spin

16
as given in (8.4) we see [v, w] =

∑
j〈Ajv, w〉Aj and

[u, [v, w]] = −[v, w]u = −
∑

j

〈Ajv, w〉Aju (11.2)

where Aj ∈ B with 〈Ajv, w〉 6= 0. Since we want that (K⊗L)2 is a Lie
subtriple of (O⊗O)2, we may compute the Lie triple product [u, [v, w]]
for all u, v, w ∈ (K⊗ L)2 within O⊗O. The base B of spin

16
acts on

±B̂ of (O⊗O)2, see (9.3): any A ∈ B permutes B̂ up to sign.
1. Let us compute [e1, e2]. We have to look for A ∈ B with

〈A, [e1, e2]〉 = 〈Ae1, e2〉 6= 0. The only A ∈ B carrying e1 to a real
multiple of e2 is A = ( −1

1 ) with Ae1 = e2, thus [e1, e2] = ( −1
1 ).

Further,

[e1, [e1, e2]] = −Ae1 = −e2.

More generally, we have:

Lemma 11.1. Let B be the canonical orthonormal basis of K ⊗ L.
Then for any α, β ∈ B we have

[αe1, βe2] =
(

−αβ̄
βᾱ

)
6= 0. (11.3)

Proof. According to (8.4), we have 〈A, [αe1, βe2]〉 = 〈Aαe1, βe2〉 6= 0
⇐⇒ A = Aγ := ( −γ̄

γ ) with γα = β, hence γ = βᾱ. �

20Recall that the k-planes in Rn close to Rk = {x ∈ Rn : xk+1 = · · · = xn = 0}
are just the graphs of linear maps F : Rk → (Rk)⊥ = Rn−k = Rl. Therefore the
tangent space of Gk(R

k+l) at Rk is Hom(Rk,Rl). The group SOn acts transitively
on Gk(R

n), and the isotropy group of the (oriented) k-plane Rk ∈ Gk(R
n) is SOk ×

SOl acting on the tangent space Hom(Rk,Rl) by ((A,B), F ) 7→ BFA−1. Using the
identification Hom(Rk,Rl) = Rk ⊗ Rl, this is the tensor representation

((A,B), v ⊗ w) 7→ Av ⊗Bw.
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2. Next we compute [e1, ie1]. This is tangent to the Rosenfeld line
whose structure as a symmetric space we already know, but we still
have to see the induced metric. In most cases, the metric is unique up
to a factor (by irreducibility), but it remains to determine this factor.
Again we have to look for all A ∈ B with 〈Ae1, ie1〉 6= 0. This time,
there are four such matrices A, and they satisfy Ae1 = ie1: these are
( i

−i ) and
(
Ls

Ls

)
, s = 1, 2, 3, where L1 = L(j)L(k) and L2 = L(l)L(il)

and L3 = L(kl)L(jl). In fact, there are four possibilities to represent i
as a product of two octonions in BO:

i = 1 · i = jk = l(il) = (kl)(jl).

The three representations by imaginary octonions correspond to the
three triangles through each vertex in our heptagon, see figure on page
10. Thus [e1, ie1] has a component in each of these four basis matrices
A1, . . . , A4, it is the sum of these four matrices:

[e1, ie1] =
∑

j

〈Aj, [e1, ie1]〉Aj =
∑

j

〈Aje1, ie1〉Aj =
∑

j

Aj

where the metric is normalized so that the basis elements (8.4) have
unit length (trace metric divided by 128). Since Aje1 = ie1 for all four
j, we obtain

[e1, [e1, ie1]] = −4ie1.

Thus the operator − ad(e1)
2 measuring the curvature has eigenvalues

1 and 4 as we know already in CP2.

12. Maximal abelian subspace and roots

Changing our previous convention we now assume K ⊂ L. The Lie
triple of the Grassmannian Gk(R

k+l) with l ≥ k is V1 = Rk×l = Rk⊗Rl,
and its maximal abelian subspace is the set Σ ⊂ V1 of matrices (D, 0)
where D = diag(t1, . . . , tk) is any real diagonal matrix. Thus a basis of
Σ is given by {ei⊗ei : i = 1, . . . , k}. In our representation as Rosenfeld
lines we have V1 = K⊗L, and a basis of Σ is given by e⊗e = ee′ where
e runs through the standard basis BK = BO ∩ K of K. In the algebra
K⊗ L, the subset Σ is a commutative and associative subalgebra.
Now we observe that Σ is also maximal abelian for V where K ⊗ L

is viewed as a subspace of V = (K⊗ L)2 in the natural way. This is a
consequence of Lemma 11.1. In fact, for 0 6= δ =

∑
tiβi with βi ∈ B

and ti ∈ R we have

[e1, δe2] =
∑

i

ti

(
−β̄i

βi

)
=

(
−δ̄

δ

)
.
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Thus e1 ∈ Σ does not commute with δe2 which shows that the abelian
subspace Σ cannot be enlarged.

Now we want to compute the common eigenspace decomposition on
V for − ad(γ)2 for all γ ∈ Σ (not just in Σ ∩ B). The square roots
of those values are the roots of the corresponding symmetric space,
see [9]. The eigenspaces in V1 = KLe1 are already known from the
Rosenfeld lines. It remains to compute − ad(α) ad(β) on V2 = KLe2
for any α, β ∈ Σ ∩ B. For all ω ∈ KL we have

−[αe1, [βe1, ωe2]] = −[αe1, Aωβ] = (ωβ)αe2 = R(α)R(β)ωe2

(Note that β̄ = β when β ∈ Σ∩B = {ee′ : e ∈ BK} where BK = K∩BO

is the standard basis of K.) Consequently:

Lemma 12.1. For all γ ∈ Σ we have

− ad(γe1)
2ωe2 = (R(γ)2ω)e2. (12.1)

Hence the roots on V2 are the common eigenvalues of R(γ), γ ∈ Σ.

