Universität Augsburg Institut für Mathematik Lehrstuhl für Differentialgeometrie

> Schriftliche Hausarbeit zur 1. Staatsprüfung für das Lehramt an Gymnasien

Thema

7

Penrose-Muster:

Unterteilung und Projektionsmethode

Verfasser	Ruth Maria Katharina Page Semmelweisstraße 11 86156 Augsburg
Betreuer	Prof. Jost-Hinrich Eschenburg
Prüfungstermin	Herbst 2008
Abgabetermin	10. Januar 2008

Inhaltsverzeichnis

-

2

2

3

3

j

l

l

1	Einleitung		2
2	Die elementargeometrische Methode		
	2.1	Das regelmäßige Fünfeck und der Goldene Schnitt	5
	2.2	Die Penrose-Rauten	8
	2.3	Deflation und Inflation	8
3	3 Die Projektionsmethode		16
	3.1	Die Projektionsmethode im \mathbb{R}^2	16
	3.2	Die zyklische Koordinatenvertauschung	18
	3.3	Die orthogonalen Projektionen π_1 und π_2	19
	3.4	Deflation und Inflation	21
		3.4.1 Beispielbetrachtung im \mathbb{R}^2	21
		3.4.2 Übertragung auf den Penrose-Fall	23
4	Die	Eindeutigkeit der Unterteilung unter Deflation	31
	4.1	Das Längenargument	33
	4.2	Die Eckentypen der Penrose-Muster	35
	4.3	Die Ecken im De- und Inflationsfall	49
	4.4	Die eindeutige Unterteilung der Penrose-Rauten	55
		4.4.1 Die Nachbareckentypen	55
		4.4.2 Die eindeutige Unterteilung der breiten Raute \ldots	62
		4.4.3 Die eindeutige Unterteilung der schmalen Raute	66
	4.5	Ergebnisse	70
Ar	Anhang		
Lit	terat	urverzeichnis	75

1 Einleitung

Ein jeder von uns kennt *periodische Muster*. Die wohl einfachste Form sind quadratische Kachelmuster, uns allen bekannt aus Küche und Bad oder den Rechenkästchen des Mathehefts. Aber auch andere regelmäßige Vielecke (*Polygone*) sind geeignet, periodische Muster zu erzeugen, wie das Dreioder Sechseck. Das Beispiel des *regelmäßigen Fünfecks* zeigt jedoch, dass nicht jedes beliebige Polygon gewählt werden kann: Bei dem Versuch, die Ebene mit Fünfecken zu überdecken, entstehen unschließbare Lücken.¹

Abbildung 1.1: Periodische Muster und Gegenbeispiel

Eine ganz andere Art von Beispielen für periodische Muster sind die Kunstwerke des niederländischen Künstlers M. C. Escher, wie sie die unten stehende Abbildung² zeigt:

Abbildung 1.2: Bild von M. C. Escher

¹Abbildung vgl.http://www.schoenleber.org/penrose/f-d-penrose.html

²Abbildung vgl.http://matheplanet.com/matheplanet/nuke/html/article.php?sid=470

"Periodos" kommt aus dem Griechischen und bedeutet soviel wie "regelmäßige Wiederkehr": Zeichnet man periodische Muster auf einer Folie nach und verschiebt diese anschließend, passt irgendwann das nachgezeichnete Muster wieder genau auf die Vorlage - wohlgemerkt allein durch Parallel-Verschiebung, Drehungen oder Spiegelungen sind nicht erlaubt.

Daneben gibt es aber noch eine weitere Klasse von Mustern: Die Nichtperiodischen und einige Muster dieser Art weisen trotz ihrer Nicht-Periodizität einen hohen Ordnungsgrad auf, sie sind also alles andere als willkürlich aufgebaut. Das wohl bekannteste Beispiel hierfür sind die von Roger Penrose, einem in Oxford lehrenden Mathematik-Professor, in den 70'er Jahren entdeckten *Penrose-Muster* [vgl.PR,S.32ff].

Abbildung 1.3: Ausschnitt aus einem Penrose-Muster

Diese Muster, die aus zwei Sorten von Rauten bestehen und die die Abmessung des regelmäßigen Fünfecks benutzen, gehören auf Grund ihrer engen Verbindung zum *Goldenen Schnitt* und der daraus resultierenden Formschönheit, zu den faszinierendsten Mustern überhaupt. Und das schöne an ihnen ist, dass man ihr Grundprinzip auch jedem Nicht-Mathematiker plausibel machen kann! In der vorliegenden Arbeit möchte ich zuerst auf die Erzeugung der Penrose-Muster eingehen. Dies soll auf zweierlei Weisen geschehen: In einem ersten Schritt möchte ich das elementargeometrische Vorgehen schildern, welches einen Bezug der Penrose-Muster zum regelmäßigen Fünfeck herstellt, bevor ich dann in einem weiteren Schritt das Projektionsverfahren vorstelle. Anhand beider Methoden wird dann auch ersichtlich, wieviele Penrose-Muster es denn eigentlich gibt, nämlich überabzählbar viele.

Das Hauptaugenmerk dieser Arbeit soll dann aber auf einem anderen Punkt liegen: Ein beliebiges Penrose-Muster lässt sich stets zu einem größeren bzw. kleineren Muster transformieren, welches wieder ein Penrose-Muster ist. Diese Transformationen werden *Inflation* bzw. *Deflation* genannt. Im Fall der elementargeometrischen Methode ist der Deflationsprozess nicht nur eindeutig, was bedeutet, dass die Rauten der Penrose-Muster unter Deflation in der immer gleichen Art und Weise unterteilt werden, sondern vielmehr die definierende Eigenschaft dieser Muster. L. Danzer und K.-P. Nischke stellen diesbezüglich ähnliche Überlegungen für das regelmäßige Siebeneck an [vgl.ND,S.231ff]. Im Fall der Projektionsmethode ist dagegen nicht sofort ersichtlich, warum und wie die Penrose-Rauten unterteilt bzw. zu größeren Rauten zusammengefasst werden. Vergleiche hierzu insbesondere die Arbeit von N.G. de Bruijn [vgl.BN,S.61]. Genau dies soll nun aber gezeigt werden: Die eindeutige und mit der elementargeometrischen Methode übereinstimmende Unterteilung der Penrose-Rauten unter Deflation.

Mein herzlicher Dank gilt meinem Betreuer Jost-Hinrich Eschenburg, der stets für mathematische Diskussionen bereit war. Durch unsere zahlreichen Sitzungen steckte er mich letztlich mit seiner "Penrose-Leidenschaft" an, so dass diese Zulassungsarbeit für mich ein spannendes Unterfangen wurde und keine lästige Arbeit auf dem Weg zum Staatsexamen. Danke!

2 Die elementargeometrische Methode

Wie bereits erwähnt, benutzen Penrose-Muster die Abmesungen des regelmäßigen Fünfecks, welches sie gewissermaßen entfalten. Dies ist auch nicht schwer einzusehen, macht man sich zunächst mit dem Fünfeck und seiner Symmetrie vertraut.

2.1 Das regelmäßige Fünfeck und der Goldene Schnitt

Das regelmäßige Fünfeck ist wohl die mathematische Konstruktion mit der höchsten magischen Anziehungskraft. Schneidet man seine Diagonalen, so erhält man ein *Pentagramm* - jenes Symbol, das sich im Laufe der Geschichte zahlreiche sagenumwobene Geheimbünde zum Zeichen wählten. Nicht zuletzt die Freimaurer und Illuminaten, uns allen bekannt aus Dan Browns "Sakrileg".

Abbildung 2.1: Das regelmäßige Fünfeck mit seinem Diagonalenpentagramm

Was aber genau übt diese Faszination aus? Mit dem regelmäßigen Fünfeck eng verbunden ist ein besonderes Zahlenverhältnis: Der Goldene Schnitt. Viele Proportionen in Natur, Kunst und Biologie stehen in genau diesem Verhältnis zueinander und schon seit der Antike sind Mathematiker, Künstler und Philosophen von diesem fasziniert. Auf Grund seines ästhetischen Eindrucks auf den Betrachter wird der Goldene Schnitt seit der Renaissance auch *harmonische Teilung* genannt.

Zwei Strecken *a* und *b* stehen genau dann im Verhältnis Φ des Goldenen Schnitts zueinander, wenn sich die größere Strecke *a* zur kleineren Strecke *b* verhält wie die Summe aus beiden zur größeren: $\frac{a}{b} = \frac{a+b}{a} = 1 + \frac{b}{a}$. Für das Längenverhältnis $\frac{a}{b} =: \Phi$ ergibt sich somit $\Phi = 1 + \frac{1}{\Phi}$ und nach Auflösung dieser Gleichung $\Phi = \frac{1}{2}(1 + \sqrt{5}) \approx 1,618$. Das Besondere an diesem Zahlenverhältnis ist nun seine Irrationalität, welche man gut sieht, betrachtet man die nicht abbrechende Kettenbruchnäherung von $\Phi: \Phi = \frac{1}{1 + \frac{$

Im regelmäßigen Fünfeck stehen nun Diagonale D und Seitenlänge S im Verhälnis des Goldenen Schnitts zueinander:

Man betrachte zuerst ein regelmäßiges Fünfeck mit Seite S und einer eingezeichneten Diagonale D.

Abbildung 2.2: Das regelmäßige Fünfeck mit Seite S und Diagonale D

Spiegelt man nun dieses Fünfeck an unten eingezeichneter Symmetrieachse durch eine Ecke und den Mittelpunkt der gegenüberliegenden Seite, erhält man die folgende Situation:

Abbildung 2.3: Das regelmäßige Fünfeck mit Seite S und Diagonale D gespiegelt an der eingezeichneten Symmetrieachse

Der bei der Spiegelung entstandene Diagonalenschnitt teilt nun die Diagonalen in zwei Abschnitte: Eine Seite S (je eine Seite und eine Diagonale sind parallel) und eine kurze Strecke (D - S). Ferner bilden die Diagonale D und die beiden Fünfecksseiten S sowie eine Seite S und die beiden kurzen Strecken (D - S) zwei Dreiecke. Diese Dreiecke sind auf Grund der Symmetrie des regelmäßigen Fünfecks bezüglich der eingezeichneten Achse gleichschenklig und da sie einen gemeinsamen Winkel einschließen (zwischen der Grundseite D und Seite S bzw. der Grundseite S und Seite (D - S)) auch ähnlich zueinander. Im Folgenden sollen sie als *breite Dreiecke* bezeichnet werden. Es gilt somit: $\frac{Grundseite}{Seite} = \frac{S}{(D-S)} = \frac{D}{S} = \frac{S+(D-S)}{S}$ und mit a = S und b = (D - S) [vgl.2.1] sieht man sofort, dass dies genau das Zahlenverhältnis Φ des Goldenen Schnitts ist! Im regelmäßigen Fünfeck gilt daher: $\frac{Diagonale}{Seitenlange} = \Phi$ und deshalb $D = \Phi S$ bzw. $S = \varphi D$ mit $\varphi := \frac{1}{\Phi}$.

1

Daneben erkennt man in Abbildung 2.3 aber noch ein zweites gleichschenkliges Dreieck mit Grundseite (D - S) und Seite S, welches zu den breiten Dreiecken nicht ähnlich ist und im Folgenden als *schmales Dreieck* bezeichnet werden soll. Mit a = S und b = (D - S) sieht man auch hier wieder: $\frac{Grundseite}{Seite} = \frac{(D-S)}{S} = \frac{b}{a} = \frac{1}{\Phi} = \varphi.$

Ferner kann man auf Grund der Fünfecksymmetrie auch leicht die Innenwinkel in Abbildung 2.3 berechnen, bedenkt man, dass der Innenwinkel eines regelmäßigen Fünfecks gleich 108° ist und die Winkelsumme im Viereck gleich 360°:

Abbildung 2.4: Die Innenwinkel im regelmäßigen Fünfeck mit seinem Diagonalenschnitt

Alle vorkommenden Innenwinkel des regelmäßigen Fünfecks mit dem ihm einbeschriebenen Diagonalenpentagramm sind somit Vielfache von 36°, nämlich 36°, 72° und 108°!

2.2 Die Penrose-Rauten

Was aber haben nun die Penrose-Muster mit dem regelmäßigen Fünfeck und dem Goldenen Schnitt zu tun?

Penrose-Muster lassen sich beschreiben als "Fliesen- oder Kachelmuster, die aus zwei Sorten von rhombenförmigen Fliesen bestehen, einer breiten und einer schmalen" [EB,S.8]. Diese beiden Fliesen - im Folgenden *Rhomben/Rauten* genannt - sind nun aber nichts anderes als die symmetrischen Ergänzungen der beiden soeben beschriebenen verschiedenen gleichschenkligen Dreiecke im regelmäßigen Fünfeck mit seinem Diagonalenpentagramm, genannt *Halbrhomben* [vgl.EB,S.8].

l

Abbildung 2.5: Die beiden Penrose-Rauten: Die breite Raute ist die symmetrische Ergänzung des breiten gleichschenkligen Dreiecks, die schmale Raute ist die symmetrische Ergänzung des schmalen gleichschenkligen Dreiecks

Aufgrund dieser Konstruktion über das regelmäßige Fünfeck weiß man nun sofort: Die beiden Seitenlängen S der Rauten sind gleich, in der breiten Raute gilt $\frac{Seite}{Diagonale} = \frac{S}{D} = \varphi$ und die Innenwinkel sind 72° und 108°, in der schmalen Raute dagegen gilt $\frac{Seite}{Diagonale} = \frac{S}{(D-S)} = \Phi$ und die Innenwinkel sind 36° und 144°.¹

2.3 Deflation und Inflation

Eine eingangs schon erwähnte Besonderheit der Penrose-Muster ist ihre Debzw. Inflationseigenschaft. Diese Eigenschaft ist aber nicht nur erstaunlich,

¹Diagonale meint hier jeweils die in Abbildung 2.5 gestrichelt eingezeichnete Diagonale der jeweiligen Raute, die anderen beiden Diagonalen sind für das Folgende uninteressant

sondern vielmehr das Charakteristikum der Penrose-Muster, also deren definierende Eigenschaft! Was ist damit gemeint?

Beide Halbrhomben der Penrose-Rauten lassen sich wie Abbildung 2.6 zeigt durch den Diagonalenschnitt des Fünfecks und die zur Fünfeckseite parallele Gerade durch den Diagonalenschnittpunkt in kleinere Dreiecke zerlegen.

Abbildung 2.6: Die Unterteilung der Halbrhomben durch den Diagonalenschnitt und die zur Fünfeckseite parallele Gerade durch den Diagonalenschnittpunkt

Dabei wird die breite Halbrhombe in zwei kleine breite und ein schmales Dreieck, die schmale Halbrhombe in ein kleines breites und ein kleines schmales Dreieck unterteilt. Auf Grund der Gleichheit der Winkel sind diese kleineren Dreiecke formgleich zu den beiden Penrose-Halbrhomben: Das kleine breite Dreieck zu der breiten Halbrhombe und das kleine schmale Dreieck zu der schmalen Halbrhombe.

Abbildung 2.7: Die Unterteilung der beiden Halbrhomben

Auch die kleineren Dreiecke können nun wieder auf die gleiche Art durch noch kleinere formgleiche² Dreiecke unterteilt werden.

Abbildung 2.8: Nochmalige Unterteilung der beiden Halbrhomben

Diese Unterteilung der Penrose-Halbrhomben durch formgleiche kleinere Dreiecke ist eindeutig, wie die folgenden Überlegungen zeigen. Dazu wählen wir eine bereits einmal unterteilte breite Halbrhombe als Ausgangs-Halbrhombe [vgl.Abb.2.7] und schauen uns an, welche Möglichkeiten es jeweils für eine nochmalige Unterteilung gibt.

