J.-H. Eschenburg Comparison Theorems in Riemannian Geometry Figures

Fig. 1.

Fig. 3.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 11.

Fig. 12.

Fig. 14.

Fig. 15.

Fig. 20.

Fig. 21.

second time and let $S_2 = S \setminus S_1$. All the points above S_1 are in V since they are closer to S_1 than to $\{x_n = -r\}$. Moreover, all points above S_2 are in V for the same reason.

Fig. 25.

Thus we may connect any point of S to some point in $\mathbb{R}_+ \cdot e_n$ within the shaded region (cf. fig. 26 below); we just have to avoid the cylinder of height r above ∂S if we start from S_2 . This finishes the proof of the claim, of the lemma and of the theorem.

Moreover, due to $Ric \ge n-1$ and the average comparison theorem 4.1, we have on $M \setminus \{p,q\}$:

$$\Delta \rho_p \leq (n-1)\cot \rho_p, \ \Delta \rho_q \leq (n-1)\cot \rho_q$$

in the sense of support functions. In fact, to prove the first inequality at some point $x \in M \setminus \{p,q\}$, we choose a shortest geodesic segment β from x to p and replace p by some point p' on β close to p; then the distance function $\rho_{p'}$ from p' is smooth near p and satisfies the above inequality with an arbitrary small error (by Theorem 1.1)

Fig. 28.