Thus we just need to find the common eigenspaces of R(Σ) on KL.
First we look for the eigenspaces inside Σ. We are using the standard
bases BO = {1, i, j, ij, l, il, jl, (ij)l} for O and BK = BO∩K for K ⊂ O.
In the case K = O we choose si, sj, sl ∈ {±1} arbitrary, obtaining eight
elements ν ∈ Σ,

ν = (1 + siî)(1 + sj ĵ)(1 + sl l̂) (12.2)

= 1 + siî+ sj ĵ + sisj îĵ + sl l̂ + sisl îl̂ + sjsl ĵ l̂ + sisjsl îĵ l̂

=
∑

e∈BO

seê

where î := ii′ etc. and where the other se are multiplicative: s1 =
1, sij = sisj, sil = sisl, sjl = sjsl, sijl = sisjsl. From (12.2) we

see: multiplying ν by î, ĵ, or l̂ gives ν back, multiplied by si, sj,
sl, respectively (remind that Σ is commutative and ê2 = 1 for any
ê ∈ Σ ∩ B). By the multiplicativity of the se the same is true for
arbitrary basis elements: νê = seν. Thus for any τ =

∑
teê ∈ Σ we

have

R(τ)ν = λ(τ)ν, λ(τ) =
∑

sete. (12.3)

Thus we obtain 8 perpendicular common eigenvectors ν ∈ Σ for R(τ),
τ ∈ Σ. The corresponding eigenvalues (“roots”) are the linear forms
ê 7→ se on Σ. Note that the number of negative se is zero or four.
Similar, in the case K = H we use the vectors

ν = (1 + siî)(1 + sj ĵ) = 1 + siî+ sj ĵ + skk̂
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with arbitrary si, sj ∈ {±1} and sk = sisj, which decompose Σ into 4
common eigenspaces for R(ê), e ∈ BH, and the number of negative se
is zero or two. Likewise for K = C we choose

ν = 1 + siî

for si = ±1. These are eigenvectors of î forming a basis of Σ, and the
eigenvalue is si = ±1. If K = R, then Σ = R·1 and the only eigenvector
(with multiplicity l) is ν = 1. We omit this case in the following.
Next we observe21 that R(f ′)ν for any f ′ ∈ BL\{1} is still a common

eigenvector for R(ê), e ∈ BK. In fact, R(f ′) commutes or anticommutes
with R(ê) since

R(ee′)R(f ′) = R(e′)R(f ′)R(e) =

{
+R(f ′)R(ee′) if e ∈ {1, f},
−R(f ′)R(ee′) else.

Thus R(ê)R(f ′)ν = ±seR(f ′)ν with “+” for e ∈ {1, f} and “−” other-
wise. The number of orthonormal eigenvectors we obtain in this way is
k · l = dimV2, hence we have got a basis of V2 by common eigenvectors
for R(ê), e ∈ BK. The corresponding roots are of the form

λ =
∑

e∈BK

seφe (12.4)

where (φe)e∈BO
is the basis of Σ∗ dual to B̂K = {ee′ : e ∈ BK} =

Σ ∩ B, and se ∈ {±1}. The eigenvalues se of R(ê) corresponding to

the eigenvectors ν and R(f ′)ν are the same for ê = 1 and ê = f̂ and
different for the other k − 2 basis elements ê ∈ BK.
There are 2k linear forms

∑
e∈BK

seφe with se = ±1 (now without

any multiplicativity). Since only λ2 matters, we may assume s1 = 1
by changing all se to −se when s1 = −1. Moreover, in the cases OO

and HH the number of negative se is even, that is
∏

e se = 1, which
reduces the number N of possible linear forms to 2k−2, that is to 64 for
OO and to 4 for HH. In the other cases HO and CL we obtain 2k−1

such forms, that is 8 and 2, respectively. Thus all possible linear forms
actually occur as roots, and their multiplicities are dimKL/N which is
64/64 = 1 for OO, 32/8 = 4 for HO, 16/4 = 4 for HH, 16/2 = 8 for
CO, 8/2 = 4 for CH and 4/2 = 2 for CC.
In Table 1 below, we show the root system R1 and R on V1 = K⊗L

and V = (K⊗ L)2 with multiplicities m,
(a) first the roots on V1 for the Rosenfeld line,
(b) then the remaining roots on V2 for the Rosenfeld plane.