Betrachten wir als erstes das kleine schmale Dreieck. Abbildung 2.7 zeigt, wie ein solches schmales Dreieck unterteilt wird. Insgesamt gibt es zwei Möglichkeiten, diese Unterteilung durchzuführen:

Abbildung 2.9: Die beiden Unterteilungsmöglichkeiten des kleinen schmalen Dreiecks

²Wieder wegen der Gleichheit der Winkel

Von den kleinen breiten Dreiecken betrachten wir zunächst das rechte. Auch hier gibt Abbildung 2.7 die Unterteilung vor und es existieren wieder genau zwei Möglichkeiten, diese vorzunehmen:

Abbildung 2.10: Die beiden Unterteilungsmöglichkeiten des rechten kleinen breiten Dreiecks

In der Kombination gibt es somit erst einmal vier mögliche nochmalige Unterteilungen der Ausgangs-Halbrhombe:

Abbildung 2.11: Die vier vermeintlichen Unterteilungsmöglichkeiten

Fordert man jedoch, dass die Kanten eindeutig unterteilt werden, d.h. dass wenn eine Kante unterteilt wird, diese Unterteilung von beiden Seiten geschieht, bleibt die vierte Unterteilungsmöglichkeit als einzig mögliche übrig (rot eingekreist in Abbildung 2.11) - die Unterteilung des kleinen schmalen Dreiecks und des rechten kleinen breiten Dreiecks ist somit eindeutig. Wie aber sieht es mit dem linken kleinen breiten Dreieck aus? Die Art der Unterteilung ist natürlich die gleiche wie im Fall des formgleichen rechten kleinen breiten Dreiecks und auch hier gibt es wieder zwei Möglichkeiten, diese vorzunehmen:

Abbildung 2.12: Die beiden Unterteilungsmöglichkeiten des linken kleinen breiten Dreiecks mit der eindeutigen Unterteilung der anderen beiden kleinen Dreiecke

Mit der Forderung nach einer eindeutigen Unterteilung der Kanten fällt aber auch hier die erste der beiden Unterteilungsmöglichkeiten weg und man erhält so schließlich insgesamt die Eindeutigkeit der Unterteilung der breiten Halbrhombe wie schon in Abbildung 2.7 dargestellt. Da die schmale Halbrhombe ein Teil der breiten Halbrhombe ist, ist somit aber auch sofort die eindeutige Unterteilung der schmalen Halbrhombe gezeigt.

Dieser Unterteilungsprozess lässt sich nun beliebig oft wiederholen, so dass man zu einer immer feineren Unterteilung der beiden Penrose-Halbrhomben kommt.

Die Betonung liegt hierbei jedoch auf *formgleich*: Bei der Unterteilung entstehen auf Grund der Winkelgleichheit wieder Penrose-Halbrhomben, nicht etwa beliebige Dreiecke! Die Forderung nach einer eindeutigen Unterteilung der Kanten in oben beschriebenem Sinn garantiert zudem, dass sich die kleineren Halbrhomben jeweils zu neuen, ebenfalls kleineren Penrose-Rauten ergänzen. Im Folgenden soll eine Unterteilung genau dieser Art, also eine Unterteilung der Halbrhomben mit einer eindeutigen Unterteilung der Kanten, als *konsistent* bezeichnet werden.

Wie entsteht nun ein Penrose-Muster? Dazu wird wieder eine breite Penrose-Halbrhombe als Ausgangs-Halbrhombe gewählt und konsistent unterteilt. Auf Grund der Konstruktion der Penrose-Rauten über das regelmäßige Fünfeck kennt man den Faktor, um den die Seiten der kleinen breiten Dreiecke kleiner sind als die Seiten der zu diesen Dreiecken formgleichen Ausgangs-Halbrhombe: φ .

١

Abbildung 2.13: Die Ausgangs-Halbrhombe einmal unterteilt: Die Seiten der kleinen breiten Dreiecke sind um den Faktor φ kleiner als die Seiten der formgleichen Ausgangs-Halbrhombe

Die unterteilte Ausgangs-Halbrhombe wird nun genau um diesen Faktor Φ vergrößert, was bedeutet, dass die ursprünglich kleineren Unterteilungsrhomben nun die Größe der Ausgangs-Halbrhombe besitzen.³ Und auch die vergrößerten Halbrauten werden nun wieder konsistent unterteilt und um den Faktor Φ vergrößert und immer so weiter.

Abbildung 2.14: Die einmal unterteilte Ausgangs-Halbrhombe aus Abbildung 2.13 um den Faktor Φ vergrößert und ein zweites Mal unterteilt (gestrichelte Linien)

³Sei x die Seitenlänge der Ausgangs-Halbrhombe. Die Seitenlänge der kleinen breiten Dreiecke ist somit φx . Die Multiplikation mit Φ liefert nun: $(\varphi x)\Phi = \frac{1}{\Phi}x\Phi = x$, da $\varphi = \frac{1}{\Phi}$, vgl.2.1

Abbildung 2.15: Die zweimal unterteilte Ausgangs-Halbrhombe aus Abbildung 2.14 um den Faktor Φ vergrößert und ein drittes Mal unterteilt (gestrichelte Linien)

Durch konsistente Unterteilung und stetiges Vergrößern erzeugt man so schließlich eine Pflasterung der Ebene: Das Penrose-Muster. In endlich vielen Schritten wird ein Teil der Ebene bedeckt, in unendlich vielen Schritten schließlich die ganze Ebene!⁴

Warum aber spricht man dann von den Penrose-Mustern und nicht von einem einzigen? Die Unterteilung der Halbrauten ist eindeutig und so zeigt diese Konstruktion doch gerade die Entstehung eines einzigen Musters.

Der Schlüssel zu dieser Frage liegt in der Umkehrbarkeit dieses Prozesses: "An jeder Stelle des Musters lassen sich mehrere benachbarte Halbrhomben so zusammenfassen, dass sie große Rhomben der gleichen zwei Formen (breite und schmale) bilden, wobei die Unterteilung der großen Halbrhomben durch die kleineren wie [die in Abbildung 2.7] gezeigte Zerlegung aussieht und die großen Rhomben bilden zusammen wieder ein (neues) Penrose-Muster" [EB,S.8].

Im Gegensatz zur Unterteilung, die eindeutig ist, ist dieser Prozess des Zusammenfassens von Halbrauten jedoch nicht eindeutig, denn eine schmale Halbraute kann sowohl als Teil der breiten Raute als auch als Teil der

⁴Die Abbildungen 2.14 und 2.15 dienen zur Veranschaulichung der Konstruktionsidee, der Vergrößerungsfaktor ist daher nur theoretisch Φ , aus Platzgründen hat er jeweils einen etwas anderen Wert

schmalen Raute aufgefasst werden - es gibt also stets neue Möglichkeiten der Verzweigung und kein Teil legt fest, wie die ganze Pflasterung aussehen wird. Deshalb gibt es auch überabzählbar viele Penrose-Muster [vgl.3.3].

Abbildung 2.16: Die kleine schmale Halbraute: Einmal als Teil der breiten Raute und einmal als Teil der schmalen Raute

Formal wird dieser Unterteilungs-Prozess der Penrose-Halbrhomben in formgleiche kleinere Penrose-Halbrhomben nun als Deflation und seine Umkehrung als Inflation bezeichnet [vgl.3.4.1].

Neben diesem elementargeometrischen Zugang gibt es aber noch eine weitere Möglichkeit, Penrose-Muster zu erzeugen. Es handelt sich dabei um die Projektionsmethode, welche im folgenden Abschnitt erklärt werden soll.

3 Die Projektionsmethode

Die Projektionsmethode ist eine Methode zur Erzeugung quasiperiodischer Muster. Ganz allgemein geht man dabei von einem *n*-dimensionalen Gitter des \mathbb{R}^n aus, von dem dann ein bestimmter Ausschnitt auf einen *k*dimensionalen Unterraum des \mathbb{R}^k orthogonal projiziert wird.

Um dieses Wirkprinzip zu verstehen, ist es hilfreich, sich die Projektionsmethode am Beispiel des \mathbb{R}^2 , den wir uns noch vorstellen können, klar zu machen. Es gelte also im Folgenden n = 2 und k = 1.

3.1 Die Projektionsmethode im \mathbb{R}^2

Das zweidimensionale Gitter des \mathbb{R}^2 ist nichts anderes als das Rechenkästchenmuster der Ebene. Durch dieses wird nun eine Gerade E gelegt.¹ Die Bedingung dabei ist, dass die Gerade E durch keinen Punkt des Gitters $\mathbb{Z}^2 \subset \mathbb{R}^2$ gehen darf, denn das garantiert gerade, dass durch die Projektionsmethode eine Pflasterung entsteht [vgl.ST]. Nun interessieren uns die ganzzahligen Punkte des \mathbb{R}^2 , also genau die Ecken des Rechenkästchenmusters, denn diese wollen wir projizieren - allerdings nicht alle, sonst gäbe es einfach nur ein wirres Durcheinander von Punkten und mehr nicht. Wie aber kann man festlegen, welche Gitterpunkte projiziert werden sollen und welche nicht?

Die Idee ist folgende: Man betrachtet den offenen Streifen $E + I^2$ (wobei *I* das offene Einheitsintervall (0, 1) bezeichnet), den man erhält, wenn man ein offenes Einheitsquadrat entlang der Geraden *E* laufen lässt. Projiziert werden nun nur alle die ganzzahligen Gitterpunkte, also alle Ecken des Rechenkästchenmusters, die innerhalb des Streifens liegen.

 $^{^{-1}}E$ entspricht also gerade dem eindimensionalen affinen Unterraum von $\mathbb R,$ auf den projiziert werden soll

Abbildung 3.1: Die Projektionsmethode im \mathbb{R}^2 : Die eingezeichneten Punkte im Inneren werden orthogonal auf die Gerade E projiziert

Das Muster M_E , das wir in diesem Fall erhalten, ist eindimensional und besteht aus einer Abfolge von Abschnitten, die genau zwei verschiedene Längen haben. Die Projektionspunkte sind somit die Unterteilungspunkte zwischen diesen Abschnitten [vgl.3.4.1].

Abbildung 3.2: Das eindimensionale Muster M_E auf der Geraden E

Im Falle der Penrose-Muster wird nun das fünfdimensionale Würfelmuster des \mathbb{R}^5 auf einen Unterraum des \mathbb{R}^2 , also eine Ebene, projiziert. Aber natürlich können auch hier nicht alle ganzzahligen Gitterpunkte $z \in \mathbb{Z}^5$ projiziert werden. Ganz analog zu obigem Spielbeispiel betrachtet man deshalb den Streifen² $E + I^5$, den man nun erhält, wenn man den offenen Einheitswürfel I^5 entlang der Ebene E laufen lässt und projiziert werden wieder alle die

²Natürlich ist $E + I^5$ kein zweidimensionaler "Streifen" mehr, wie in der Beispielbetrachtung im \mathbb{R}^2 , sondern fünfdimensional. Die Terminologie soll aber der Anschaulichkeit halber im Weiteren fortgeführt werden, da sie durchaus eine Hilfe sein kann für den Umgang im \mathbb{R}^5 , der ja unserer Vorstellung nicht mehr zugänglich ist!

Gitterpunkte, die im Inneren dieses Streifens liegen. Penrose-Muster sind somit nichts anderes als "zweidimensionale Schatten [...] des Würfelmusters im fünfdimensionalen Raum" [EB,S.9].

Allerdings muss eine ganz bestimmte Ebene gewählt werden, damit man auch wirklich die Penrose-Muster erhält - man kann also nicht beliebig projizieren!

3.2 Die zyklische Koordinatenvertauschung

Um die Projektion der beiden Penrose-Rauten zu erhalten, müssen wir lie orthogonale Spaltung des \mathbb{R}^5 betrachten, welche von der zyklischen Koordinatenvertauschung $(x, y, z, u, v) \mapsto (y, z, u, v, x)$ erzeugt wird. Die dazugehörige Abbildungsmatrix A ist orthogonal, d.h. die Eigenräume zu verschiedenen Eigenwerten stehen senkrecht aufeinander. Bei der Suche nach Eigenwerten und Eigenvektoren müssen allerdings auch komplexe Werte zugelassen werden: Für jede komplexe Zahl γ mit $\gamma^5 = 1$ ist der Vektor $\omega_{\gamma} = (1, \gamma, \gamma^2, \gamma^3, \gamma^4)$ wegen $A\omega_{\gamma} = (\gamma, \gamma^2, \gamma^3, \gamma^4, 1) = \gamma \omega_{\gamma}$ ein Eigenvektor von A. Eigenwerte sind demnach alle γ mit $\gamma^5 = 1$, also genau alle fünften Einheitswurzeln $\gamma = \zeta^k = e^{\frac{2\pi ik}{5}}$ mit k = 1, ..., 5 und nur für k = 5bekommen wir eine reelle Zahl, nämlich 1. In diesem Fall erhalten wir somit einen reellen Eigenvektor, die Raumdiagonale d = (1, 1, 1, 1, 1). Als Eigenvektor zum Eigenwert 1 wird d von A fix gelassen, weshalb wir $D = \mathbb{R}d$ auch als Fixgerade bezeichnen wollen. Mit den komplexen Eigenvektoren ist zunächst noch nicht viel anzufangen. Hier hilft aber die folgende Überlegung: Hat man eine reelle Matrix mit komplexen Eigenwerten und Eigenvektoren, so können die geltenden Gleichungen in ihren Real- und Imaginärteil aufgespalten werden.

In unserem Fall heißt das für $\gamma = (a+ib)$ und $\omega = (u+iv)$ mit $a, b, u, v \in \mathbb{R}$: $A\omega = A(u+iv) = Au+iAv$ und $\gamma \omega = (a+ib)(u+iv) = au-bv+i(av+bu)$. Wegen der Gleichheit $A\omega = \gamma \omega$ gilt somit Au + iAv = au - bv + i(av + bu)und ein Vergleich von Real- und Imaginärteil liefert die beiden Gleichungen

(I)
$$Au = au - bv$$
 und (II) $Av = av + bu$

Spannt man nun mit $u = \text{Re } \omega$ und $v = \text{Im } \omega$ eine Ebene E auf, so ist diese reell und wird von A invariant gelassen. Invariant bedeutet im Unterschied zu fix aber nicht, dass alle Punkte von E unter A wieder genau auf sich selbst abgebildet werden, sondern nur, dass Punkte der Ebene wieder auf Punkte der Ebene (möglicherweise andere) abgebildet werden. Anhand der Gleichungen (I) und (II) können wir deshalb auch noch versuchen zu bestimmen, wie denn nun A genau auf E wirkt.

Wegen $\gamma = \zeta^k = e^{\frac{2\pi ik}{5}} = \cos(\frac{2\pi k}{5}) + i\sin(\frac{2\pi k}{5})$ für k = 1, ..., 5 ist $a = \cos(\frac{2\pi k}{5})$ und $b = \sin(\frac{2\pi k}{5})$. Ferner haben die Vektoren u und v die gleiche Länge und stehen aufeinander senkrecht. Der Grund hierfür ist, dass $\omega = \omega_{\gamma}$ ein *isotroper* komplexer Vektor ist, d.h. die Quadratsumme seiner Komponenten ist Null: $\omega^2 = 1 + \gamma^2 + \gamma^4 + \gamma^6 + \gamma^8 = 1 + \gamma^2 + \gamma^4 + \gamma + \gamma^3 = (1 - \gamma^5)/(1 - \gamma) = 0$ und daher gilt: $0 = \omega^2 = (u + iv)^2 = u^2 - v^2 + 2iuv$ und somit $u^2 - v^2 = 0$ und $uv = \langle u, v \rangle = 0$, was gerade bedeutet, dass $u \perp v$, also dass $u \perp v$ senkrecht stehen.³ Deshalb wirkt A auf E als eine Drehung um den Winkel $\frac{2\pi k}{5} = k \cdot 72^{\circ}$.

Auf diese Weise erhalten wir nun zwei zueinander senkrecht stehende Ebenen E_1 und E_2 , aufgespannt von Real- und Imaginärteil der Vektoren ω_{ζ} und ω_{ζ^2} , auf denen A als 72° bzw. 144° Drehung wirkt. Beide Ebenen gehen durch den Ursprung und stehen zudem noch senkrecht auf der Fixgeraden D. Es gilt also $E_1 \perp E_2 \perp D$ was die eingangs beschriebene orthogonale Spaltung des \mathbb{R}^5 liefert.

Ziel war es, die Penrose-Muster mittels Projektionsmethode zu erzeugen. Deshalb müssen wir in einem nächsten Schritt nun die orthogonale Projektion des fünfdimensionalen Raumes auf die beiden soeben erzeugten Ebenen E_1 und E_2 betrachten.

3.3 Die orthogonalen Projektionen π_1 und π_2

Es seien π_1, π_2 die orthogonalen Projektionen auf E_1 und E_2 . Da die Abbildung A diese beiden Ebenen invariant lässt, gilt $\pi_k A = A \pi_k$ für k = 1, 2,d.h. die orthogonalen Projektionen sind mit A vertauschbar. Betrachtet man nun die Projektionsbilder $b_i = \pi_1 e_i$ und $c_i = \pi_2 e_i$ für i = 1, ..., 5 der fünf Basisvektoren $e_1 = (1, 0, 0, 0, 0)$ bis $e_5 = (0, 0, 0, 0, 1)$ auf E_1 bzw. E_2 , erhält man die folgenden Gleichungen: $Ab_i = A \pi_1 e_i = \pi_1 A e_i = \pi_1 e_{i-1} = b_{i-1}$ und $Ac_i = A \pi_2 e_i = \pi_2 A e_i = \pi_2 e_{i-1} = c_{i-1}$, was bedeutet, dass b_{i-1} und b_i auf

³Die erste Gleichung benutzt die geometrische Summenformel $(1+x+...+x^{n-1})(1-x) = 1 - x^n$

 E_1 einen Winkel von 72° und c_{i-1} und c_i auf E_2 einen Winkel von 144° einschließen.

