2. Die obere Grenze der Wellenlängen, welche in der Wärmestrahlung fester Körper vorkommen können; Folgerungen aus dem zweiten Hauptsatz der Wärmetheorie; von Willy Wien.

Es lässt sich aber zeigen, dass solche Strahlen, welche von Drahtnetzen vollständig zurückgeworfen werden, in der Wärmestrahlung nur unendlich kleine Intensitäten haben können.

Bevor wir uns zu den Voraussetzungen und der Ableitung dieses Satzes wenden, wollen wir uns damit beschäftigen, aus dem Gesetze, welches die Abhängigkeit der Strahlung von dem umgebenden Medium ausspricht 1), einige einfache Folgerungen zu ziehen, von denen wir später Gebrauch zu machen haben.

\[\text{§ 1.} \]

Verteilung der Strahlung in Räumen, die mit dielektrisch polarisierbarer Substanz angefüllt sind.

Dasselbe ist der Fall, wenn die dem Isolator anliegenden Wände vollkommen spiegelnd sind und die schwarzen Flächen nur an das Vacuum stossen.

§ 2.

Voraussetzungen.

Bei den Betrachtungen, welche wir anstellen wollen, muss vorausgesetzt werden, dass die Strahlung jeder Wellenlänge von den einschliessenden Wänden vollständig zurückgeworfen wird. Nun ist der Vorgang der Reflexion immer mit einer geringen Absorption verbunden. Denkt man sich aber die Dimensionen der betrachteten Räume vergrössert, so steigert man die Dimensionen der Räume in der dritten Potenz, die spiegelnde Oberfläche aber nur im Quadrat der Lineardimensionen. Es ist also keine theoretische Grenze gegeben, die in einer bestimmten Zeit absorbirte Energie auf einen beliebigen Bruchtheil des ganzen Energievorrathes hinabzudrücken.

Wir setzen weiter voraus, dass bei Bewegung beliebiger, auch gasförmiger Körper in einem mit Strahlung erfüllten Raume keine andern ponderomotorischen Kräfte wirksam werden als die Maxwell'schen Druckkräfte.

Aus diesen Annahmen werden wir folgern, dass Wellenlängen, welche durch Drahtnetze nicht hindurchgehen, auch in der Wärmestrahlung nicht als endliches Energiequantum vorkommen können. Wenn die Hertz'schen Schwingungen von Drahtnetzen vollständig zurückgehalten werden 1), so müssen wir annehmen, das die obere Grenze der Wellenlängen, welche von der Wärme hervorgebracht werden können, zwischen denen der Hertz'schen Schwingungen und der bisher beobachteten ultraroten Strahlen liegt. Die Voraussetzung liegt also darin, dass die Durchlässigkeit des Drahtgeflechtes für Strahlung schnell mit wachsender Wellenlänge abnimmt. Von einer bestimmten Grenze an muss gleichzeitig die entsprechende Energie kleiner und kleiner werden.

§ 3.

Die Bewegung eines ideellen Gases in einem mit Strahlung von grosser Wellenlänge erfüllten Raume.

Durch die Eigenschaft der Drahtnetze, Strahlung von grosser Wellenlänge zurückzuhalten, ist offenbar die Möglich-

Wenn nun auch von dem Drahtnetz die Schwingungen nicht hindurchgelassen werden, so muss doch die Möglichkeit offen gehalten werden, dass ein Theil der elektrischen Energie, soweit diese durch die dieletrische Polarisation vermehrt wird, an den Gasmolekülen haftet und mit diesen fortgezogen wird. Das Verhältniss der durch Anwesenheit der Gasmoleküle vermehrten Energie zu der im Vacuum ist bei constant gehaltenen elektrischer Kraft gleich der dieletrischen Constante und in demselben Verhältniss steht die Dichtigkeit der normalen Strahlung in beiden Fällen. Diese ist doppelt so gross, als die der elektrischen Energie. Wenn also auch die ganze, durch Polarisation erfolgte Vermehrung der Energie vollständig an den wägbaren Theilen haftete, so würde doch immer nur die Hälfte des Ueberschusses, den die Anwesenheit des Gases in der Dichtigkeit der Energie bedingt, von den Molekülen fortgezogen werden. Nun ist nach Boltzmann die dieletrische Constante proportional der Dichtigkeit des Gases. Die Dichtigkeit der Strahlung ist also in einem sich ausdehnenden Gase immer dann die normale, wenn die Dichtigkeit der Strahlung in demselben Verhältniss sich ändert.