21For f ∈ K we have R(f)ν = ∓R(f ′)ν since R(ff ′)ν = ±ν.
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(a) (a) (a) (b) (b) (b)
No K⊗ L k λ m R1 λ m R

1 R⊗ R 1 none 0 ∅ φ1 1 A1

2 R⊗ C 1 2φ1 1 A1 φ1 2 BC1

3 R⊗H 1 2φ1 3 A1 φ1 4 BC1

4 R⊗O 1 2φ1 7 A1 φ1 8 BC1

5 C⊗ C 2 2(φ1 ± φi) 1 (A1)
2 φ1 ± φi 2 (BC1)

2

6 C⊗H 2 2(φ1 ± φi) 1
2φ1, 2φi 2 B2 φ1 ± φi 4 BC2

7 C⊗O 2 2(φ1 ± φi) 1
2φ1, 2φi 6 B2 φ1 ± φi 8 BC2

8 H⊗H 4 2(φe ± φf ) 1 D4

∑
seφe,

∏
se=1 4 B4

9 H⊗O 4 2(φe ± φf ) 1
2φe 4 B4

∑
seφe 4 F4

10 O⊗O 8 2(φe ± φf ) 1 D8

∑
seφe,

∏
se=1 1 E8

Table 1. Roots of the Rosenfeld planes

13. Periodicity of Clifford representations via octonions

The irreducible representations Sn of Cln with n ≤ 8 are as follows.
Let Bn ⊂ BO denote the standard basis of Rn.

n 0 1 2 3 4 5 6 7 8
Sn R C H H O = H2 O = C4 O O O2

e ∈ Bn − Le Le ±Le ( −ē
e ) Le Le ±Le ( −ē

e )
Cln R C H H H2×2 C4×4 R8×8 R8×8 R16×16

Table 2. Irreducible Clifford modules

The representation of Cl2 is just a restriction of (any of) those for
Cl3, and the representations of Cl4, Cl5, Cl6 are restrictions of (any of)
those for Cl7. The complex structure on S5 is given by L(e6)L(e7)
which commutes with L(e1), . . . , L(e5), and the quaternionic structure
on S4 comes from the anticommuting complex structures L(e5)L(e7)
and L(e6)L(e7).
What happens for n ≥ 9? Then we may repeat the construction of

(8.1), replacing L (which is the irreducible Cll−1-module) by the irre-
ducible Cln-module Sn for arbitrary n. Then we obtain an irreducible
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Cl8+n-module O2 ⊗ Sn by putting

O⊕ R
n+1 ∋ (x, λ) 7→

(
λ −x̄
x λ̄

)
(13.1)

where Rn+1 = Rn⊕R ·1 ⊂ Cln and where the “conjugation” κ : λ 7→ λ̄
is the reflection at R · 1, that is κ(1) = 1 and κ = −I on Rn. As
before, the Clifford relations (7.2) are immediate. Therefore we have
the following periodicity of length 8 for the irreducible representations
of Cln – recall that there is precisely one irreducible Cln-representation,
up to equivalence and automorphisms:

Theorem 13.1. Periodicity Theorem for Clifford modules:

Sn+8 = Sn ⊗O
2 (13.2)

This theorem together with Table 2 determines all irreducible Clifford
representations.

Remark. One could do the same with Cl4 and H2 in place of Cl8
and O2, but this would not give an irreducible representation. E.g.
we obtain another Cl8-module H2 ⊗ H2 with dimension 64 while the
irreducible module O2 has dimension 16. We have seen the reducibility
in Lemma 9.1: the representation of Spin8 decomposes into 4 irre-
ducible subspaces. The representation of K becomes irreducible only
through the SH · S ′

H factor. Thus the octonions are responsible for the
8-periodicity.

14. Vector bundles over spheres

+

−

φ φ

D

D

E

(Sections 14-17 contain common work with Bernhard Hanke [6].)
Clifford representations have a direct connection to vector bundles over
spheres and hence to K-theory. Every vector bundle E → Sk+1 is trivial
over each of the two closed hemispheres D+, D− ⊂ Sk+1, but along the
equator Sk = D+ ∩D− the fibres over ∂D+ and ∂D− are identified by
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some map φ : Sk → On called clutching map. Homotopic clutching
maps define equivalent vector bundles. Thus vector bundles over Sk+1

are classified by the homotopy group πk(On). When we allow for adding
of trivial bundles (stabilization), n may be arbitrarily high. Let Vk be
the set of vector bundles over Sk+1 up to equivalence and adding of
trivial bundles (“stable vector bundles”). Then

Vk = lim
n→∞

πk(On). (14.1)

A Clk module S = Rn or the corresponding Clifford system J1, . . . , Jk
∈ On defines a peculiar map φ = φS : Sk → On which is linear, that is
a restriction of a linear map φ : Rk+1 → Rn×n, where we put

φS(ek+1) = I, φS(ei) = Ji for i ≤ k. (14.2)

The bundles defined by such clutching maps φS are called generalized
Hopf bundles. In the cases k = 1, 3, 7, these are the classical complex,
quaternionic, and octonionic Hopf bundles over Sk+1.

Remark. Clk-modules are in 1:1 correspondence to linear maps φ :
Sk → On with the identity matrix in the image. In fact, let φ be such
map and denote the linear extension Rk+1 → Rn×n by the same symbol.
Then φ is isometric for the inner product 〈A,B〉 = 1

n
trace (ATB) on

Rn×n since it maps the unit sphere Sk into On which is contained in
the unit sphere of Rn×n. For all A,B ∈ φ(Sk) we have (A + B) ∈
R ·On. On the other hand, (A+B)T (A+B) = 2I +ATB+BTA, thus
ATB + BTA = tI for some t ∈ R. From the inner product with I we
obtain t = 2〈A,B〉. Inserting A = I and B ⊥ I yields B + BT = 0,
and for any A,B ⊥ I we obtain AB + BA = −2〈A,B〉I. Thus φ|Rk

defines a Clk-representation on Rn.