Abbildung 3.3: Die Projektion der Einheitsvektoren auf E_1 und E_2 , es gilt: $b_i = \pi_1 e_i$ und $c_i = \pi_2 e_i$ mit $1 \le i \le 5$

Nun erinnern wir uns: Im Falle der Penrose-Muster wird das fünfdimensionale Würfelmuster des \mathbb{R}^5 auf einen Unterraum des \mathbb{R}^2 projiziert. Die Vektoren e_i mit i = 1, ..., 5 sind nun genau die Kantenvektoren dieses Würfelgitters im \mathbb{R}^5 und "deshalb sind die E_1 -Projektionen von zweidimensionalen Seiten des fünfdimensionalen Würfel gerade die beiden Penrose-Rhomben" [EB,S.12].⁴

Abbildung 3.4: Die Projektion der Einheitsvektoren auf E_1 : Die beiden Penrose-Rauten

⁴Genauso gut hätte man die Ebene E_2 wählen können, doch da hier die Projektionen von zwei benachbarten Einheitsvekotoren den Winkel 144° einschließen, wäre die Nummerierung ein klein wenig komplizierter

Allerdings muss man nun noch eines bedenken: Als Projektionsebene E des Penrose-Musters kann nicht die Ebene E_1 selber gewählt werden, da diese durch den Ursprung geht und somit durch einen ganzzahligen Punkt. Dies darf aber gerade nicht sein, will man eine Pflasterung erhalten [vgl.3.1]. Das bedeutet, dass E_1 vom Ursprung weg verschoben werden muss. Dazu wählen wir einen Vektor $a \in E_2$ und setzen $E = E_1 + a$ mit eben gerade der Bedingung, dass E keinen Punkt mit ganzzahligen Koordinaten enthalten darf.⁵

Hat man zwei verschiedene Vektoren $a, a' \in E_2$ die dies erfüllen und unterscheiden sich $E = E_1 + a$ und $E' = E_1 + a'$ nicht einfach nur um einen ganzzahligen Vektor, so erhält man zwei unterschiedliche Penrose-Muster. Damit ist auch die Frage gelöst, wieviele Penrose-Muster es denn überhaupt gibt, nämlich überabzählbar viele!

Im Folgenden ist also $E = E_1 + a$ die Projektionsebene der Penrose-Muster, die dazu senkrechte Ebene E_2 soll mit F bezeichnet werden, es gilt also $a \in F$. Analog dazu sei π_E die orthogonale Projektion auf E und π_F die orthogonale Projektion auf F.

3.4 Deflation und Inflation

Was jedoch noch nicht geklärt ist, ist die Frage nach dem Grund für die De- bzw. Inflationseigenschaft der Penrose-Muster. Dazu muss eine weitere lineare Abbildung - genannt S - auf dem \mathbb{R}^5 betrachtet werden. Um deren Wirkung auf dem fünfdimensionalen Raum aber ganz zu verstehen, soll das Wirkprinzip wieder an Hand des \mathbb{R}^2 klargemacht werden.

3.4.1 Beispielbetrachtung im \mathbb{R}^2

S sei gegeben durch die symmetrische Abbildungsmatrix $\begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix}$.

Diese ist wegen det S = -1 ganzzahlig invertierbar, die Eigenwerte sind $\lambda_1 = -\frac{1}{\Phi}$ und $\lambda_2 = \Phi$ mit den dazugehörigen Eigenvektoren $\omega_1 = (\Phi, 1)$ und $\omega_2 = (-1, \Phi)$.⁶ Setzt man nun $E = \mathbb{R}\omega_1 + a$ und $F = \mathbb{R}\omega_2$ mit $a \in F$,

⁵Warum *a* gerade nur aus E_2 und nicht aus $E_2 + D$ gewählt wird, wird in Abschnitt 3.4.2 klar!

 $^{^6\}Phi$ bezeichnet dabei wieder das Verhältnis des Goldenen Schnitts mit $\Phi = 1 + \frac{1}{\Phi} = \frac{1}{2}(1 + \sqrt{5})$ und $\varphi = \frac{1}{\Phi}$, vgl.2.1

so erhält man mittels Projektionsmethode - wie in 3.1 beschrieben und mit den selben Bezeichnungen - ein Fliesenmuster M_E auf der Geraden E.

Was macht nun S mit der Geraden E und dem offenen Streifen $E + I^2$ um E? Wegen $SE = S(\mathbb{R}\omega_1 + a) = E + \Phi a$ wird die Gerade E auf eine zu E parallele Gerade SE = E' abgebildet und folglich der Streifen $E+I^2$ auf den verformten Streifen $S(E + I^2) = SE + SI^2 = E' + SI^2$. Diese Verformung des zweidimensionalen Einheitswürfels I^2 unter S zu SI^2 kann man leicht berechnen: I^2 wird aufgespannt von den beiden Einheitsvektoren e_1 und e_2 und es gilt $Se_1 = (0, -1)$ und $Se_2 = (-1, 1)$. Man kann allerdings den Streifen $E + I^2$ auch beschreiben mit Hilfe der orthogonalen Projektion des offenen Einheitswürfels I^2 auf die Ebene F, die wegen $\langle \omega_1, \omega_2 \rangle = \Phi(-1) + \Phi(-1)$ $1\Phi = 0$ auf E senkrecht steht. Der Streifen $E + I^2$ lässt sich demnach schreiben als E + V mit $V := \pi_F(I^2)$ und daher ergibt sich: $S(E + I^2) =$ $S(E + V) = E' + SV = E' + \Phi V$, da S auf F den Eigenwert Φ hat. Das bedeutet nun aber gerade, dass der verformte Streifen $E' + SI^2 =$ $E' + \Phi V$ um genau diesen Faktor Φ breiter ist als der Streifen $E' + I^2$. Diese Beschreibung des verformten Streifens mit Hilfe der Projektion auf F wird im Folgenden eine sehr wichtige Bedeutung haben! Doch nun erst einmal zurück zum Spielbeispiel.

Projiziert man nun die Gitterpunkte des verformten Streifens orthogonal auf E', so erhält man ein um φ verkleinertes und gespiegeltes Abbild SM_E des ursprünglichen Musters M_E . Der Grund dafür ist folgender: S ist mit der orthogonalen Projektion π_E auf E vertauschbar⁷ und hat auf E den Eigenwert $-\varphi$.

Nun gibt es aber auf der Geraden E' auch das Muster $M_{E'}$, welches zustande kommt, projiziert man alle ganzzahligen Gitterpunkte innerhalb des Streifens $E' + I^2$ auf E'. Da der verformte Streifen $E' + SI^2$ um den Faktor Φ breiter ist als der Streifen $E' + I^2$ und wegen der ganzzahligen Invertierbarkeit von S besitzen auch wirklich alle ganzzahligen Gitterpunkte innerhalb des verformten Streifens ein ganzzahliges Gitterpunkt-Urbild in $E + I^2$. Das bedeutet aber nichts anderes, als dass der verformte Streifen damit mehr Gitterpunkte enthält als $E' + I^2$ und somit ist das zu M_E ähnliche Muster SM_E auf E' eine echte Verfeinerung von $M_{E'}$. Umgekehrt ist das Muster. M_E eine Verfeinerung des Musters $S^{-1}M_{E'}$ auf E.

 $^{^7\}mathrm{Man}$ kann also auch erst projizieren und dann abbilden

Abbildung 3.5: Die Inflationseigenschaft im Fall des \mathbb{R}^2

Somit ist die Inflationseigenschaft - und damit auch die Deflationseigenschaft - dieses Musters gezeigt: "Die Fliesen von M_E lassen sich zu größeren Fliesen zusammensetzen, die ein analoges Muster bilden" [EB,S.13] und man kann den Begriff der Deflation definieren als gerade jene Transformation, die eine bestehende Pflasterung auf eindeutige Weise in eine andere Pflasterung mit kleineren Fliesen umwandelt [vgl.KR,S.9], den Begriff der Inflation entsprechend als Umkehrung dieses Prozesses!

Wegen der Eigenwerte von S und der speziellen Wahl der Geraden E als Eigenraum kennen wir in diesem Fall auch den Verkleinerungsfaktor eines jeden Deflationsschrittes: φ bzw. den Vergrößerungsfaktor eines jeden Inflationsschrittes: Φ . Mit anderen Worten heißt das, die Fliesen des Musters SM_E sind um den Faktor φ kleiner als die des Musters $M_{E'}$.

3.4.2 Übertragung auf den Penrose-Fall

Die eben beschriebene Idee überträgt man nun auf den fünfdimensionalen Penrose-Fall. Die lineare Abbildung S wird hier durch folgende Abbildungsvorschrift auf den Basisvektoren des \mathbb{R}^5 definiert:

$$Se_i := -e_{i-1} - e_{i+1}$$
 für $i = 1, ..., 5$

wobei der Index modulo 5 gerechnet wird. Diese Abbildung ist offensichtlich ganzzahlig linear und ihre Abbildungsmatrix symmetrisch. Wegen SA = ASerhält die Matrix S die Eigenräume von A [vgl.3.2], denn es gilt mit $Ax = \lambda x$ (d.h. λ Eigenwert und x Eigenvektor von A): $ASx = SAx = S\lambda x = \lambda Sx$ und mit $Sx = \lambda x$ (d.h. λ Eigenwert und x Eigenvektor von S): SAx = $ASx = A\lambda x = \lambda Ax$.⁸ Daher lässt S somit auch die beiden Ebenen Eund F invariant [vgl.3.2;3.3] und ist deshalb mit den beiden Orthogonalprojektionen π_E und π_F auf E und F vertauschbar. Es gilt also: $Sb_i =$ $S\pi_E e_i = \pi_E Se_i = -b_{i-1} - b_{i+1}$ und $Sc_i = S\pi_F e_i = \pi_F Se_i = -c_{i-1} - c_{i+1}$ mit $1 \leq i \leq 5$. Kann man diese beiden Gleichungen noch weiter umformen? Dazu wollen wir betrachten, was die Summe der Vektoren $-b_{i-1} - b_{i+1}$ bzw. $-c_{i-1} - c_{i+1}$ genau ist.

Abbildung 3.6: Die Eigenwerte von S auf E und $F: -\varphi$ und Φ

Aus 3.3 wissen wir, dass zwei benachbarte Vektoren auf E einen Winkel von 72° einschließen, auf F dagegen einen Winkel von 144° und somit finden wir die beiden Penrose-Rauten in obiger Abbildung. Mit den Bezeichnungen a und b und $\frac{a}{b} = \frac{a+b}{a} = \Phi$ aus 2.1 und den Ergebnissen aus 2.2 erhält man: $\frac{b}{a} = \frac{-b_{i-1}-b_{i+1}}{-b_{i-1}} = \frac{Sb_i}{-b_i} = \varphi$ und deshalb $Sb_i = -\varphi b_i$ und $\frac{a+b}{a} = \frac{-c_{i-1}-c_{i+1}}{c_i} = \frac{Sc_i}{c_i} = \Phi$ und daher $Sc_i = \Phi c_i$.⁹

 $^{^8 \}rm Natürlich erhält auch umgekehrt die Matrix A die Eigenräume von S, doch das ist hier nicht weiter von Interesse$

⁹Man kann dies auch algebraisch nachrechnen: $z = (\zeta + \bar{\zeta})$ und daher gilt $z^2 = (\zeta + \bar{\zeta})^2 = \zeta^2 + 2\zeta\bar{\zeta} + \bar{\zeta}^2 = \zeta^2 + \bar{\zeta}^2 + 2$. Addiert man nun z und z^2 erhält man: $z + z^2 = \zeta + \bar{\zeta} + \zeta^2 + \bar{\zeta}^2 + 2 = (\zeta + \bar{\zeta} + \zeta^2 + \bar{\zeta}^2 + 1) + 1 = 1$ also $z^2 + z = 1$ mit $z_{1/2} = \frac{-1 + / -\sqrt{5}}{2}$

Die Situation ist somit ähnlich zum zweidimensionalen Fall: Die Abbildung S kontrahiert in Richtung der Ebene E um den Faktor $-\varphi$ und expandiert in Richtung F um Φ . Wendet man nun S auf die Projektionsebene E des Penrose-Musters M_E und den Projektionsstreifen $E + I^5$ an, so erhält man jetzt wegen $E = E_1 + a$ mit $a \in F$ eine zu E parallele Ebene E' = SE und einen verformten Streifen $S(E + I^5) = E' + SI^5$. Und analog zum Spielbeispiel ist auch das Muster SM_E , das man erhält, wenn man alle Gitterpunkte des verformten Streifens $E' + SI^5$ auf E' projiziert, wieder ein gespiegeltes und um den Faktor φ gestauchtes Abbild von M_E . Die Argumente sind die gleichen wie im Fall \mathbb{R}^2 .

Da S ganzzahlig ist, werden auch alle Gitterpunkte aus $E + I^5$ auf Gitterpunkte in $E' + SI^5$ abgebildet. Nun aber kommt der entscheidende Unterschied zum zweidimensionalen Fall, der uns leider die Analogie erst einmal nicht mehr fortsetzen lässt: Die Abbildung S ist nicht mehr ganzzahlig invertierbar, denn die Raumdiagonale d = (1, 1, 1, 1, 1) wird unter S auf -2dabgebildet. Das macht uns insofern Probleme, als dass wir ja noch zeigen müssen, dass SM_E eine Verfeinerung von $M_{E'}$ ist, jenem Muster, das man durch Projektion der Gitterpunkte im offenen Streifen $E' + I^5$ auf die Ebene E' erhält.¹⁰ Und eben dafür brauchten wir in unserer Beispielbetrachtung im \mathbb{R}^2 das Argument der ganzzahligen Invertierbarkeit.

Soll also trotzdem gezeigt werden, dass das Muster SM_E eine Verfeinerung von $M_{E'}$ ist, müssen zwei elementare Fragen geklärt werden:

- Was machen wir mit der verloren gegangenen ganzzahligen Invertierbarkeit von S?
- Wie kann man sicherstellen, dass der verformte Streifen $E' + SI^5$ auch wirklich die ganzzahligen Gitterpunkte des Streifens $E' + I^5$ enthält?

Die zweite Frage ist jedoch noch zu weit gefasst: Letzten Endes kommt es nur auf die Projektionspunkte der ganzzahligen Gitterpunkte auf die Ebene E' an und so kann man die Frage noch präzisieren:

Wie kann man sicherstellen, dass die Projektion der Bildmenge S((E+I⁵) ∩ Z⁵) auf E' auch wirklich die Projektion von (E' + I⁵) ∩ Z⁵ auf E' enthält, d.h. dass gilt S((E + I⁵) ∩ Z⁵) ⊃ (E' + I⁵) ∩ Z⁵?

und somit $z_1 = \frac{-1+\sqrt{5}}{2} = \frac{2(1-\sqrt{5})}{-4} = \frac{2(1-\sqrt{5})}{(1+\sqrt{5})(1-\sqrt{5})} = \frac{2}{(1+\sqrt{5})} = \frac{1}{(1+\sqrt{5})} = \frac{1}{\Phi} = \varphi!$ Allerdings betrachten wir $-z = -(\zeta + \bar{\zeta})$ und daher gilt in unserem Fall $z_1 = -\varphi$

¹⁰Das ist es gerade, was die Inflationseigenschaft ausmacht - also eigentlich das entscheidende Detail. das nun im fünfdimensionalen Fall fehlt!

Bevor wir uns um eine Lösung dieser beiden Fragen bemühen, noch eine hilfreiche Vorüberlegung.

Vorüberlegung

Mit Hilfe von vierdimensionalen Hyperebenen kann man die Lage der ganzzahligen Gitterpunkte - die ja offensichtlich eine zentrale Rolle spielen konkretisieren! Jeder Punkt $z \in \mathbb{Z}^5$ liegt nämlich wegen $\langle z, d \rangle = \sum_{i=1}^5 z_i$ auf einer der zu $D^{\perp} := E + F$ parallelen Hyperebenen

$$H_k = \{x \in \mathbb{R}^5; \langle x, d \rangle = k\} = D^{\perp} + ke_1 = D^{\perp} + \frac{k}{5}d$$

mit einem ganzzahligen k. Im Falle der Penrose-Muster interessiert letztlich nur der offene Streifen $E + I^5$ (bzw. dessen Bildstreifen) und deshalb kann die Anzahl der Hyperebenen eingeschränkt werden. Für ganzzahlige Punkte z innerhalb des Streifens $E + I^5$ gilt nämlich z = x + v mit $x \in E, v \in I^5$ und daher ist $\langle z, d \rangle = \langle x + v, d \rangle = \langle x, d \rangle + \langle v, d \rangle = \sum_{i=1}^5 v_i \in (0, 5)$, da $\langle x, d \rangle = 0$ wegen $x \in E \subset E_1 + F$ und $(E_1 + F) \perp d$ [vgl.3.2] und deshalb ist $k \in \{1, 2, 3, 4\}$. Wir wissen somit, wo die ganzzahligen Gitterpunkte innerhalb des Streifens $E + I^5$ liegen: Auf den Hyperebenen H_1, H_2, H_3 und H_4 bzw. genauer noch noch auf der Gittermenge $\Gamma_k = H_k \cap \mathbb{Z}^5$ mit $1 \leq k \leq 4$.

