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second time and let S; = S\ S;. All the points above Sy are in V' since they are closer
to S than to {z, = —r}. Moreover, all points above S are in 1~ for the same reason.
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Thus we may connect any point of S to some point in Ry - e, within the shaded region
(cf. fig. 26 below); we just have to avoid the cylinder of height r above 85 if we start
from S,. This finishes the proof of the claim, of the lemma and of the theorem.
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Moreover, due to Ric > n — 1 and the average comparison theorem 4.1, we have on

M\ {p,q}: 4
App < (n—1)cotpp, Apg < (n—1)cotp,
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in the sense of support functions. In fact, to prove the first inequality at some point
z € M\ {p, q}, we choose a shortest geodesic segment 8 from z to p and replace p by
some point p’ on J close to p; then the distance function p, from p’ is smooth near
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