Atiyah, Bott and Shapiro [1] reduced the theory of vector bundles
over spheres to the simple algebraic structure of Clifford modules by
showing in particular:

Theorem 14.1. All vector bundles over spheres are stably equivalent
to generalized Hopf bundles.

In fact, in [1] there is a refined version of this theorem which needs
some notation. Let Mk be the set of equivalence classes of Clk-
modules, modulo trivial Clk-representations. We have a map

α̂ : Mk → Vk

which assigns to each S ∈ Mk the corresponding generalized Hopf
bundle over Sk+1, viewed as a clutching map of a vector bundle. It is
additive with respect to direct sums and onto by Theorem 14.1. But
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it is not 1:1. In fact, every Clk+1-module is also a Clk module simply
because Clk ⊂ Clk+1. This defines a restriction map ρ : Mk+1 → Mk.
Any Clk-module S which is in fact a Clk+1-module gives rise to a
contractible clutching map φS : Sk → SOn and hence to a trivial vector
bundle since φS can be extended to Sk+1 and thus contracted over one
of the half spheres D+, D− ⊂ Sk+1. Thus α̂ sends ρ(Mk+1) into trivial
bundles and hence it descends to an additive map22

α : Ak := Mk/ρ(Mk+1) → Vk.

In fact, Ak and Vk are abelian groups with respect to direct sum (not
just semigroups). Moreover, A =

∑
k Ak and V =

∑
j Vk are graded

rings with respect to the multiplication by tensor products. Here is the
refined version of the Atiyah-Bott-Shapiro theorem [1]:

Theorem 14.2. α : A → V is a graded ring isomorphism.

Recall from Table 2, page 34, the one or (for k = 3, 7) two generators
Sk of Mk.

k 0 1 2 3 4 5 6 7 8
Sk R C H ±H O O O ±O O2

From this we can easily deduce the groups Ak. If Sk = ρ(Sk+1), then
Ak = 0. This happens for k = 2, 4, 5, 6. For k = 0, 1 we have

ρ(Sk+1) = Sk ⊕ Sk = 2Sk,

hence A0 = A1 = Z2. For k = 3, 7 there are two generators for Mk,
say Sk and S ′

k (denoted ± in the table), and ρ(Sk+1) = Sk ⊕ S ′
k, thus

A3 = A7 = Z. Hence

k | 0 1 2 3 4 5 6 7
Ak | Z2 Z2 0 Z 0 0 0 Z

(14.3)

and because of the periodicity we have Ak+8 = Ak. Note also that by
(14.1) we have for sufficiently large n:

πk(On) = Ak.

We will sketch a proof of this theorem which is different from that of
[1]. We will use the original ideas of Bott and Milnor and deform the
clutching map φ : Sk → G = SOn of the given vector bundle E → Sk+1

step by step into a linear map. This will require some geometric ideas
on symmetric spaces which are interesting for their own sake.

22In fact, both Vk and Ak are abelian groups with respect to direct sums, not just
semigroups, and α is a group homomorphism. Using the tensor product, V =

∑
k Vk

and A =
∑

k Ak become rings and α a ring homomorphism, see [1].
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15. Poles and Centrioles

Recall that a symmetric space is a Riemannian manifold P with an
isometric point reflection sp (called symmetry) at any point p ∈ P , that

is sp ∈ Ĝ = isometry group of P with sp(expp(v)) = expp(−v) for all
v ∈ TpP . Prominent examples are compact Lie groups with bi-invariant
metrics; the symmetry se at the unit element e is the inversion.
A symmetric subspace of a symmetric space P is a submanifold Q ⊂

P with sq(Q) = Q for all q ∈ Q. They are totally geodesic, that is every
Q-geodesic is also a P -geodesic.23 Vice versa, any closed connected
totally geodesic submanifold Q ⊂ P is a symmetric subspace since sq
reverses any Q-geodesic through q and thus preserves Q. Examples of
symmetric subspaces are connected components of the fixed point set
of an isometry r : P → P :

γ

γ)r(
Fix(r)

r

P

Otherwise short geodesic segments in the ambient space P with end
points in a component of Fix(r) were not unique, see figure. If the
isometry r is an involution (r = r−1), its fixed point components are
called reflective.
Any symmetric space is born with an equivariant map s : p 7→ sp :

P → Ĝ which is called Cartan map. Its image is a connected com-
ponent of the set {g ∈ Ĝ : g−1 = g}, the fixed set of the inversion.

Hence s(P ) ⊂ Ĝ is totally geodesic and s : P → s(P ) is a covering of
symmetric spaces.
Two points o, p ∈ P will be called poles if sp = so. The notion was

coined for the north and south pole of a round sphere, but there are
many other spaces with poles; e.g. P = SO2n with o = I and p = −I,
or the Grassmannian P = Gn(R

2n) with o = Rn and p = (Rn)⊥. A
geodesic γ connecting o = γ(0) to p = γ(1) is reflected into itself at o
and p and hence it is closed with period 2.

Now we consider the midpoint set M between poles o and p,

M = {m = γ
(
1
2

)
: γ geodesic in P with γ(0) = o, γ(1) = p}.

For the sphere P = Sn with north pole o, this set would be the equator,
see figure below.