Dies ist nun eine entscheidende Hilfe: Da man die genaue Lage der ganzzahligen Gitterpunkte innerhalb des Streifens $E + I^5$ kennt, wird es bei den nachfolgenden Überlegungen oft ausreichen, nur die Hyperebenen H_k bzw. die Gittermenge Γ_k für $k \in \{1, 2, 3, 4\}$ zu betrachten.

1. Die verloren gegangene ganzzahlige Invertierbarkeit

Das Problem ist Folgendes: Man weiß, dass S alle Gitterpunkte aus $E + I^5$ wieder auf Gitterpunkte im Bildstreifen $E' + SI^5$ abbildet, wegen der fehlenden ganzzahligen Invertierbarkeit ist aber nun nicht mehr garantiert, dass wirklich alle Gitterpunkte im Streifen $E' + SI^5$ stets auch einen Gitterpunkt als Urbild in $E + I^5$ besitzen. Und das macht insofern Schwierigkeiten, weil das Muster $M_{E'}$ (bei dem ja alle Gitterpunkte aus $E' + I^5$ projiziert werden) somit möglicherweise Punkte enthält, die SM_E (bei dem nur die Gitterpunkte projiziert werden, die auch ein Gitterpunkt-Urbild unter S besitzen) nicht enthält. Und genau das darf nicht passieren! Dazu wollen wir uns ansehen, was die Abbildung S genau mit den Gitterpunkten aus $E + I^5$ macht, mit anderen Worten: Was machen die unterschiedlichen Hyperebenen H_k für k = 1, 2, 3, 4 unter S? Wir wissen Sd = -2d und $x \in H_k \Rightarrow \langle x, d \rangle = k$ und deshalb gilt: $\langle Sx, d \rangle = \langle x, Sd \rangle =$ $\langle x, -2d \rangle = -2\langle x, d \rangle = -2k$, wobei das erste Gleichheitszeichen gilt, da Ssymmetrisch ist und somit $S^T = S$. Daraus folgt nun $Sx \in H_{-2k}$ und somit $SH_k \subset H_{-2k}$.

Letztlich sind wir aber nur an der Projektion der Gitterpunkte aus H_k auf die Ebene $E \subset D^{\perp}$ interessiert, d.h. an $\pi_E(H_k)$ mit $k \in \{1, 2, 3, 4\}$. Da nun $(E + F) \perp d$ [vgl.3.2] gilt: $\pi_E(H_k) = \pi_E(H_k + d) = \pi_E(H_k + (1, 1, 1, 1, 1)) = \pi_E(H_{k+5})$ und das heißt nichts anderes, als dass der Index modulo 5 gerechnet werden kann.

Formal bedeutet das, dass die Abbildung S auf D^{\perp} eingeschränkt werden kann und daher nicht mehr als Abbildung von $\mathbb{R}^5 \to \mathbb{R}^5$ betrachtet werden muss, sondern als Abbildung von $\mathbb{R}^5/\mathbb{Z}d \to \mathbb{R}^5/\mathbb{Z}d$. Der große Gewinn dabei ist, dass S auf diesem Quotientenraum ganzzahlig invertierbar ist mit der ebenfalls ganzzahligen Umkehrabbildung T, die auf den Basisvektoren wie folgt definiert ist:

$$Te_i := +e_{i-2} + e_{i+2}$$
 für $i = 1, ..., 5$

da gilt: $T \circ S(e_i) = T(-e_{i-1} - e_{i+1}) = -e_{i-3} - e_{i+1} - e_{i-1} - e_{i+3} = -e_{i+2} - e_{i+1} - e_{i-1} - e_{i+3} = (-e_{i+2} - e_{i+1} - e_{i-1} - e_{i+3} - e_i) + e_i = -d + e_i = e_i$, da $-d \equiv 0$ auf $\mathbb{R}^5 / \mathbb{Z} d.^{11}$

S bildet somit wegen $S: k \mapsto -2k$ auf D^{\perp} die verschiedenen H_k bijektiv auf H_{-2k} ab. Wegen $S: \Gamma_k \to \Gamma_{-2k}$ und $T: \Gamma_{-2k} \to \Gamma_k$ gilt $S \circ T = id_{\Gamma_{-2k}}$ und $T \circ S = id_{\Gamma_k}$ und daher bildet S auch das ganzzahlige Gitter $\Gamma_k = H_k \cap \mathbb{Z}^5$ bijektiv auf das ganzzahlige Gitter Γ_{-2k} ab. Für $1 \leq k \leq 4$ erhält man also:

$$SH_1 = H_{-2}, SH_2 = H_{-4}, SH_3 = H_{-6}$$
 und $SH_4 = H_{-8}$

und da der Index modulo 5 gerechnet werden kann folgt für k = 1, 2, 3, 4:

$$S: H_k \mapsto H_l$$
 bzw. $S: \Gamma_k \mapsto \Gamma_l$ mit $l = 3, 1, 4, 2$.

¹¹Nun ist auch klar, warum a in 3.3 nur aus F und nicht aus F + D gewählt wurde: Die Infaltionseigenschaft ist sonst nicht mehr gegeben!

2. Enthält die Projektion der Bildmenge $S((E + I^5) \cap \mathbb{Z}^5)$ auf E' auch wirklich die Projektion von $(E' + I^5) \cap \mathbb{Z}^5$ auf E'?

Analog zum Spielbeispiel kann man auch hier den fünfdimensionalen Streifen $E + I^5$ mit Hilfe der orthogonalen Projektion auf den zu E senkrechten Raum $E^{\perp} := F + D$ beschreiben: $E + I^5 = E + \pi^{\perp}(I^5)$. Dies hat den Vorteil, dass die fünf Dimensionen zunächst schon einmal um zwei "reduziert" werden. Da schließlich aber nur die Gitterpunkte innerhalb des Streifens $E + I^5$ interessieren und man deren Lage kennt (sie liegen auf H_k mit $1 \le k \le 4$) reicht es, den folgenden "Streifenersatz" betrachten:

$$E + \pi^{\perp}(I^5 \cap H_k) = E + V_k \text{ mit } V_k := \pi^{\perp}(I^5 \cap H_k).$$

Die ursprüngliche Ungleichung $S((E+I^5) \cap \mathbb{Z}^5) \supset (E'+I^5) \cap \mathbb{Z}^5$ kann damit ersetzt werden durch $(E'+SV_k) \cap \Gamma_l \supset (E'+V_l) \cap \Gamma_l$ und daher bleibt nur noch zu zeigen: $SV_k \supset V_l$ mit $k \in \{1, 2, 3, 4\}$ und $l \in \{3, 1, 4, 2\}!$

Da $D = \mathbb{R}d = \mathbb{R}(1, 1, 1, 1, 1)$ allerdings Dimension 1 hat folgt $V_k = \pi^{\perp}(I^5 \cap H_k) = \pi_D^{\perp}(I^5 \cap H_k) \times \pi_F^{\perp}(I^5 \cap H_k) = \{\frac{D}{5}\} \times \pi_F^{\perp}(I^5 \cap H_k) \cong \pi_F^{\perp}(I^5 \cap H_k)$ was nichts anderes bedeutet, als dass wir den ursprünglich dreidimensionalen "Streifenersatz" noch einmal um eine Dimension herunterbrechen konnten: V_k - genannt *Fenster* - als Projektion des konvexen Polyeders $I^5 \cap H_k$ auf die Ebene F ist somit ein "konvexes Polygon, dessen Ecken Projektionen von Eckpunkten von $I^5 \cap H_k$ sind, d.h. von $e_{i_1} + \ldots + e_{i_k}$ für untereinander verschiedene Indizes i_1, \ldots, i_k " [EB,S.17].

Nur welches sind die Eckpunkte der Fenster V_k ?

Die projizierten Einheitsvektoren $c_{i_1} + \ldots + c_{i_k}$ sind genau dann Eckpunkte von V_k , wenn sie maximalen Länge haben und das ist wiederum genau dann der Fall, wenn die Summanden c_{i_1}, \ldots, c_{i_k} benachbart sind. Ist also $c_{i_1} + \ldots + c_{i_k}$ die Summe benachbarter Vektoren auf F erhalten wir einen Eckpunkt von V_k , ist $c_{i_1} + \ldots + c_{i_k}$ dagegen die Summe nicht benachbarter Vektoren, liegt der Punkt im Inneren des Fensters.

Allerdings muss man vorsichtig sein: Auf F sind nicht $c_{i-1} + c_i$ mit $i \in \{1, ..., 5\}$ benachbart, da sie einen Winkel von 144° einschließen, sondern $c_i + c_{i-2}$ [vgl.3.3]!¹²

¹²Hierbei und im Folgenden sind c_i und c_{i-2} mit $1 \le i \le 5$ gegen den Uhrzeigersinn zu lesen, analog zu der Bezeichnung der projizierten Einheitsvektoren!

Dies ist nun eine entscheidende Hilfe, denn während der fünfdimensionale Einheitswürfel unserer Vorstellung nicht mehr zugänglich ist, kann man die zweidimensionalen Fenster V_k auf F gut verstehen und leicht zeichnen.

An Hand der anschaulichen V_k mit $1 \le k \le 4$ kann man nun auch testen, ob die Projektion der Bildmenge $S((E + I^5) \cap \mathbb{Z}^5)$ auf E' auch wirklich die Projektion von $(E' + I^5) \cap \mathbb{Z}^5$ auf E' enthält. Im Einzelnen ist dafür zu zeigen:

$$SV_1 \supset V_3, SV_2 \supset V_1, SV_3 \supset V_4 \text{ und } SV_4 \supset V_2.$$
 (*)

Dies ist aber trotz der Expansionseigenschaft von S nicht sofort klar! V_1 als konvexe Hülle der projizierten Einheitsvektoren c_i mit i = 1, ..., 5 ist beispielsweise kleiner als V_3 , die konvexe Hülle der Summe von je drei Nachbarvektoren $c_{i+2} + c_i + c_{i-2}$. Reicht der Vergrößerungsfaktor Φ des Goldenen Schnitts von S auf F aus, um die gewünschte Inklusion zu erhalten?

Die Antwort lautet ja: Er reicht genau aus um die gewünschte Beziehung (*) für alle Paare $(k, l) \in \{(1, 3), (2, 1), (3, 4), (4, 2)\}$ zu zeigen. Im dargestellten kritischen Fall gilt gerade die Gleichheit $SV_1 = V_3$: V_1 wird aufgespannt von den projizierten Einheitsvektoren c_i mit $1 \le i \le 5$ und wegen $\sum_{i=1}^5 c_i = 0$ gilt: $Sc_i = -c_{i-1} - c_{i+1} = c_{i+2} + c_i + c_{i-2}$ und das ist gerade ein Eckpunkt von V_3 , was nichts anderes bedeutet, als dass die Ecken von V_1 unter S gerade auf die Ecken von V_3 abgebildet werden und somit ist $SV_1 = V_3$.

Wegen $V_1 = -V_4$ und $V_2 = -V_3$ gilt ebenso $SV_4 = V_2$. In den anderen beiden Fällen erhält man dagegen eine echte Inklusion: $SV_2 \supset V_1$ und $SV_3 \supset V_4$.

Abbildung 3.7: Einer der kritischen Fälle: $SV_1 = V_3$

Damit ist nun schließlich gezeigt, dass das Muster SM_E eine Verfeinerung von $M_{E'}$ ist und umgekehrt das Muster M_E von $TM_{E'}$, womit die De- und Inflationseigenschaft der Penrose-Muster gezeigt ist. Die Abbildung S ist somit für die Deflation, die zu S inverse Abbildung T dementsprechend für die Umkehrung dieses Prozesses, die Inflation, verantwortlich. Wegen der Eigenwerte dieser speziellen Abbildungen ist auch der Faktor eines jeden Deflationsschrittes: φ bzw. eines jeden Inflationsschrittes: Φ bekannt!

Betrachten wir also im Folgenden noch weiter De- und Inflation der Penrose-Muster, so liefern uns Aussagen über Deflation auf Grund der Umkehrbarkeit immer auch Aussagen über Inflation und umgekehrt. Dies zu bedenken wird sehr wichtig sein.

4 Die Eindeutigkeit der Unterteilung unter Deflation

In diesem Abschnitt soll nun die Übereinstimmung der Projektionsmethode mit der elementargeometrischen Methode bezüglich der Eindeutigkeit der Unterteilung der beiden Penrose-Rauten bewiesen werden - was dann letztlich nichts anderes als die Übereinstimmung der beiden Verfahren bedeutet.

Im elementargeometrischen Fall existiert eine eindeutige Unterteilung der beiden Penrose-Rauten, so wie Abbildung 4.2 sie zeigt [vgl.2.3]. Im Fall der Projektionsmethode sieht die Lage dagegen anders aus: Im letzten Kapitel wurde gezeigt, wie Penrose-Muster mittels Projektionsmethode entstehen und dass eine De- und somit auch Inflationsabbildung existiert. Neben deren Existenz weiß man zwar auch, dass diese Abbildung wegen Dimension n = 5 im Penrose-Fall eindeutig gegeben ist [vgl.KR,S.64], das Wort "eindeutig" ist hier allerdings eher zweideutig, meint es doch nur, dass die Abbildungsvorschrift eindeutig ist und nicht, dass die Unterteilung der beiden Penrose-Rauten auf eindeutige, also immer gleiche Art und Weise geschieht. Genau dies aber meint man festzustellten, betrachtet man mehrere aufeinanderfolgende De- und Inflationsschritte eines beliebigen Penrose-Musters: Man erhält genau die Unterteilung wie im Fall der elementargeometrischen Methode [vgl.Kapitel 2].

Abbildung 4.1: Ausschnitt aus einem Penrose-Muster

Abbildung 4.2: Die Unterteilung der beiden Penrose-Rauten

Aber ist das wirklich immer so? Wer sagt, dass die Rauten überhaupt unterteilt werden? Und wenn, warum dann immer auf die gleiche Art und Weise und warum geht das nicht anders? Genau diesen Fragen soll im Folgenden nachgegangen werden.

Vorbemerkungen zur Terminologie

In Kapitel 3 wurde gezeigt, dass das Muster SM_E eine Verfeinerung von $M_{E'}$ ist. In Anlehnung daran soll ein Penrose-Muster, welches durch einen Deflationsschritt aus einem anderen Penrose-Muster hervorgeht, *feines Muster* heißen, das ursprüngliche Muster folglich grobes Muster. In dieser Terminologie wäre also $M_{E'}$ das grobe und SM_E das feine Muster. Die Penrose-Rauten des groben Musters sollen analog dazu als grobe Rauten mit Kante S, Längsdiagonalen D der groben breiten Raute und Querdiagonalen (D-S) der groben schmalen Raute bezeichnet werden und die Rauten des feinen Musters dementsprechend als feine Rauten mit Kante s. Längsdiagonalen d der feinen breiten Raute und Querdiagonalen (d-s) der feinen schmalen Raute.

4.1 Das Längenargument

Aus 3.4 ist der Faktor eines Deflationsschrittes bekannt: Die beiden Penrose-Rauten des Musters SM_E sind um den Faktor φ kleiner als die des Musters $M_{E'}$, es gilt also $s = \varphi S, d = \varphi D$ und $(d - s) = \varphi (D - S)$. Des Weiteren wissen wir aus 2.1 dass auf Grund der Beziehung von Diagonale und Seite im regelmäßigen Fünfeck für die Penrose-Rauten gilt: $\frac{S}{D} = \frac{s}{d} = \varphi$ und $\frac{S}{(D-S)} = \frac{s}{(d-s)} = \Phi$.

Welche Möglichkeiten gibt es nun, die Kante S einer groben Raute zu unterteilen? Unter der Annahme, dass die Kanten S stets nur durch Kanten s, Querdiagonalen (d-s) der schmalen und Längsdiagonalen d der breiten Rauten des feinen Musters unterteilt werden, haben wir als Unterteilungsmöglichkeiten auch nur die Strecken s, d und (d-s) zur Verfügung.

S kann wegen $s = \varphi S$ nun nicht einfach zu einer kleineren Kante s im feinen Muster werden und auch die Unterteilung von S in zwei (oder mehrere) kleine Kanten führt wegen $s + s = 2s = 2\varphi S > S$ schnell zu einem Widerspruch. Dagegen sieht man sofort, dass wegen $S = \varphi D = d$ eine grobe Kante S einer Längsdiagonalen d im feinen Muster entspricht. Mit den gleichen Argumenten sieht man schließlich auch, dass eine Kante S nur noch in s + (d - s), also in eine Kante s des feinen Musters und eine Querdiagonale (d - s) der schmalen Raute unterteilt werden kann. Alle anderen Unterteilungsmöglichkeiten scheiden aus:

• Eine Kante S des groben Musters wird also entweder zu einer Längsdiagonalen d der feinen breiten Raute oder sie wird unterteilt von einer Kante s und der Querdiagonalen (d - s) der feinen schmalen Raute.

Im Fall der in Abbildung 4.2 gezeigten Unterteilung der Penrose-Rauten sind alle ausgerechneten Bedingungen erfüllt: Sowohl bei der Unterteilung der breiten Raute als auch bei der der schmalen Raute werden zwei der vier Kanten S in eine Längsdiagonale d, die zwei anderen Kanten S in je eine kleine Kante s und eine Querdiagonale (d-s) unterteilt. Warum allerdings ist folgende Unterteilung, die ebenfalls die gerade errechnete Unterteilunsbedingung erfüllt, falsch? Oder ist sie überhaupt falsch?

Abbildung 4.3: Ist das eine mögliche Unterteilung der breiten Penrose-Raute?

Das Vorgehen hat in seiner Argumentation noch einen weiteren Haken: Woher wissen wir denn, dass bei Penrose-Mustern Kanten auch wirklich nur durch Kanten oder bestimmte Diagonalen unterteilt werden und nicht einfach willkürlich? Ein Blick auf den Fall n = 7, den sogenannten "Heprose-Fall" [vgl.ER,S.4] zeigt, dass auch diese Annahme keineswegs selbstverständlich und von sich aus gegeben ist.¹

Abbildung 4.4: Der "Heprose-Fall"

1

¹Abbildung vgl.ER,S.19ff

Auf der Suche nach der Eindeutigkeit der Unterteilung der beiden Penrose-Rauten müssen wir also noch einen Schritt weiter gehen, eine allein elementargeometrische Betrachtung ist nicht ausreichend.

Die folgenden Abschnitte werden zeigen, dass die Fenster $V_1 - V_4$ aus Kapitel 3 bezüglich einer eindeutigen Unterteilung noch weit mehr Informationen in sich tragen, als bisher verwendet.

4.2 Die Eckentypen der Penrose-Muster

1

Aus Kapitel 3 ist bekannt, dass ein ganzzahliger Gitterpunkt $z \in \mathbb{Z}^5$ genau dann auf die Ebene E projiziert wird, wenn er innerhalb des fünfdimensionalen Streifens $E + I^5$ liegt. Ferner wissen wir, dass alle $z \in \mathbb{Z}^5$ auf einer der zu D^{\perp} parallelen Hyperebenen H_k liegen. Mit Hilfe des Index k eines Punktes $z \in \mathbb{Z}^5$ kann man nun die Lage dieses Punktes innerhalb des fünfdimensionalen Hypergitters noch konkretisieren. Sei $k(z) := \langle z, d \rangle (\text{mod}5)$, dann sagt der Index k eines Punktes $z \in \mathbb{Z}^5$ gerade aus, auf welcher der Hyperebenen H_k dieser liegt.² Im Falle der Penrose-Muster interessieren nur die Hyperebenen H_k für $k \in \{1, 2, 3, 4\}$ [vgl.3.4.2] - eine Einschränkung, die somit auch für den Index gilt.

Mit Hilfe dieser Überlegungen, den Ergebnissen aus 3.4 und der Konvention $\pi_F(z) = z_F$ kann man nun obige Projektionsbedingung umformulieren zu:

 $z \in \mathbb{Z}^5$ mit Index (z) = k wird auf E projiziert $\Leftrightarrow z_F \in V_k$.

Liegt also beispielsweise die Projektion eines Gitterpunktes mit Index 3 auf die Ebene F innerhalb von V_3 , so wird dieser auf E projiziert, andernfalls nicht.

Anhand dieser Folgerung kann man jetzt aber nicht nur ablesen, ob ein Punkt $z \in \mathbb{Z}^5$ projiziert wird oder nicht, vielmehr kann man damit auch testen, welche der Nachbarpunkte von z denn ebenfalls auf E projiziert werden $!^3$

²Mit $\langle z, d \rangle = \sum_{i=1}^{5} z_i$, vgl.3.4.2 ³Projiziert werden ja nur die ganzzahligen Punkte, deshalb interessieren natürlich als Nachbarpunkte auch nur die ganzzahligen Nachbarpunkte
Dazu eine Vorüberlegung:

• Hat ein gegebener ganzzahliger Gitterpunkt Index k, so weiß man, dass seine ganzzahligen Nachbarpunkte als mögliche Indizes nur k+1und k-1 haben können, d.h. der Index ändert sich beim Übergang zu Nachbarpunkten um +/-1.4

Liegt also die F-Projektion z_F eines Punktes $z \in \mathbb{Z}^5$ mit Index k innerhalb von V_k (d.h. z wird auf E projiziert) erhält man alle Nachbarpunkte, die auch projiziert werden, wie folgt: Zuerst betrachtet man alle generell möglichen Nachbarn dieses Punktes. Diese erhält man, indem man von $z_F \in V_k$ aus auf F in alle möglichen Einheitsrichtungen $+/-c_i$ für i = 1, ..., 5 geht - denn will man auf F in Richtung der Einheitsvektoren laufen, muss man jetzt natürlich die F-Projektionen der Einheitsvektoren betrachten und das sind nach 3.3 genau die c_i mit $1 \le i \le 5$. In einem zweiten Schritt testet man dann, welche dieser potentiell möglichen Nachbarn auch wirklich innerhalb von V_{k+1} oder V_{k-1} liegen, je nachdem ob man eine positive oder negative Einheitsrichtung addiert hat. Es muss also gelten:

$$(z_F + c_i) \in V_{k+1}$$
 und $(z_F - c_i) \in V_{k-1}$ für $i = 1, ..., 5$

und für alle i = 1, ..., 5, die diese Bedingung erfüllen, wird der Nachbarpunkt $z_F + / - c_i$ dann ebenfalls auf E projiziert.

Auf diese Weise erhält man alle möglichen Nachbarpunkte eines gegebenen Punktes $z \in \mathbb{Z}^5$ innerhalb des Projektionsstreifens $E + I^5$.

Im Falle der Penrose-Muster ergeben sich so insgesamt sieben unterschiedliche Konstellationen von möglichen Nachbarpunkten, die als Eckentyp bezeichnet werden sollen. Typ meint hier, dass es nur auf die Grundform, nicht aber auf eventuelle Kongruenzen (Verschiebung, Drehung, Spiegelung) ankommt.

Im Folgenden sollen nun die verschiedenen Eckentypen bestimmt werden. Dazu ist allerdings Vorsicht angebracht: Uns interessieren zwar die Eckentypen auf der Ebene E, da dies die Projektionsebene des Penrose-Musters

⁴Dies ist anschaulich sofort klar: Das fünfdimensionale Gitternetz wird aufgespannt von den fünf Basisvektoren $e_1, ..., e_5$. Will man nun von einem beliebigen Gitterpunkt $z \in H_k$ aus zu einem Nachbarpunkt, so hat man dabei als mögliche Richtungen genau die fünf positiven und die fünf negativen Einheitsvektoren zur Verfügung. Das heißt nun aber gerade, dass man dabei entweder auf die Hyperebene H_{k+1} oder H_{k-1} gelangt. Die Nachbarpunkte haben folglich Index k + 1 oder k - 1

ist; um diese zu bestimmen, müssen wir jedoch zunächst die Projektionen der Gitterpunkte auf F betrachten, da gerade die unterschiedlichen Fenster $V_1 - V_4$ erst einmal "bestimmen", welche der Nachbarpunkte denn überhaupt projiziert werden! Es ist also somit stets zwischen der F- und E-Projektion zu unterscheiden und dies ist auch wichtig, da die Projektion zweier benachbarter Einheitsvektoren auf E einen Winkel von 72° einschließt, auf Fdagegen 144° und die Eckentypen auf E und F somit eine unterschiedliche Gestalt haben können!⁵

Eckentypen vom Index 1 und 4

Betrachten wir zunächst einen beliebigen Punkt $z \in \mathbb{Z}^5$ mit Index 1, der auf E projiziert wird, d.h. es gilt $z_F \in V_1$. Die F-Projektionen aller möglichen Nachbarpunkte können in diesem Fall nur in V_2 liegen, da Index 0 im Penrose-Fall nicht zugelassen ist. Dies bedeutet, dass wir nur die positiven Richtungen $+c_i$ für i = 1, ..., 5 betrachten müssen. Bei der Frage, welche der potentiellen Richtungen denn nun auch wirklich in V_2 liegen, gelangt man schließlich zu der Einteilung von V_1 in insgesamt drei verschiedene Arten von Gebieten: W_1, W_2 und W_3 .

Abbildung 4.5: Die Einteilung von V_1 in die Gebiete W_1, W_2 und W_3 bezüglich verschiedener Eckenumgebungen

Für z_F im Gebiet W_1 gilt $z_F + c_i \in V_2$ für alle i = 1, ..., 5, was nichts anderes heißt, als dass man von W_1 aus in alle fünf möglichen Einheitsrichtungen $+c_i$ laufen kann und nicht aus V_2 herauskommt. Im Gebiet W_3 gibt es dagegen

⁵Vergleiche hierzu Abbildung 3.3: Auf E sind b_{i-1} und b_i benachbart, auf F dagegen c_i und $c_{i-2}!$

stets eine Richtung $+c_i$ mit $1 \le i \le 5$, so dass gilt $z_F + c_i \notin V_2$, was bedeutet, dass hier vier Nachbarpunkte existieren.

Für z_F im Gebiet W_2 gibt es sogar immer zwei benachbarte Richtungen c_i und c_{i-2} , so dass die beiden Punkte $z_F + c_i$ und $z_F + c_{i-2}$ für alle $i \in \{1, ..., 5\}$ gerade nicht mehr in V_2 liegen. Alle anderen Punkte liegen innerhalb von V_2 , werden also projiziert und sind folglich Nachbarpunkte.

Wie kommt man nun auf diese Einteilung? Dazu muss man sich die beiden Fenster V_1 und V_2 genau anschauen. V_1 ist die konvexe Hülle der projizierten Einheitsvektoren c_i mit $1 \le i \le 5$ auf der Ebene F [vgl.3.4.2]. Betrachtet man nun beispielsweise die Diagonale durch die Eckpunkte c_2 und c_3 von V_1 , erkennt man sofort, dass diese zu der Strecke mit den Eckpunkten $c_2 + c_5$ und $c_3 + c_5$ parallel ist und sich genau um den Vektor c_5 unterscheidet. Diese Strecke ist aber nun nichts anderes als eine Seite von V_2 : V_2 ist gerade die konvexe Hülle der Summe zweier benachbarter Vektoren c_i und c_{i-2} auf F [vgl.3.4.2] und deshalb sind $c_2 + c_5$ und $c_3 + c_5 = c_5 + c_3$ gerade Eckpunkte von V_2 , die auch noch benachbart sind und somit ist die Strecke zwischen ihnen gerade eine Seite von V_2 . Wegen der Fünfecksymmetrie gilt das natürlich für jede Diagonale von V_1 und deshalb sind je eine Diagonale von V_1 und eine Seite von V_2 parallel und unterscheiden sich gerade um einen projizierten Einheitsvektor c_i mit $1 \le i \le 5$. Jede der fünf Diagonalen von V_1 teilt also V_1 gewissermaßen in zwei Gebiete $V_{\{1i+\}}$ und $V_{\{1i-\}}$ mit $i \in \{1, ..., 5\}$: Innerhalb von $V_{\{1i+\}}$ kann man in Richtung c_i verschieben, ohne V_2 zu verlassen, das gesamte Gebiet $V_{\{1i-\}}$ dagegen kann man gerade nicht mehr in Richtung c_i verschieben, ohne aus V_2 rauszukommen.

Abbildung 4.6: Die Diagonale zwischen den Ecken c_2 und c_3 von V_1 teilt dieses Fenster in die Gebiete $V_{\{15+\}}$ und $V_{\{15-\}}$: $V_{\{15+\}}$ kann man in Richtung c_5 verschieben ohne V_2 zu verlassen, $V_{\{15-\}}$ dagegen nicht mehr, hier gilt: $V_{\{15-\}} + c_5 \notin V_2$

38

Aus den Diagonalenschnitten erhält man schließlich genau oben beschriebene Gebietse
inteilung des Fensters V_1 : Das Gebiet W_1 ist gerade das von den Diagonalen einbeschriebene Fünfeck im Inneren von V_1 und deshalb kann man hier in alle positiven Richtungen c_i verschieben ohne V_2 zu verlassen. Für die Gebiete $V_1 \setminus W_1$ gilt dann natürlich im Umkehrschluss, dass man hier nicht mehr in alle Richtungen c_i mit $1 \le i \le 5$ verschieben kann. Insgesamt ergeben die Diagonalenschnitte zehn unterschiedliche Dreiecke, die aber auf Grund der Fünfecksymmetrie in zwei Grundtypen eingeteilt werden können: Ein stumpfes Dreieck mit einer Seite von V_1 als Grundseite und ein spitzes Dreieck mit einer Seite von W_1 als Grundseite. Diese beiden Dreiecke unterscheiden sich in ihrer unterschiedlichen Anzahl der Uberlagerungen von $V_{\{1i+\}}$ bzw. $V_{\{1i-\}}$ mit $1 \leq i \leq 5$: Die spitzen Dreiecke werden jeweils von einem $V_{\{1i-\}}$ mit $1 \le i \le 5$ überlagert, was bedeutet, dass es jeweils eine Richtung c_i gibt, in die man das spitze Dreieck nicht verschieben kann ohne V_2 zu verlassen. Die stumpfen Dreiecke werden dagegen stets von zwei benachbarten Gebieten $V_{\{1i-\}}$ und $V_{\{1(i-2)-\}}$ überlagert für ein $i \in \{1, ..., 5\}$, was bedeutet, dass man diese jeweils nicht in zwei benachbarte Richtungen c_i und c_{i-2} verschieben kann.

Abbildung 4.7: Die Diagonalen zwischen den Ecken c_1 und c_2 , c_4 und c_5 und c_2 und c_3 teilen V_1 in die Gebiete $V_{\{14+\}}, V_{\{12+\}}, V_{\{15+\}}, V_{\{14-\}}, und V_{\{15-\}}$

In der Bezeichnung von oben sind die stumpfen Dreiecke nun gerade die Gebiete W_2 , die spitzen Dreiecke die Gebiete W_3 und somit ist die Gebietseinteilung von V_1 klar [vgl.Seite 47f]!

Wegen $V_1 = -V_4$ und $V_2 = -V_3$ kann man die Verhältnisse von V_1 auch leicht auf V_4 übertragen und man erhält somit ganz analog dessen Aufteilung. Der Unterschied liegt einzig und allein darin, dass das konvexe Polygon V_4 nicht von den positiven Vektoren c_i mit $i \in \{1, ..., 5\}$ aufgespannt wird, sondern wegen $\sum_{i=1}^{5} c_i = 0$ gerade die Ecken $-c_i$ mit $i \in \{1, ..., 5\}$ hat und somit alle Ausagen von V_1 hier für $-c_i$ gelten anstatt für $+c_i$. Die Eckentypen mit Index 4 werden also nur von den negativen Einheitsvektoren erzeugt. V_4 ist somit nichts anderes als V_1 um 180° gedreht.

Abbildung 4.8: Die Einteilung von V_4 in die Gebiete W_1, W_2 und W_3 bezüglich verschiedener Eckenumgebungen

Eckentypen vom Index 2 und 3

Sei $z \in \mathbb{Z}^5$ nun ein beliebiger Gitterpunkt vom Index 2 mit $z_F \in V_2$. In diesem Fall kann der Index um 1 zu- oder auch abnehmen, was bedeutet, dass die positiven und negativen Einheitsrichtungen betrachtet werden müssen. Insgesamt kommt man im Ergebnis zu folgender Unterteilung von V_2 [vgl.Abb.4.9]: Für einen Punkt z_F in den Gebieten W_1, W_4 und W_5 liegen stets alle positiven Richtungen $z_F + c_i$ mit $1 \le i \le 5$ in V_3 . Bei den negativen Richtungen ist zu unterscheiden. Für $z_F \in W_1$ sind gerade alle negativen Richtungen nicht mehr in V_1 , es gilt also $z_F - c_i \notin V_1$ für alle $i \in \{1, ..., 5\}$. Für $z_F \in W_4$ dagegen gibt es genau ein $i \in \{1, ..., 5\}$ mit $z_F - c_i \in V_1$ und für $z_F \in W_5$ gibt es sogar zwei benachbarte c_i und c_{i-2} mit $z_F - c_i$ und $z_F - c_{i-2} \in V_1$ für ein $i \in \{1, ..., 5\}$.