23Let γ be a Q-geodesic with curvature vector η = ∇γ′γ′ at some point q ∈ Q.
Then sq would preserve γ and η, but on the other hand, (sq)∗(η) = −η thus η = 0
and γ is also a P -geodesic.
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P

p

r

o

M

The points o and p are identified by the Cartan map s. If γ is any
geodesic with γ(0) = o and γ(1) = p, it is reversed by so, and s(γ)
becomes a closed geodesic in s(P ) preserved by the symmetry in s(P )
at so (the conjugation with so). Applying s, the midpoint m = γ(1

2
)

becomes the point on s ◦ γ opposite to so, hence it is fixed under the
symmetry at so. So the components of s(M) are totally geodesic, and
the same holds for M since “totally geodesic” is a local property. In
fact, M itself is reflective: it is fixed by δ ◦ sp where δ is the deck
transformation of the covering s : P → s(P ) interchanging o and p.
Connected components of the midpoint set M are called centrioles

[5]. These are most interesting when the corresponding geodesics be-
tween o and p are shortest (“minimal centrioles”). Each such midpoint
m = γ(1

2
) determines its geodesic γ uniquely: if there is another geo-

desic γ̃ from o to p through m, it can be made shorter by cutting the
corner.

γ
γ

γ~

o m p

There exist chains of minimal centrioles (centrioles in centrioles),

P ⊃ P1 ⊃ P2 ⊃ . . . (15.1)

Peter Quast [16, 17] classified all such chains with at least 3 steps start-
ing with a compact simple Lie group P = G. Up to group coverings,
the result is as follows. The chains 1,2,3 occur in Milnor [11].

No. G P1 P2 P3 P4 restr.
1 (S)O4n SO4n/U2n U2n/Spn Gp(H

n) Spp p = n
2

2 (S)U2n Gn(C
2n) Un Gp(C

n) Up p = n
2

3 Spn Spn/Un Un/SOn Gp(R
n) SOp p = n

2

4 Spinn+2 Qn (S1×Sn−1)/± Sn−2 Sn−3 n ≥ 3
5 E7 E7/(S

1E6) S1E6/F4 OP2 −

Table 3. Chains of minimal centrioles



40 J.-H. ESCHENBURG

By Gp(K
n) we denote the Grassmannian of p-dimensional subspaces

in Kn for K ∈ {R,C,H}. Further, Qn denotes the complex quadric
in CPn+1 which is isomorphic to the real Grassmannian G

+
2 (R

n+2) of
oriented 2-planes, and OP2 is the octonionic projective plane F4/Spin9.
A chain is extendible beyond Pk if and only if Pk contains poles

again. E.g. among the Grassmannians P3 = Gp(K
n) only those of half

dimensional subspaces (p = n
2
) enjoy this property: Then (E,E⊥) is a

pair of poles for any E ∈ Gn/2(K
n), and the corresponding midpoint

set is the group On/2, Un/2, Spn/2 since its elements are the graphs of
orthogonal K-linear maps E → E⊥, see figure below.

E

E γ(1/2)

16. Minimal centrioles and Clifford modules

For compact matrix groups P = G containing −I, there is a linear
algebra interpretation for the iterated minimal centrioles Pj. Recall
that a representation of Clk on a euclidean vector space V is given by
k anticommuting orthogonal complex structures J1, . . . , Jk on V .

Theorem 16.1. Let G ⊂ GL(V ) be a compact matrix group with −I ∈
G. Then a chain of minimal centrioles G ⊃ P1 ⊃ · · · ⊃ Pk corresponds
to a Clk-representation J1, . . . , Jk on V with Jj ∈ G, and each Pj is
the connected component containing Jj of the set

Mj = {J ∈ G : J2 = −I, JJi = −JiJ for i < j}. (16.1)

Proof. A geodesic γ in G with γ(0) = I is a one-parameter subgroup,
a Lie group homomorphism γ : R → G.24 When γ(1) = −I, then
γ(1

2
) = J is a complex structure, J2 = −I. Thus the midpoint set M1

24Let γ : R → G be a smooth group homomorphism. Its curvature vector field
η = ∇γ′γ′ is γ-invariant, η(t) = γ(t)∗η(0). Thus the neighbour curve γs(t) =
expγ(t)(sη(t)) is another γ-orbit, γs(t) = γ(t)gs. Deforming in the curvature vector
direction shortens a curve, thus γs is shorter than γ on any finite intervall.

γγ
s

But on the other hand γs = R(gs)γ has the same length as γ since R(gs) is an
isometry of G. Thus η = 0.
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is the set of complex structures in G. When a connected component P1

of M1 contains antipodal points J1 and −J1, there is a next minimal
midpoint set M2 ⊂ P1. It consists of points γ̃(

1
2
) where γ̃ is a shortest

geodesic in P1 from J1 to −J1. But P1 ist totally geodesic in G, hence
γ̃ is a geodesic in G too. Thus γ̃ = J1γ where γ is a one-parameter
subgroup in G with γ(1) = −I which implies that γ(1

2
) =: J is a

complex structure. Further, γ̃(t) = J1γ(t) is a complex structure for
all t, that is J1γJ1γ = −I or

J1γ = γ−1J1. (16.2)

In particular, J anticommutes with J1. When γ is shortest in G, this
condition J1J = −JJ1 is sufficient for (16.2): both J1γ and γ−1J1 are
shortest geodesics from J1 to −J1 with midpoint J1J = −JJ1, so they
must agree. Thus (16.2) is satisfied, that is J1γ takes values in P1.
In particular we see that geodesics from J1 to −J1 which are shortest
in P1 are also shortest in G. Now we put J2 = γ̃(1