Für ein $z_F \in W_6$ fallen zwei benachbarte positive Richtungen weg, dafür kommen die entsprechenden zwei negativen Richtungen dazu, d.h es gilt: $z_F + c_{i+1}, z_F + c_{i-1}$ und $z_F + c_{i-3} = z_F + c_{i+2} \in V_3$ sowie $z_F - c_i, z_F - c_{i-2} \in V_1$ für ein $i \in \{1, ..., 5\}$. Für ein $z_F \in W_7$ gibt es stets zwei benachbarte positive Richtungen c_{i+1} und c_{i-1} mit $z_F + c_{i+1}, z_F + c_{i-1} \in V_3$ und nur

40

für die dazwischenliegende negative Richtung c_i gilt auch $z_F - c_i \in V_1^*$ mit $i \in \{1, ..., 5\}$.

Abbildung 4.9: Die Einteilung von V_2 in die Gebiete W_1, W_4, W_5, W_6 und W_7 bezüglich verschiedener Eckenumgebungen

Auch hier wollen wir wieder betrachten, wie man zu dieser Gebietseinteilung gelangt. Da man wie bereits erwähnt sowohl in die positiven als auch die negativen Einheitsrichtungen laufen kann, sollen im Folgenden der positive und der negative Fall unterschieden werden. Wenden wir uns also zunächst dem positiven Fall zu. Die Situation im Fall von Index 2 kann jedoch nicht einfach auf die im Fall von Index 1 zurückgeführt werden, da V_1 und V_2 eine andere Lage zueinander haben als V_2 und V_3 !⁶

Der Schnittpunkt P_i zweier Diagonalen von V_2 stimmt nun gerade mit der Summe zweier nicht benachbarter Vektoren $c_{i+2} + c_{i-2}$ mit $i \in \{1, ..., 5\}$ überein. Beispielsweise ist der Schnittpunkt P_5 der Diagonalen zwischen den Eckpunkten $c_2 + c_5$ und $c_3 + c_1$ und den Eckpunkten $c_4 + c_2$ und $c_5 + c_3$ gerade die Summe der beiden Vektoren $c_2 + c_3$. Verschiebt man nun diesen Schnittpunkt P_5 in Richtung c_5 erhält man $c_2 + c_3 + c_5 = c_2 + c_5 + c_3$, was nichts anderes ist als die Summe dreier benachbarter Vektoren und somit ein Eckpunkt von V_3 [vgl.3.4.2]. Wegen der Fünfecksymmetrie unterscheiden sich somit je ein Diagonalenschnittpunkt $P_i = c_{i+2} + c_{i-2}$ und ein Eckpunkt

⁶Es gilt: $V_1 = -\varphi V_2$, aber $V_2 = -V_3$, vgl.4.3

 $c_{i+2} + c_i + c_{i-2}$ von V_3 genau um den projizierten Einheitsvektor c_i mit $i \in \{1, ..., 5\}$.

Abbildung 4.10: Der Schnittpunkt $P_5 = c_2 + c_3$ unterscheidet sich gerade um c_5 von dem Eckpunkt $c_2 + c_5 + c_3$ von V_3

So wie im Fall von Index 1 die Diagonalen das Fenster V_1 in zwei verschiedene Gebiete $V_{\{1i+\}}$ und $V_{\{1i-\}}$ aufteilen, teilen nun hier die beiden Diagonalen, die sich in P_i schneiden, das Fenster V_2 in zwei verschiedene Gebiete $V_{\{2i+\}}$ und $V_{\{2i-\}}$: $V_{\{2i+\}}$ kann in Richtung c_i verschoben werden, ohne dass man V_3 verlässt, $V_{\{2i-\}}$ dagegen kann man gerade nicht mehr in diese Richtung verschieben.

Abbildung 4.11: Die Einteilung von V_2 in die Gebiete $V_{\{25+\}}$ und $V_{\{25-\}}$: $V_{\{25+\}}$ kann man in Richtung c_5 verschieben ohne V_3 zu verlassen, $V_{\{25-\}}$ dagegen nicht

Und auch hier erhält man nun aus den Diagonalenschnitten oben beschriebene Gebietseinteilung: Die Gebiete W_1, W_4 und W_5 , deren Vereinigung gerade das von den Diagonalen von V_2 einbeschriebene Fünfeck ist, können in alle positiven Richtungen verschoben werden, die Gebiete außerhalb davon gerade nicht mehr! Wie genau wiederum W_1, W_4 und W_5 dieses innere Fünfeck einteilen, wird dann im Fall der negativen Translationen geklärt werden, da es ja gerade diesbezüglich Unterschiede gibt!

Für das Gebiet $V_2 \setminus (W_1 \cup W_4 \cup W_5)$ ergeben sich aus den Diagonalenschnitten wieder zehn verschiedene Dreiecke, die zu zwei Grundtypen zusammengefasst werden können: Ein spitzes Dreieck mit einer Seite des inneren Fünfecks als Grundseite (die Gebiete W_6) und ein stumpfes Dreieck mit einer Seite von V_2 als Grundseite (die Gebiete W_7) [vgl.Index 1]. Die W_6 -Gebiete werden von jeweils von zwei benachbarten Gebieten $V_{\{2i-\}}$ und $V_{\{2(i-2)-\}}$ überlagert und können daher gerade nicht in diese beiden Richtungen c_i und c_{i-2} mit $1 \leq i \leq 5$ verschoben werden, ohne V_3 zu verlassen. Die Gebiete W_7 dagegen werden sogar von drei benachbarten Gebieten $V_{\{2(i+2)-\}}, V_{\{2i-\}}$ und $V_{\{2(i-2)-\}}$ überlagert und können deshalb gerade nicht in Richtung c_{i+2}, c_i und c_{i-2} für ein $i \in \{1, ..., 5\}$ verschoben werden!

Abbildung 4.12: Die Einteilung von V_2 in die Gebiete $V_{\{25+\}}, V_{\{22+\}}, V_{\{24+\}}, V_{\{25-\}}, V_{\{22-\}}$ und $V_{\{24-\}}$

Genau das liefert nun die Erklärung der positiven Gebietseinteilung, wie oben beschrieben. Was noch fehlt sind die negativen Translationen, d.h. die Verschiebungen in Richtung der negativen projizierten Einheitsvektoren $-c_i$ mit $i \in \{1, ..., 5\}$.

Betrachten wir daher zunächst das von den Diagonalen von V_2 einbeschriebene inneren Fünfeck (d.h. die Vereinigung der Gebiete W_1, W_4 und W_5) mit den Eckpunkten P_i mit $1 \le i \le 5$. Dieses soll mit G bezeichnet werden und ist in Abbildung 4.13 rot eingezeichnet. Man sieht leicht, dass beispielsweise die Diagonale durch $P_2 = c_4 + c_5$ und $P_3 = c_1 + c_5$ zu der Strecke zwischen den Eckpunkten c_4 und c_1 von V_1 parallel ist und sich gerade um den negativen Vektor $-c_5$ von dieser unterscheidet. Da aber c_4 und c_1 auf F gerade Nachbarpunkte sind, ist diese Strecke eine Seite von V_1 . Auf Grund der Fünfecksymmetrie erhalten wir somit eine ähnliche Situation wie im Fall von Index 1: Je eine Seite von V_1 ist eine Translation einer Diagonalen von G um $-c_i$ mit $i \in \{1, ..., 5\}$.

Abbildung 4.13: Die Diagonale zwischen $P_3 = c_1 + c_5$ und $P_2 = c_4 + c_5$ ist parallel zu der Seite von V_1 mit Eckpunkten c_1 und c_4 und unterscheidet sich genau um $-c_5$

Die Diagonalen teilen also in diesem Fall G in zwei Gebiete: $G_{\{i+\}}$ und $G_{\{i-\}}$, je nachdem, ob man in die entsprechende negative Richtung verschieben kann und die Translation dann noch in V_1 liegt oder nicht.⁷

Die Diagonalenschnitte der Diagonalen durch P_i ergeben somit wieder die Gebietsaufteilung von G: Das innere kleine Fünfeck von G, das von den Diagonalen zwischen den Schnittpunkten P_i begrenzt wird, kann man in diesem Fall gerade nicht in die negativen Richtungen $-c_i$ mit $i \in \{1, ..., 5\}$ verschieben. In der Notation von oben ist dieses Gebiet gerade W_1 . $G \setminus W_1$ kann man somit in eine oder mehrere negativen Richtungen $-c_i$ verschieben. Im Fall der spitzen Dreiecke (die Gebiete W_4) werden diese von je einem Gebiet $G_{\{i+\}}$ überlagert, was bedeutet, dass man in je eine Richtung $-c_i$ verschieben kann. Im Fall der stumpfen Dreiecke (die Gebiete W_5) gibt es sogar je zwei benachbarte Gebiete $G_{\{i+\}}, G_{\{(i-2)+\}},$ die die Dreiecke überlagern und somit zwei mögliche benachbarte negative Translationen: $-c_i$ und $-c_{i-2}$.

⁷Vorsicht also: Die Notation $G_{\{i+\}}$ gibt an, ob man überhaupt in Richtung irgendwelcher projizierter Einheitsvektoren verschieben darf - $G_{\{i+\}}$ bezieht sich also nicht allein auf die Verschiebung in Richtung positiver Vektoren!

Abbildung 4.14: Die Diagonale zwischen P_3 und P_2 teilt G in die Gebiete $G_{\{5+\}}$ und $G_{\{5-\}}$: $G_{\{5+\}}$ kann man in Richtung $-c_5$ verschieben ohne V_1 zu verlassen, $G_{\{5-\}}$ dagegen nicht

Um die negativen Translationen der Gebiete des Typs W_6 und W_7 zu erklären, müssen wir jedoch wieder das gesamte Fenster V_2 betrachten und nicht nur das von den Diagonalen P_i einbeschriebene innere Fünfeck G wie gerade eben.

Die Gebiete des Typs W_6 bzw. W_7 haben wie bereits erwähnt die Form eines spitzen bzw. stumpfen Dreiecks und als Eckpunkte entweder Schnittpunkte P_i oder Eckpunkte von V_2 : $c_i + c_{i-2}$ mit $1 \le i \le 5$. Da man hier den Eckpunkten der Gebiete genaue Koordinaten zuordnen kann, ist die Bestimmung der möglichen negativen Translationen nicht weiter schwierig: Man kann sie einfach berechnen! Dazu fassen wir je ein benachbartes kleines spitzes und kleines stumpfes Dreieck zu einem großen spitzen Dreieck zusammen. Die Eckpunkte dieser großen spitzen Dreiecke sind also stets zwei Eckpunkte von V_2 und ein Diagonalenschnittpunkt P_i . Zudem haben je zwei der großen spitzen Dreiecke die selbe Grundseite.

Betrachten wir beispielsweise die beiden großen spitzen Dreiecke mit den beiden gemeinsamen Eckpunkten $c_1 + c_4$ und $c_4 + c_2$ (die beiden Dreiecke haben also die selbe Grundseite) und dem Eckpunkt $P_1 = c_3 + c_4$ bzw. $P_2 = c_4 + c_5$. Diese Punkte haben nun alle Koordinaten der Form $c_i + c_4$ mit $i \in \{1, 2, 3, 5\}$ und daher erhält man bei Translation in Richtung $-c_4$ gerade Eckpunkte von V_1 , was bedeutet, dass man diese beiden Dreiecke in Richtung $-c_4$ verschieben kann ohne V_1 zu verlassen.

Abbildung 4.15: Die beiden großen spitzen Dreiecke mit den gemeinsamen Eckpunkten $c_1 + c_4$ und $c_4 + c_2$ und dem Eckpunkt $P_1 = c_3 + c_4$ bzw. $P_2 = c_4 + c_5$

Eine Translation in Richtung $-c_i$ mit $i \in \{1, 2, 3, 5\}$ ist dagegen nicht möglich, beispielsweise gilt: $c_4 + c_2 - c_5 = c_4 + c_2 + c_1 + c_2 + c_3 + c_4 = (c_2 + c_4) + (c_2 + c_4) + (c_1 + c_3) = -\Phi c_3 - \Phi c_3 - \Phi c_2 = -\Phi(2c_3 + c_2) \notin V_1$, da $2c_3 + c_2 \notin V_1$ und $-\Phi$ ja noch einmal eine zusätzliche Streckung bedeutet. Da nun der eine translatierte Eckpunkt $c_4 + c_2$ schon weit von V_1 entfernt ist, kann nun natürlich auch das gesamte Dreieck nicht mehr innerhalb von V_1 liegen. Eine analoge Rechnung lässt sich für die anderen Richtungen bzw. Eckpunkte der beiden gewählten großen spitzen Dreiecke durchführen.

Abbildung 4.16: Die beiden großen spitzen Dreiecke mit den gemeinsamen Eckpunkten $c_1 + c_4$ und $c_4 + c_2$ und dem Eckpunkt $P_1 = c_3 + c_4$ bzw. $P_2 = c_4 + c_5$: Beide Dreiecke können in Richtung $-c_4$ verschoben werden

Allgemein bedeutet das, dass die beiden großen spitzen Dreiecke mit den gemeinsamen Eckpunkten $c_{i+2} + c_i$ und $c_i + c_{i-2}$ mit $1 \le i \le 5$ genau in

Richtung $-c_i$ verschoben werden können, so dass das translatierte Gebiet innerhalb von V_1 liegt, alle anderen Richtungen scheiden aus.

Für die Gebiete des Typs W_6 bzw. W_7 heißt das also: Die kleinen spitzen Dreiecke (die Gebiete des Typs W_6) als Schnitt zweier großer spitzer Dreiecke mit benachbarter Grundseite können genau in Richtung $-c_i$ und $-c_{i-2}$ für ein $i \in \{1, ..., 5\}$ verschoben werden, so dass die Translationen noch in V_1 liegen. Bei den kleinen stumpfen Dreiecke (die Gebiete des Typs W_7) als Schnitt zweier großer spitzer Dreiecke mit gleicher Grundseite ist dagegen nur eine Verschiebung in Richtung $-c_i$ mit $1 \le i \le 5$ möglich, ohne dass man V_1 verlässt.

Insgesamt ist somit die Gebietseinteilung im Fall von Index 2 geklärt.

Mit den gleichen Argumenten und den gleichen Folgen wie im Fall von Index 1 und 4 kann die Eckeneinteilung von V_2 aber auch sofort auf V_3 übertragen werden und man erhält:

Abbildung 4.17: Die Einteilung von V_3 in die Gebiete W_1, W_4, W_5, W_6 und W_7 bezüglich verschiedener Eckenumgebungen

Im Ergebnis bekommt man so genau sieben verschiedene Eckentypen, w_1 bis w_7 , des Penrose-Musters.⁸

⁸Nun ist auch klar, warum man hier von "Typen" spricht: Je nachdem aus welchem der verschiedenen Teilgebiete W_{it} eines Gebiets W_i die Ecke stammt, hat sie eine unterschiedliche Lage bzw. Orientiertung. Die Grundform ist aber immer die gleiche!

Abbildung 4.18: Die Ecke w_1 auf der Eben
e ${\cal F}$ und ${\cal E}$

Abbildung 4.19: Die Ecke w_2 auf der Ebene F und E

Abbildung 4.20: Die Ecke w_3 auf der Eben
e ${\cal F}$ und ${\cal E}$

Abbildung 4.21: Die Ecke w_4 auf der Eben
e ${\cal F}$ und ${\cal E}$

Abbildung 4.22: Die Ecke w_5 auf der Eben
e ${\cal F}$ und ${\cal E}$

Abbildung 4.23: Die Ecke w_6 auf der Ebene F und E

Abbildung 4.24: Die Ecke w_7 auf der Ebene F und E

Wegen der Dichtheit der Projektion des ganzzahligen Gitters auf die von uns gewählte Ebene E kommen auch wirklich alle Eckentypen vor und wir sehen somit, dass die Fenster V_k mit k = 1, 2, 3, 4 weit mehr Informationen über die Penrose-Pflasterung in sich tragen, als dass sie alleiniges Hilfsmittel zur Bestimmung der Projektionspunkte wären.

Was aber hilft die Kenntnis aller möglichen, im Penrose-Muster vorkommenden Eckentypen bei unserer Ausgangsfrage nach der Eindeutigkeit der Unterteilung im Deflationsfall? Dazu müssen wir noch einen Schritt weiter gehen und uns ansehen, was denn genau mit den unterschiedlichen Ecken im Fall von De- und Inflation geschieht.

4.3 Die Ecken im De- und Inflationsfall

Jeder Punkt einer Penrose-Pflasterung trägt nach den Ergebnissen des letzten Abschnitts stets zwei Informationen mit sich: Index und Eckentyp. Will man nun wissen, was diese unter Deflation machen, so kann man in einem ersten Schritt versuchen, ein grobes und feines Penrose-Muster miteinander zu vergleichen.