2
) = J1J ; this is

also a complex structure which anticommutes with J1 and defines a
connected component P2 of M2.
By induction hypothesis, we have anticommuting complex structures

Ji ∈ Pi for i ≤ j, and Pj is the connected component through Jj of the
setMj as in (16.1). Consider a geodesic γ̃ from Jj to−Jj in Pj . Since Pj

is totally geodesic, γ̃ is a geodesic in G, hence γ̃ = Jjγ where γ is a one-
parameter group with γ(1) = −I. As before, Jj+1 := γ̃(1

2
) = Jjγ(

1
2
) is

a complex structure which anticommutes with Ji for i ≤ j. When γ
is shortest in G, these conditions imply γ̃(t) ∈ Mj+1 for all t ∈ [0, 1],
since then γ̃ is determined by its midpoint. In particular, there are
geodesics in Pj from Jj to −Jj which are shortest in the ambient group
G. Every connected component of the midpoint set of those geodesics
defines a minimal centriole Mj+1 satisfying (16.1) with j replaced by
j + 1. This finishes the induction step. �

17. Deformation of clutching maps

Let E be a vector bundle over Sk+1 and φ : Sk → G = SO2n its
clutching map. Since we are allowed to add trivial bundles, we may
assume that n is large and divisible by a high power of 2. We declare
N = ek+1 to be the “north pole” of Sk. First we deform φ such that
φ(N) = I and φ(−N) = −I. Thus φ maps each meridian from N to
−N in Sk onto some path from I to −I in G, an element of the path
space

Λ = ΛG = {λ : [0, 1]
H1

→ G : λ(0) = I, λ(1) = −I}.
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The meridians µv are labelled by v ∈ Sk−1 where Sk−1 is the equator of
Sk. Therefore φ can be viewed as a map φ : Sk−1 → ΛG. The matrix
group G is equipped with a bi-invariant Riemannian metric, e.g. the
trace metric. Using the negative gradient flow for the energy function
E on the path space ΛG we may shorten all φ(µv) simultaneously to

minimal geodesics from I to −I and obtain a map φ̃ : Sk−1 → ΛoG
where ΛoG is the set of shortest geodesics from I to −I, the minimum
set of E on ΛG. This simultaneous shortening process is due to the
Morse theory for the energy function E on Λ,

E(λ) =

∫ 1

0

|λ′(t)|2dt.

E
Λ

We may decrease the energy of any path λ by applying the gradient
flow of −E. Most elements of Λ will be flowed to the minima of E which
are the shortest geodesics between I and −I. The only exceptions are
the domains of attraction (“unstable manifolds”) for the other critical
points, the non-minimal geodesics between I and −I. The codimension
of the unstable manifold is the index of the critical point, the maximal
dimension of any subspace where the second derivative of E (taken at
the critical point) is negative. If β denotes the smallest index of all
non-minimal critical points, any continuous map f : X → Λ from a
connected cell complex X of dimension < β can be moved away from
these unstable manifolds and flowed into a connected component of the
minimum set.
How large is β? In G = SO2n, a shortest geodesic from I to −I

is a product of n half turns, planar rotations by the angle π in n
perpendicular 2-planes in R2n. A non-minimal geodesic must make
an additional full turn and thus a 3π-rotation in at least one of these
planes, say in the x1x2-plane. This rotation belongs to the rotation
group SO3 ⊂ SO2n in the x1x2xk-space for any k ∈ {3, . . . , 2n}. Using
SO3 = S3/±, we lift the 3π-rotation to S3 and obtain a 3/4 great
circle which can be shortened. There are 2n − 2 coordinates xk and
therefore 2n − 2 independent contracting directions, hence the index
of a nonminimal geodesic in SO2n is ≥ 2n − 2 (compare [11, Lemma
24.2]).
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A shortest geodesic γ : [0, 1] → G from I to −I is uniquely deter-
mined by its midpoint m(γ). Using the midpoint map m : Λo → G, the
space of shortest geodesics from I to −I can be viewed as the midpoint
set m(Λo) = M1, the set of complex structures in G. Thus we obtain

a map φ1 = m ◦ φ̃ : Sk−1 → P1, and we may replace φ by the geodesic
suspension over φ1 from I and −I.

N

−I

k

k−1

I I

−I

G G

P
1

S

S
φ shorten

−N

v

µ

φv φ
1
v

γv v

Now we repeat this step replacing G by P1 and φ by φ1. Again
we choose a “north pole” N1 = ek ∈ Sk−1 and deform φ1 such that
φ1(±N1) = ±J1 for some J1 ∈ P1. Now we deform the curves φ1(µ1)
for all meridians µ1 ⊂ Sk−1 to shortest geodesics, whose midpoints
define a map φ2 : Sk−2 → P2, and then we replace φ1 by a geodesic
suspension from ±J1 over φ2. This step is repeated (k − 1)-times25

until we reach a map φk−1 : S
1 → Pk−1. This loop can be shortened to

a geodesic loop γ̃ = Jk−1γ : [0, 1] → Pk−1 (which is a closed geodesic
since Pk−1 is symmetric) starting and ending at Jk−1, such that γ̃ and
γ are shortest in their homotopy class.
We have γ(t) = e2πtA for some skew-symmetric matrix A. From

γ̃2 = −I and Jiγ̃ = −γ̃Ji for i < k − 1 we obtain

AJk−1 = −Jk−1A, AJi = JiA for i < k − 1. (17.1)