Abbildung 4.25: Index und Eckentyp des groben Penrose-Musters

Abbildung 4.26: Index und Eckentyp des feinen Penrose-Musters

Eine systematische Gegenüberstellung ergibt die folgenden Tabellen. $M_{E'}$ sei dabei wieder die Bezeichnung für das grobe und SM_E für das feine Muster [vgl.3.4]:

		Eckentyp $M_{E'}$	Eckentyp SM_E
Index M	Index SMr	w_1	w_1
$\frac{\operatorname{mdex} M_{E'}}{1}$		w_2	w_5
<u>l</u>	2	w_3	w_4
2	4	w_4	w_1
3	1	w_5	w_1
4	3	w_6	<i>w</i> ₃
		w ₇	w_2

Wie erklärt sich nun dieser Sachverhalt und vor allem: Ist das immer so? Diese Daten beziehen sich ja nun erst einmal auf die Beobachtung und das ist kein Beweis.Woher weiß man, welcher Index/Eckentyp des groben Musters unter Deflation in welchen Index/Eckentyp des feinen Musters transformiert wird?

Dazu müssen wir uns noch einmal ins Gedächtnis rufen, wie denn die verschiedenen Muster $M_{E'}$ und SM_E entstanden sind bzw. zusammenhängen: SM_E ist ein um φ gestauchtes und um 180° gedrehtes Bild des Musters M_E der Ebene E und eine Verfeinerung von $M_{E'}$ auf E'. Die Abbildung S wirft auf D^{\perp} die Hyperebene H_k bijektiv auf H_{-2k} , d.h. für den den Index k gilt unter $S: k \mapsto -2k$.

Um aber nun den Zusammenhang des groben Musters $M_{E'}$ mit dem feinen Muster SM_E zu verstehen, muss das Urbild von SM_E betrachtet werden und somit die Umkehrabbildung von S, nämlich T. Der Grund ist folgender: Ein ganzzahliger Punkt z in der Nähe der Ebene E' = SE hat Index $k = \sum_{i=1}^{5} z_i \pmod{5}$ [vgl.4.2], den sein Projektionspunkt p auf E' "erbt". Gehört nun p zum Muster $M_{E'}$ und SM_E , hat er natürlich den selben Index in beiden Mustern. Da wir uns aber für den Index des Urbildes $S^{-1}(p) \in M_E$ interessieren, also die Projektion von $S^{-1}(z)$, müssen wir T anwenden.

Im Falle der Indizes gilt unter $T: k \mapsto 2k$, d.h. der Index k wird unter Deflation transformiert zu Index 2k und eben das bestätig genau oben stehende Tabelle mit den Beobachtungsergebnissen. Was aber ist mit der Transformation der Ecken? Wie können wir diese einsehen? In diesem Fall müssen die verschiedenen Fenster V_1 bis V_4 unter T betrachtet werden, denn genau die sind ja für die möglichen Nachbarpunkte und somit letztlich für den Eckentyp "verantwortlich". Als Umkehrabbildung zu S hat T auf der Ebene F gerade den Eigenwert φ , es kontrahiert also. Wegen $SV_1 = V_3$ und $SV_4 = V_2$ erhält man somit sofort $TV_3 = V_1$ und $TV_2 = V_4$ und wegen $SV_2 \supset V_1$ und $SV_3 \supset V_4$ folgt $TSV_2 = V_2 \supset TV_1$ und $TSV_3 =$ $V_3 \supset TV_4$ und somit ist auch klar, dass V_1 und V_4 unter T auf jeweils einen inneren Teil von V_2 bzw. V_3 abgebildet werden - nur auf welchen?

Die Diagonalen von V_2 umschließen im Inneren ein Fünfeck [vgl.Abb.4.13]. Der Schnittpunkt zweier solcher Diagonalen - also ein Eckpunkt P_i dieses Pentagramms - stimmt nun genau mit der Summe zweier nicht benachbarter Vektoren $c_{i+2} + c_{i-2}$ überein und wegen $P_i = c_{i+2} + c_{i-2} = \varphi c_i$ [vgl.3.4.2] ist das Diagonalenpentagramm somit eine Verkleinerung von V_1 um φ . Die Abbildung T als Stauchung um gerade diesen Faktor φ auf F bildet also das Fenster V_1 gerade auf das Diagonalenpentagramm von V_2 ab. Analog dazu wird V_4 auf das Diagonalenpentagramm von V_3 abgebildet.

Abbildung 4.27: Das macht T mit V_1

Auf diese Weise können wir nun die Transformation der Ecken unter Deflation genau bestimmen: Man muss überprüfen, auf welche Gebiete W_j mit j = (1, ..., 7) die Gebiete W_i mit i = (1, ..., 7) unter T abgebildet⁹ werden:

⁹Wegen $V_1 = -V_4$ und $V_2 = -V_3$ ist es ausreichend, die folgenden Bilder zu betrachten

Abbildung 4.29: Die Eckentransformation von W_1, W_4, W_5, W_6 und W_7 unter T

Bezeichnet die Notation (w_i, w_j) die Tatsache, dass die Eckentypen w_i unter Deflation in die Eckentypen w_j transformiert werden, so erhält man

die folgenden Paarungen: $(1, 1), (2, 5), (3, 4), (4, 1), (5, 1), (6, 3), (7, 2).^{10}$ Wir können also genau sagen, was mit jedem einzelnen Eckentyp unter Deflation geschieht.

Darüber hinaus liefert dieses Ergebnis aber noch einer weitere - im Folgenden sehr wichtige - Erkenntnis. Ecken des Typs w_i im groben Muster $M_{E'}$ werden nur in die Eckentypen w_1 bis w_5 des feinen Musters SM_E transformiert [vgl.KR,S.72], w_6 und w_7 haben unter T kein Urbild und sind folglich neue Punkte in SM_E - d.h. Punkte, die im alten, groben Muster nicht vorkommen:

• Ecke des Typs w_6, w_7 im feinen Muster \Rightarrow neuer Punkt

Nun drängt sich natürlich die Frage auf, ob man obigen Pfeil durch eine Äquivalenzrelation ersetzen kann, was bedeuten würde, dass alle neuen Punkte im feinen Muster genau Ecken des Typs w_6, w_7 sind. Die Frage, die man hierzu stellen muss lautet: Haben Ecken des Typs $w_1, ..., w_5$ immer ein Urbild unter T?

Dazu betrachten wir die Fenster V_k für k = 1, 2, 3, 4 unter der zu T inversen Abbildung S, also genau die Umkehrung der Abbildungen 4.28 und 4.29. Wegen $SV_4 = V_2$ haben alle Ecken des Typs w_1, w_2, w_3 im feinen Muster sicher ein Urbild unter T. Im Fall von $SV_2 \supset V_1$ gilt folgende Situation: Die Gebiete der Eckentypen w_1, w_4, w_5 liegen alle innerhalb des Diagonalenpentagramms von V_2 , das nun unter S gerade auf V_1 abgebildet wird, also besitzen auch diese alle ein Urbild unter T. Die Gebiete W_6 und W_7 liegen dagegen außerhalb des Diagonalenpentagramms von V_2 und werden somit unter S auf ein Gebiet außerhalb von V_1 abgebildet und besitzen deshalb kein Urbild unter T.

Das liefert die gewünschte Äquvalenz obiger Aussage:

• Ecken des Typs w_1 bis w_5 im feinen Muster sind genau die alten Punkte, also Punkte die auch im groben Muster vorkommen, dagegen sind die Ecken des Typs w_6, w_7 im feinen Muster genau die Punkte, die bei Deflation neu hinzukommen!

Noch eine Bemerkung: Die Bezeichnungen "alte" und "neue" Punkte beziehen sich natürlich konkret auf den hier aufgezeigten Deflationsfall, denn nur hier kommen Punkte tatsächlich hinzu. Im Inflationsfall - der als Umkehrung der Deflation natürlich sofort folgt - gilt diese Terminologie nicht mehr bzw.

¹⁰Auch dieses Ergebnis bestätigt unsere Beobachtung

ist unpassend. Ausganspunkt ist hier ein feines Muster, das in ein gröberes transformiert wird: Es kommen somit keine neuen Punkte hinzu, sondern übrige Punkte fallen weg! Ecken des Typs w_6, w_7 sind im Inflationsfall also genau die Punkte, die wegfallen, sozusagen also "übrige" Punkte. Die Eckentypen w_1 bis w_5 dagegen werden transformiert und folglich beibehalten.

Genau dieses Wissen wird nun helfen bei der Frage nach der Eindeutigkeit der Unterteilung der Penrose-Muster im Deflationsfall.

4.4 Die eindeutige Unterteilung der Penrose-Rauten

4.4.1 Die Nachbareckentypen

Die Idee ist Folgende: Mit Hilfe der Ergebnisse aus 4.2 kann man nicht nur den Eckentyp eines einzelnen Punktes bestimmen, sondern auch den Eckentyp der Nachbarpunkte – also die Nachbarn der Nachbarpunkte eines Punktes $z \in \mathbb{Z}^5$! Liegt nämlich die *F*-Projektion z_F eines Gitterpunktes innerhalb des Gebiets W_i mit $i \in \{1, ..., 7\}$ so kennt man deren Eckentyp: w_i und weiß folglich, wo die Nachbarpunkte liegen. Überprüft man nun einfach, in welchen neuen Gebieten W_l mit $l = \{1, ..., 7\}$ diese Nachbarpunkte liegen, erhält man auch deren Eckentyp und somit die Nachbarn der Nachbarpunkte. Das heißt aber natürlich auch: Die Eckentypen der Nachbarpunkte sind abhängig von der Lage des Ausgangspunktes z_F .

Nun kann man allerdings gerade genanntes Vorgehen nicht für jeden möglichen Punkt $z_F \in V_k$ mit k = 1, 2, 3, 4 durchführen - dies wäre ein endloses Unterfangen! Statt dessen betrachtet man die verschiedenen Gebiete $W_i \in V_k$ in denen z_F liegen kann, verschiebt diese Gebiete dann je nach Eckentyp in die jeweils möglichen positiven und negativen Einheitsrichtungen $+/-c_i$ und testet anschließend, welche Gebiete W_l nun von den translatierten Gebieten W_i überlagert werden - genau das sind dann die Nachbareckentypen w_l . Allerdings kann man auf diesem Weg die Nachbarecken letztlich nicht immer eindeutig bestimmten, da man gebietsweise vorgeht und nicht punktweise und ein Gebiet W_i auch mehrere Gebiete W_l überdecken kann. Dies ist jedoch eine Einschränkung, die uns nicht wirklich stören wird.

Aber es ist Vorsicht angebracht: Will man testen, welche Gebiete W_l durch Translationen der ursprünglichen Gebiete W_i genau überdeckt werden, muss man - analog zu 4.2 - bedenken, dass sich bei Verschiebung in Richtung der Einheitsvektoren (also beim Übergang zu einem Nachbarpunkt), der Index um +/-1 ändert und man sich somit nicht mehr im Ausgangsfenster V_k befindet, sondern in V_{k+1} oder V_{k-1} und infolgedessen auch eine neue Gebietsaufteilung betrachten muss!

Das folgende Beispiel soll das Vorgehen veranschaulichen. Wir wählen eines der Gebiete $W_2 \in V_1$ wie in der Abbildung markiert¹¹ und verschieben es in Richtung aller möglicher Einheitsvektoren. In diesem Fall sind das nur die positiven Richtungen $+c_4, +c_2$ und $+c_5$.

Abbildung 4.30: Das Gebiet $V_2 \in V_1$ und seine Translationen in Richtung c_4, c_2 und c_5

In einem zweiten Schritt ist nun zu testen, welche der Gebiete $W_l \in V_2$ von den W_2 -Translationen in Richtung c_4, c_2 und c_5 überlagert werden.

¹¹Das hier gewählte Gebiet $W_2 \in V_1$ stimmt nicht mit dem Gebiet W_2 überein, aus dem die in Abb.4.19 dargestellte w_2 -Ecke stammt, daher auch die gedrehte Lage in Abb.4.33. Geht es allein um die Bestimmung der Nachbareckentypen ist dies aber nicht weiter störend, vergleiche dazu die Überlegungen auf Seite 60!

Abbildung 4.31: Die Überlagerungen der Gebiete aus V_2 durch die Translationen von W_2

Wie man sieht, überdecken die c_4 - und c_5 -Translationen jeweils Teile eines Gebiets $W_6 \in V_2$, die von c_2 ausgehende Translation dagegen zwei W_5 - und ein W_4 -Gebiet in V_2 .

Diese Translationen kann man mit Hilfe der Ergebniss aus 4.2 auch berechnen: Das gewählte W_2 -Gebiet wird von den Eckpunkten c_1 und c_3 von V_1 und dem Schnittpunkt P der beiden Diagonalen zwischen den Eckpunkten c_1 und c_5 und den Eckpunten c_3 und c_4 von V_1 begrenzt. Will man nun die Translationen in Richtung c_i mit $i \in \{2, 4, 5\}$ berechnen, muss man gerade den Vektor c_i zu den beiden Eckpunkten c_1 und c_3 des W_2 -Gebiets addieren und erhält somit die translatierten Eckpunkte $c_1 + c_i$ und $c_3 + c_i$. Für den dritten Eckpunkt P ist eine der Diagonalen, auf denen P liegt, zu betrachten.

Für den Fall i = 4 ergeben sich beispielsweise die Eckpunkte $c_1 + c_4$, was als Summe zweier benachbarter Vektoren auf F gerade ein Eckpunkt von V_2 ist und $c_3 + c_4$, was als Summe zweier nicht benachbarter Vektoren dagegen im Inneren von V_2 liegt und mit dem Schnittpunkt P_1 zweier Diagonalen von V_2 übereinstimmt. Die eine Diagonale auf der P liegt, ist die Strecke zwischen c_1 und c_5 . Die Translation \tilde{P} von P liegt daher auf der Strecke zwischen $c_1 + c_4$ und $c_5 + c_4$. $c_1 + c_4$ ist wie gerade berechnet ein translatierter Eckpunkt des Gebiets W_2 und ein Eckpunkt von V_2 , $c_5 + c_4$ liegt wiederum im Inneren von V_2 und stimmt mit dem Diagonalenschnitte P_2 von V_2 überein, d.h. \tilde{P} liegt auf dem Teil einer Diagonalen von V_2 , die vom Eckpunkt $c_1 + c_4$ und P_2 begrenzt wird.

Abbildung 4.32: Die Translation von $W_2 \in V_1$ in Richtung c_4

Da nun aber die Seiten von V_1 um den Faktor φ kleiner sind als die von V_2 ist auch der Abstand $|c_1 + c_4, \tilde{P}|$ der ja gleich dem Abstand $|c_1, P|$ ist, kleiner als der von $|c_1 + c_4, c_1 + c_2 = P_4|$ und somit überlagert die Translation von W_2 in Richtung c_4 gerade einen Teil des Gebiets $W_6 \in V_3$, das von den Eckpunkten $c_1 + c_4, c_3 + c_4 = P_1$ und $c_1 + c_2 = P_4$ begrenzt wird.¹² Das Ergebnis der obigen Bilder wurde somit rechnerisch bestätigt.¹³

Zeichnet man also das F- und E-Bild einer w_2 -Ecke aus oben gewähltem Gebiet $W_2 \in V_1$ mitsamt der Nachbareckentypen, so erhält man:

¹²Es gilt $V_1 = TV_3$ [vgl.4.3] und die Abbildung T ist auf F eine Stauchung um den Faktor φ . Die Seiten von V_1 sind also um φ kleiner als die von V_3 und wegen $V_3 = -V_2$ auch um φ kleiner als die von V_2 !

 $^{^{13}\}mathrm{Eine}$ analoge Berechnung kann man nun auch für die Translation in Richtung c_2 und c_5 durchführen

Abbildung 4.33: F-Bild und E-Bild einer w_2 -Ecke aus oben gewähltem Gebiet W_2 samt Nachbareckentypen

Auf Grund der Fünfeckesymmetrie und der Tatsache, dass wir in all unseren Überlegungen stets nur Ecken typen betrachten und somit Kongruenzen nicht entscheidend sind, sind dies aber nicht nur die Nachbareckentypen des speziell gewählten Gebiets W_2 , sondern vielmehr die Nachbareckentypen eines beliebigen W_2 -Gebiets aus V_1 .¹⁴ Und wegen $V_1 = -V_4$ gelten die Nachbareckentypen zudem auch für alle W_2 -Gebiete innerhalb des Fensters V_4 - mit dem einzigen Unterschied, dass die positiven Richtungen in V_1 gerade die negativen in V_4 sind und umgekehrt. Dies hat natürlich Auswirkungen auf den Index der Nachbarecken, was aber nicht weiter problematisch ist, da der Index in der Argumentation keine Bedeutung haben wird. Entsprechend gelten Aussagen für ein beliebiges Gebiet $W_i \in V_2$ für alle Gebiete dieses Typs in V_2 und wegen $V_2 = -V_3$ auch für alle W_i -Gebiete $\in V_3$ und es ist somit zur Bestimmung des Nachbareckentypen eines bestimmten Eckentyps w_i ausreichend, ein bliebiges Gebiet $W_i \in V_k$ zu betrachten.