In fact, Jk−1e
2πtA = e−2πtAJk−1 ⇒ Jk−1A = −AJk−1 and Jk−1e

2πtAJi =
−JiJk−1e

2πtA ⇒ Jk−1AJi = −JiJk−1A = Jk−1JiA ⇒ AJi = JiA. Since
γ is closed, the (imaginary) eigenvalues of A have the form ai with a ∈ Z

and i =
√
−1. Let Ea ⊂ V ⊗C be the corresponding eigenspace. Since

every Ji, i < k commutes or anticommutes with A, it keeps invariant
Ea + E−a and also Re (Ea) = (Ea + E−a) ∩ V . Now we split Rn into
V0 = kerA and a sum of subspaces Vj which are invariant under the
linear maps A, J1, . . . , Jk−1 and minimal with respect to this property.
In particular Vj ⊂ Eaj +E−aj for some integer aj. Hence on Vj we have

25One has to show yet that the index of nonminimal geodesics is large for all Pj ,
see [11, Section 24] or [6, Thm. 4]. The index was computed in a more general case
by Mitchell [12, 13].
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A = ajJ for some complex structure J anticommuting with Jk−1 and
commuting with Ji, i < k − 1, and

Jk := Jk−1J (17.2)

is a complex structure which anticommutes with J1, . . . , Jk−1. Hence
Vj is an irreducible Clk-module with the dimension mk = dimSk in-
dependent of j. By the choice of the sign of aj we can assume that
all Vj are equivalent Clk-modules. In other words, V = V0 ⊕ V ′ with
V ′ = V1⊗Rp where V1 is an irreducible Clk module given by J1, . . . , Jk
(living only on V1) while A = J ⊗ diag(a1, . . . , ap) with J := JkJk−1. If
two of the integers ai, aj differ by two or more, we can use the p extra
dimensions to shorten γ within Pk−1, see the subsequent Lemma 17.1.
But this is impossible since γ is shortest in its homotopy class. Since
we may always assume that, say, a1 = 0 (by adding a trivial bundle if
necessary), all nonzero aj must be 1, (or all −1, but this is a matter of
choice of Jk), thus A = J on V ′.
After this deformation our vector bundle E over Sk+1 splits as E =

E0 ⊕ E ′ where E0 is trivial and E ′ is the generalized Hopf bundle for
the Clifford system J1, . . . , Jk on V ′ = V1⊗Rp, see subsequent remark.
Thus the map α : Mk/ρ(Mk+1) → Vk assigning to each Clifford

module its generalized Hopf bundle is onto. It remains to show its
injectivity which is done by Lemma 17.2 at the end of this section.
This finishes the proof of Theorem 14.2.

Remark. We want to check explicitly that γ̃(t) = Jk−1e
2πtJ with

J = JkJk−1 as defined in the previous proof is part of the linear map
φ : Sk → SOn defined by the Clk-representation J1, . . . , Jk.

SOS
k

n

J

J

I

k−1

k

γ∼

φ( )

Recall that φ is mapping the unit basis e1, . . . , ek, ek+1 of Rk+1 onto
J1, . . . , Jk, I ∈ SOn. The closed geodesic γ̃ : [0, 1] → SOn is the
restriction of φ to the intersection of Sk with the ek−1ek-plane, using
the parametrization x(t) = ek−1 cos(2πt) + ek sin(2πt) for t ∈ [0, 1],
more precisely, γ̃(t) = φ(x(t)). It must satisfy (1) γ̃(0) = Jk−1 and
(2) γ̃(1

2
) = −Jk−1 while (3) γ̃(1

4
) = Jk. Putting γ̃(t) = Jk−1e

2πtJ for
some complex structure J , the first two conditions are satisfied while
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γ̃(1
4
) = Jk−1e

(π/4)J = Jk−1J .
26 Hence condition (3) holds if and only if

Jk = Jk−1J as in (17.2) above.

Lemma 17.1. If ai − aj = b ≥ 2 for some i, j ∈ {1, . . . , p}, then
the closed geodesic γ̃(t) = Jk−1e

2πtA can shortened by a deformation in
Pk−1.

Proof. We have Vi + Vj = V1 ⊗R2, and A = J ⊗ diag(ai, aj) on Vi + Vj

where J = JkJk−1. Then diag(ai, aj) =
1
2
(aI + bRo) with a = ai + aj

and Ro = diag(1,−1). Now we deform A to As by replacing Ro with
any planar reflection Rs = ( cos s sin s

sin s − cos s ) for s ∈ [0, π], that is we replace
A = 1

2
J⊗(aI+bRo) by As =

1
2
J⊗(aI+bRs) which still satisfies (17.1).

Thus γ̃s(t) = Jk−1e
2πtAs ∈ Pk−1. Let Js = J⊗Rs (with J2

s = −I). Then
γ̃s(t) = Jk−1e

πtaJeπtbJs . For t = 1/b ≤ 1/2 we have eπtbJs = eπJs = −I,
thus γ̃s(1/b) is independent of s. All the closed geodesics γ̃s must pass
through the same point γ̃s(1/b), therefore they can be shortened by
cutting the corner.

γ
1/b 10

γ
γs

γs∼
∼

∼
∼

�

Lemma 17.2. If a bundle α̂(S) is trivial for some Clk-module S, then
S is the restriction of a Clk+1-module.