Im Folgenden sind die Nachbareckentypen der Ecken des Typs w_2, w_3, w_4 w_5, w_6 und w_7 von Interesse - die Ecken des Typs w_1 spielen dagegen in der Argumentation keine Rolle. Die Nachbareckentypen einer w_2 -Ecke wurden bereits bestimmt und mit dem gleichen Vorgehen sollen nun auch die der w_3, w_4, w_5, w_6 und w_7 -Ecken bestimmt werden.

¹⁴Die einzelnen Ecken eines Eckentyps unterscheiden sich ja gerade nur durch ihre unterschiedliche Lage, also dadurch, welche Einheitsrichtungen möglich sind, nicht aber in ihrer grundsätzlichen Form

Die Nachbareckentypen einer w_3 -Ecke

In einem ersten Schritt wird ein Gebiet $W_3 \in V_1$ gewählt und in seine möglichen positiven Richtungen verschoben. Im Fall des hier gewählten Gebiets sind das c_3, c_1, c_4 und c_2 .

Abbildung 4.34: Das Gebiet $M_1 \in V_1$ und seine Translationen in Richtung c_3, c_1, c_4 und c_2

In einem zweiten Schritt wird schließlich wieder überprüft, welche der Gebiete $W_l \in V_2$ von den W_3 -Translationen in Richtung c_3, c_1, c_4 und c_2 überlagert werden.

Abbildung 4.35: Die Überlagerungen der Gebiete aus V_2 durch die Tranlationen von W_3

Wie man nun sieht, überdecken die c_3 - und c_2 -Translationen jeweils Teile eines Gebiets $W_7 \in V_2$ und die c_1 - und c_4 -Translationen jeweils Teile eines Gebiets $W_6 \in V_2$. Zeichnet man schließlich F- und E-Bild einer w_3 -Ecke aus oben gewähltem Gebiet so erhält man die folgende Konstellation von Nachbareckentypen:

Abbildung 4.36: F-Bild und E-Bild einer w_3 -Ecke aus oben gewähltem Gebiet W_3 samt Nachbareckentypen

Die Nachbareckentypen der w_4, w_5, w_6 und w_7 -Ecke

Mit dem gleichen Vorgehen wie gerade eben, erhält man auch die Nachbareckentypen der w_4, w_5, w_6 und w_7 -Ecken. Die Bilder dazu finden sich im Anhang.

Abbildung 4.37: Die *E*-Bilder einer Ecke des Typs w_4 und w_5 samt Nachbareckentypen

Abbildung 4.38: Die *E*-Bilder einer Ecke des Typ
s w_6 und w_7 samt Nachbareckentypen

Mit Hilfe all der Ergebnisse der letzten Abschnitte ist es nun möglich, die Unterteilung der Penrose-Rauten im Deflationsfall zu konstruieren.

4.4.2 Die eindeutige Unterteilung der breiten Raute

Ausgangspunkt unserer Überlegungen ist in diesem Fall eine grobe breite Raute. Aus Kapitel 2 kennen wir die Innenwinkel dieser Raute: 72° und 108°. Betrachten wir die möglichen Ecken w_1 bis w_7 , so stellen wir fest, dass letztlich nur zwei Ecken in Frage kommen, die überhaupt ein stumpfwinkliger Eckpunkt einer breiten Raute sein können: Ecken des Typs w_6 und w_7 !

Abbildung 4.39: Alle möglichen Ecken auf $E: w_1$ bis w_7 . Allerdings schließen nur die Ecken vom Typ w_6 und w_7 einen Winkel von 108° ein, folglich können auch nur diese beiden Eckentypen ein stumpfwinkliger Eckpunkt einer breiten Raute sein!

Es sind daher zwei Fälle zu unterscheiden: Entweder der stumpfwinklige Eckpunkt der breiten Raute ist eine w_6 -Ecke oder eine w_7 -Ecke.

Abbildung 4.40: Die grobe breite Raute mit einer stumpfwinkligen w_6 -Ecke und einer stumpfwinkligen w_7 -Ecke samt Nachbareckentypen aus 4.4.1

Wollen wir nun die Unterteilung der groben breiten Penrose-Raute im Deflationsfall konstruieren, also die Transformation der groben Raute in mehrere feine (Halb)Rauten, müssen wir betrachten, was die beiden Ecken w_6 und w_7 unter Deflation machen. Auf diese Frage gibt gerade Abschnitt 4.3 eine Antwort: Ecken des Typs w_6 werden in Ecken des Typs w_3 und Ecken des Typs w_7 in Ecken des Typs w_2 transformiert.

Abbildung 4.41: Die Transformation der W_6, W_7 -Gebiete, in denen oben gewählte Ecken liegen, unter T

Nun aber kommt ein entscheidendes Detail, das es zu bedenken gilt: Um den Zusammenhang von grobem und feinem Muster zu verstehen, haben wir in Abschnitt 4.3 das Urbild des feinen Musters betrachtet. Bezeichnet $M_{E'}$ wieder das grobe und SM_E das feine Muster auf E' so heißt das gerade, dass wir - um die Transformation der Ecken unter Deflation zu bestimmen - das Urbild von SM_E , also das Muster M_E betrachtet haben [vgl.Abb.3.5]. Das ist auch richtig, geht es nur um die Bestimmung des Ecken typs. Jetzt ist allerdings mehr gefragt: Es gilt nicht nur zu wissen, in welche Eckentypen die Ecken w_6 und w_7 unter Deflation transformiert werden, sondern wir müssen deren genaue Lage kennen, also das Muster SM_E betrachten, nicht allein M_E ! Das heißt nun wiederum, dass man auf die E-Bilder der Ecken, die man erhält, wendet man T auf die Gebiete W_6 und W_7 an in denen die gewählten w_6, w_7 -Ecken liegen [vgl.Abb.4.41], noch einmal S anwenden muss, denn SM_E ist bekanntlich ein um den Faktor φ gestauchtes und um 180° gedrehtes Bild des Musters M_E !

Abbildung 4.43: Die Ecke w_2 samt Nachbareckentypen aus Abschnitt 4.4.1: Das *F*-Bild und das dazugehörige *E*-Bild und das *E*-Bild nach Anwendung von *S* auf *E* (rot eingezeichnet)

Setzt man nun die Ergebnisse zusammen erhält man:

1

Abbildung 4.44: Die grobe breite Raute mit einer stumpfwinkligen w_6 - bzw. w_7 -Ecke (schwarz eingezeichnet) und deren Transformation in eine Ecke des Typs w_3 bzw. w_2 unter Deflation (rot eingezeichnet)

Allerdings kennen wir sowohl das Aussehen von Ecken des Typs w_6 als

auch deren Nachbareckentypen [vgl.4.2;4.4.1] und so kann obiges Bild sofort ergänzt werden:

Abbildung 4.45: Die Unterteilung einer groben breiten Raute unter Deflation: Schwarz eingezeichnet die Ecken vor Deflation, rot eingezeichnet die Ecken nach Deflation

Man erhält somit im Fall der groben breiten Penrose-Raute gerade die in Abbildung 4.2 dargestellte Unterteilung, die auch mit der Unterteilung der elementargeometrischen Methode übereinstimmt! Ferner entspricht dies auch den Ergebnissen aus Abschnitt 4.3: Die Punkte, die unter Deflation neu hinzukommen, sind genau die Ecken des Typs w_6 und w_7 ! Es gilt also:

• Ecke des Typs w_6 im feinen Muster \Leftrightarrow Unterteilung der breiten Raute im groben Muster

4.4.3 Die eindeutige Unterteilung der schmalen Raute

Die Unterteilung einer schmalen Raute kann nun analog zu Abschnitt 4.4.2 konstruiert werden. Ausgangspunkt ist in diesem Fall somit eine grobe schmale Raute mit Innenwinkel 36° und 144° [vgl.2.2]. Ein Blick in Abbildung 4.39 zeigt, dass insgesamt drei Eckentypen eine stumpfwinklige Ecke einer solchen Raute sein können: w_2, w_3 und w_7 .

Daher sind die folgenden drei Fälle zu unterscheiden:

Abbildung 4.46: Die grobe schmale Raute mit einer stumpfwinkligen w_2 -Ecke und einer stumpfwinkligen w_3 -Ecke samt Nachbareckentypen aus 4.4.1

Abbildung 4.47: Die grobe schmale Raute mit einer stumpfwinkligen w_7 -Ecke samt Nachbareckentypen aus 4.4.1

Auch hier muss man nun, will man die Unterteilung der schmalen Penrose-Raute konstruieren, die Transformation der Ecken unter Deflation kennen [vgl.4.3]: Ecken des Typs w_2 werden in Ecken des Typs w_5 , Ecken des Typs w_3 in Ecken des Typs w_4 und Ecken des Typs w_7 in Ecken des Typs w_2 transformiert.

Abbildung 4.48: Die Transformation der W_2, W_3 -Gebiete, in denen oben gewählte Ecken liegen, unter T. Die Transformation des W_7 -Gebiets ist bereits in Abbildung 4.41 dargestellt

Mit den gleichen Argumenten wie in 4.4.2 müssen wir auch hier auf die *E*-Bilder der Ecken, die man erhält, wenn man T wie in Abbildung 4.48 dargestellt auf die gewählten W_2, W_3 -Gebiete anwendet, noch einmal S anwenden, d.h. die Bilder um 180° drehen und um den Faktor φ stauchen!

Abbildung 4.49: Die Ecke w_5 samt Nachbareckentypen aus Abschnitt 4.4.1: Das *F*-Bild und das dazugehörige *E*-Bild und das *E*-Bild nach Anwendung von *S* auf *E* (rot eingezeichnet)

Abbildung 4.50: Die Ecke w_4 samt Nachbareckentypen aus Abschnitt 4.4.1: Das *F*-Bild und das dazugehörige *E*-Bild und das *E*-Bild nach Anwendung von *S* auf *E* (rot eingezeichnet)

Setzt man nun alles zusammen, erhält man im Fall, dass die grobe schmale Raute eine stumpfwinklige Ecke des Typs w_2 oder w_3 hat, sofort die in Abbildung 4.2 dargestellte Unterteilung der groben schmalen Raute, die auch mit der Unterteilung im elementargeometrischen Fall übereinstimmt:

Abbildung 4.51: Die Unterteilung einer groben schmalen Raute im Fall der stumpfwinkligen w_2 - und w_3 -Ecke unter Deflation: Schwarz eingezeichnet die Ecken vor Deflation, rot eingezeichnet die Ecken nach Deflation Und auch hier sind die im Deflationsfall neu hinzu kommenden Punkte gerade Ecken des Typs w_7 [vgl.4.3]!

Im Fall, dass die grobe schmale Raute eine stumpfwinklige w_7 -Ecke besitzt, sieht die Lage jedoch anders aus:

Abbildung 4.52: Die Unterteilung einer groben schmalen Raute im Fall der stumpfwinkligen w_7 -Ecke unter Deflation: Schwarz eingezeichnet die Ecken vor Deflation, rot eingezeichnet die Ecken nach Deflation

Da man allerdings weiß, dass die Ecke des Typs w_2 an der Nachbarecke, die die grobe schmale Raute unterteilt, entweder eine w_4 oder eine w_5 -Ecke hat [vgl.Abb.4.33] und keine andere, kann dieser Fall sofort auf die beiden anderen Fälle zurückgespielt werden und man erhält auch hier die Unterteilung wie in Abbildung 4.2 dargestellt! Es gilt somit:

• Ecke des Typs w_7 im feinen Muster \Leftrightarrow Unterteilung der schmalen Raute im groben Muster

4.5 Ergebnisse

Was ist also das Ergebnis der letzten Abschnitte? 4.4 hat zeigen können, dass die beiden Penrose-Rauten unter Deflation immer in der in Abbildung 4.2 dargestellten Art und Weise unterteilt werden und dass somit die Unterteilung im Fall der Projektionsmethode mit der im elementargeometrischen Fall übereinstimmt. Im Umkehrschluss folgt aus dieser Eindeutigkeit natürlich sofort, dass im Inflationsfall die Rauten entsprechend dieser Unterteilung zu größeren Rauten zusammengefasst werden. Auf Grund dieser Ergebnisse lässt sich nun aber auch sicher sagen, was in Abschnit 4.1 noch eine unbeweisbare Voraussetzung gewesen war:

• In Penrose-Mustern werden Kanten des groben Musters stets nur durch Kanten, Querdiagonalen der schmalen Raute oder Längsdiagonalen der breiten Raute des feinen Musters unterteilt!

Eine Unterteilung quer durch die Kanten wie im "Heprose-Fall" [vgl.Abb.4.4] ist somit nicht möglich!

Noch ein Wort zum Index: Dieser war letztlich in der Argumentation bzgl. der Eindeutigkeit der Unterteilung nicht wirklich nötig, da wir letztlich nur die Ecken*typen* betrachtet haben. Dies heißt aber noch lange nicht, dass er unnötig ist - beispielsweise können Ecken vom Typ w_1 nur anhand des Index auseinandergehalten werden, da diese im Fall von Index 1 und 2 und im Fall von 3 und 4 jeweils die selbe Orientierung haben! Überträgt man die Ergebnisse aus 4.3 auf den Index k eines Punktes $z \in \mathbb{Z}^5$, so bedeutet das gerade, dass im Deflationsfall nur Punkte mit Index 2 und 3 neue Punkte sein können, Punkte mit Index 1 und 4 sind immer alte Punkte. In Abhängigkeit der Indizes bekommt man somit folgende - einzig mögliche - Unterteilungen der breiten und schmalen Penrose-Raute:

Abbildung 4.53: Die Unterteilung der beiden Penrose-Rauten im Fall von Index 2

Abbildung 4.54: Die Unterteilung der beiden Penrose-Rauten im Fall von Index 3
Anhang

Der Vollständigkeit halber sollen hier noch die Nachbareckentypen der w_4, w_5 , w_6 und w_7 -Ecken, wie in Abbildung 4.37 und 4.38 dargestellt, bestimmt werden. Das Vorgehen ist analog zu dem in 4.4.1 beschriebenem: Translation in die möglichen Einheitsrichtungen und anschließende Betrachtung der Überlagerung durch die translatierten Gebiete.

Abbildung 4.55: Die Translation des Gebiets $W_5 \in V_3$ in Richtung c_5 und die Translationen des Gebiets $W_5 \in V_3$ in Richtung c_1 und c_4

Abbildung 4.56: Die Überlagerungen der Gebiete aus V_4 durch die positiven Translationen von W_4 bzw. W_5

Abbildung 4.59: Die Translationen des Gebiets $W_6 \in V_2$ in Richtung c_2, c_3 und c_5 und die Translationen des Gebiets $W_7 \in V_2$ in Richtung c_1 und c_4

Abbildung 4.60: Die Überlagerungen der Gebiete aus V_3 durch die positiven Translationen/von W_6 bzw. W_7

Abbildung 4.61: Die Translationen des Gebiets $W_6 \in V_2$ in Richtung $-c_1$ und $-c_4$ und die Translationen des Gebiets $W_6 \in V_2$ in Richtung $-c_5$

Abbildung 4.62: Die Überlagerungen der Gebiete aus V_1 durch die negativen Translationen von W_6 bzw. W_7

Literaturverzeichnis

- [BN] N.G. de Bruijn: Algebraic theory of Penrose's non-periodic tilings of the plane, Indag. Math. 43 (1981), 39 - 66
- **[EB]** J.-H. Eschenburg: *Die Zahl Fünf und die Quasikristalle*, Augsburg 2004
- [ER] J.-H. Eschenburg, H.J. Rivertz: Self similar symmetric planar tilings, J. Geom. 87 (2007), 55 - 75
- [KR] A. Kreibich: Aperiodische Pflasterungen, Diplomarbeit Augsburg 2000
- [ND] K.-P. Nischke, L. Danzer: A Construction of Inflation Rules Based on n-Fold Symmetry, Discrete and Computational Geom. Vol. 15 (1996), 221 - 236
- **[PR]** R. Penrose: *Pentaplexity a class of nonperiodic tilings of the plane*, Mathematical Intelligencer 2 (1979), 32 - 37
- **[ST]** D. Stern: *Penrose type tilings*, Diplomarbeit Augsburg 2002

Hiermit erkläre ich, dass diese Arbeit von mir selbständig und unter ausschließlicher Verwendung der angegebenen Hilfsmittel erstellt wurde. Ich habe diese Arbeit weder als Magister-, noch als Diplom- oder Doktorarbeit an einer anderen Universität oder Hochschule eingereicht

Augsburg, 10. Januar 2008

Ruth M.K. Pag

Ruth Maria Katharina Page