Proof. Let S be a Clk-module and φ = φS : Sk → G the corresponding
clutching map (that is φ(ek+1) = I, φ(ei) = Ji). We assume that

φ is contractible, that is it extends to φ̂ : Dk+1 → G. The closed
disk Dk+1 will be considered as the northern hemisphere Dk+1

+ ⊂ Sk+1.
Repeating the argument above for the surjectivity, we consider the
meridians µv between N = ek+1 ∈ Sk and −N , but this time there are
much more such meridians, not only those in Sk but also those through
the hemisphere Dk+1

+ . They are labeled by v ∈ Dk
+ := Dk+1

+ ∩N⊥.

Sk

−N N

D+

D+k+1
k

µv
v

26Note that for any complex structure J we have e(π/4)J = J since the eigenvalues
are ±i and e±(π/4)i = ±i.
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Applying the negative energy gradient flow we deform the curves φ(µv)
to minimal geodesics without changing those in φ(Sk) which are already

minimal. Then we obtain the midpoint map φ̂1 : Dk
+ → P1 with

φ1(v) = m(φ̂(µv)) which extends the given midpoint map φ1 of φ. This

step is repeated another k− 1 times until we reach φ̂k : D1
+ → Pk

which is a path from Jk to −Jk in Pk. This path can be shortened to
a minimal geodesic in Pk whose midpoint is a complex structure Jk+1

anticommuting with J1, . . . , Jk. Thus we have shown that our Clk-
module S given by J1, . . . , Jk is extendible to a Clk+1-module, that is
S ∈ ρ(Mk+1). This finishes the proof of the injectivity.

18. Quaternionic exceptional symmetric spaces

Chains of minimal centrioles of a compact matrix group G ⊂ GL(V )
with −I ∈ G are even more interesting [16] when V is a quaternionic
vector space and G acts H-linearly on V , in other words, it commutes
with the action of Sp1 = S3 ⊂ H by scalar multiplication on V . Us-
ing the quaternionic scalars i, j, k, anticommuting complex structures
J1, J2, J3 ∈ G can be changed into commuting involutions S1 = iJ1,
S2 = jJ2, S3 = kJ3. Then S1 splits V into its half dimensional
eigenspaces E1 and E⊥

1 = jE1 (such subspaces are called totally com-
plex), preserved by S2 and S3. Further, S2 splits E1 into its half dimen-
sional eigenspaces E2 and E⊥

2 = iE2 (such subspaces are called totally
real), and S3 splits E2 into its eigenspaces E3 and E⊥

3 which may have
arbitrary dimensions. Then P1 = {E1 ⊂ V }o (a connected component
of all such subspaces E1) and P2 = {E2 ⊂ E1} and P3 = {E3 ⊂ E2}.
An example is line 3 of Table 3, page 39, where P3 = Gp(R

n).
Let us now consider the case where V is also a Lie triple, more

precisely, the Lie triple of a quaternionic symmetric space. A sym-
metric space P is called quaternionic symmetric if it is quaternionic
Kähler, that is each tangent space is a quaternionic vector space, and
the subspace H ⊂ End(TP ) of quaternionic scalar multiplications on
any tangent space is parallel, and further the scalar multiplication with
any unit scalar q ∈ S3 ⊂ H extends to a global isometry of P .

Remark. Recall that for any Riemannian manifold P , the space R of
real scalar multiplications is parallel, and P is symmetric if the real unit
scalars ±1 ∈ R extend to isometries of P . It is hermitian symmetric
or Kähler symmetric if it is Kähler, that is each tangent space carries
a complex structure and the complex scalar multiplication is parallel,
and further the complex unit scalars ζ ∈ S1 ⊂ C extend to isometries
of P . Quaternionic symmetric spaces are the quaternionic analogues.
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If P is quaternionic symmetric and K the isotropy group of some base
point o ∈ P , then conjugation with any k ∈ K preserves Sp1 ⊂ K, thus
Sp1 ⊂ K is a normal subgroup. On the Lie algebra level, sp1 ⊂ k and
its orthogonal complement are ideals, hence we have a decomposition
into ideals k = k′ ⊕ sp1 and K = K ′Sp1 where K ′ commutes with Sp1,
that is, it acts H-linearly on V = ToP . We put G = K ′ in the above
construction. Then the spaces E1, E2, E3 are fixed spaces of Lie triple
automorphisms and hence subtriples, and we may characterize Pj as a
connected component of certain Lie subtriples (totally complex, totally
real, or a splitting of the latter).
Among the exceptional symmetric spaces there are 4 quaternionic

symmetric spaces, namely {KHP2 ⊂ KOP2} (the set of all symmetric
subspaces congruent to KHP2 ⊂ KOP2) for K = R,C,H,O. As coset
spaces these are the types (see [9, p. 518], [2, p. 313f]) FI = F4/Sp3Sp1,
EII = E6/SU6Sp1, EVI = E7/Spin12Sp1, EIX = E8/E7Sp1 with
quaternionic dimension d = 7, 10, 16, 28. The last example appears in
Table 3, line 5 on page 39, while the others are in lines 1 - 3 for n = 3.
The corresponding chains end with KP2 = G1(K

3), see also [16, p. 47].
We finish our lecture with some open questions related to this con-

struction which combines all subjects treated in our lecture.

(1) What are the symmetric subspaces with Lie triples E1, E2, E3?
(2) Are there other connected components?
(3) How can we geometrically understand the description of KP2

as {E3 ⊂ E2}?
(4) What is the relation to Freudenthal’s magic squares? The num-

bers d− 1 appear in Freudenthal’s work, see e.g. [8, p. 448].
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