Wenn wir also im Stande sind, während das durch das Gitter strömende Gas den Stempel vor sich hertreiben, durch die vorausgesetzten Eigenschaften des Drahtnetzes auch nur die Hälfte des Ueberschusses der Energie, den die hindurchgegangenen Moleküle vorher bedingten, an dem Gitter zurückzuhalten, so haben wir diesseits des Gitters eine Dichtigkeit der Strahlung, welche grösser ist, als die normale. Wenn wir Körper herstellen könnten, welche durch blosse Erwärmung nur Strahlen von der betrachteten Wellenlänge aussenden, so besässen wir ein Mittel, einen solchen Körper auf Kosten
eines anderen von derselben Temperatur zu erwärmen, weil die betrachteten Vorgänge vollständig umkehrbar sind. Wir müssen aber auf die Anwesenheit der anderen Wärmestrahlen, welche von dem Drahtgitter hindurchgelassen werden, Rücksicht nehmen und deshalb einen etwas verwickelteren Process betrachten.

§ 4.

Ausscheidung der Strahlung von grosser Wellenlänge.

Anfangs sei die Klappe B geschlossen, A offen. Es stellt sich dann ein Gleichgewichtszustand der Energie her, indem in Raum 1 die dem dielectrischen Verhalten des Gases entsprechende normale Strahlung sich gleichmässig vertheilt, in 2 die dem Vacuum entsprechende sich ansammelt.

Gases ebenfalls Arbeit leisten, weil im Raum 1 die Dichtigkeit infolge der Anwesenheit des Gases eine grössere ist. Da diese Arbeitsleistung auf Kosten der Strahlung geschehen ist, wird ihre Dichtigkeit nicht mehr die normale sein; würden wir jetzt den Raum 1 mit dem schwarzen Körper in Austausch der Strahlung setzen, so würde ein Ausgleich stattfinden, der nicht mehr umkehrbar wäre. Wenn wir dagegen den Stempel C jetzt so weit vorschieben, dass die Dichtigkeit der Strahlung nunmehr die normale wird, so wird ein Öffnen der Klappe B offenbar keine Veränderung der Strahlung hervorbringen, Dann sind die Vorgänge vollständig umkehrbar.

I. Vorwärtslaufende Prozesse.

1. Anfangszustand. B ist geschlossen, A offen; der Stempel a liegt dicht an dem Netz b; in 1 befindet sich das Gas und die Gesamtstrahlung; in 2 nur die Strahlung kürzerer Wellenlänge.

2. A wird auch geschlossen; der Stempel a wird eine Strecke bewegt; dabei leistet Arbeit
 a) die Strahlung kürzerer Wellenlänge entsprechend ihrer grösseren Dichtigkeit im Gase;
 b) das Gas;
 c) die möglicherweise von den Gasmolekülen hinübergezogene Strahlung grosser Wellenlänge (vgl. § 3), welche von dem Drahtnetz des Stempels a zurückgeworfen wird.

3. Der Stempel C wird so weit vorgeschoben, dass die durch die Arbeitsleistung 2a) verminderte Energie der Strahlung kurzer Wellenlänge wieder normale Dichtigkeit in 2 hat. Nach § 1 hat sie diese dann auch in 1.

II. Rückwärtslaufende Prozesse.

1. B wird wieder geschlossen. Der Stempel C in seine frühere Lage zurückgeführt; dabei wird die auf dem Hinwege geleistete Arbeit wiedergewonnen.

2. Das Gitter b wird so weit nach C bewegt, dass die Strahlung grosser Wellenlänge auf beiden Seiten gleich gross wird; dabei wird Arbeit gewonnen.

3. Das Drahtnetz b wird fortgezogen; der Stempel a in seine Anfangslage zurückgebracht; hierzu genügen die unter I. 2a), b), c) und II. 2. gewonnenen Arbeitswerthe, weil keine Strahlung ohne entsprechende Arbeitsleistung sich ausgedehnt hat.

4. b wird an seine erste Stelle gesetzt; A geöffnet, der Anfangszustand ist wieder erreicht.

Da die Überführung des Energiequantums Q von A nach B dem zweiten Hauptsatz widerspricht, müssen wir annehmen, dass solche Strahlen, welche von dem Gitter vollständig zurückgehalten werden, überhaupt in der Wärmestrahlung keine endliche Intensität haben.

Für die Ausstrahlung der Körper bei sehr niedriger Temperatur kann die gleiche Folgerung nicht mit Sicherheit gezogen werden. Es folgt dies schon aus der Veränderung der Wellenlängen nach dem Doppler’schen Prinzip, welche den durch Temperatur hervorgebrachten gleichwerthig sind; wenn die Temperatur sehr klein wird, müssen die Wellenlängen in der Nähe des Maximums der spektralen Energievertheilung sehr grosse Werthe annehmen. Wenn nun in dem oben dargestellten Prozesse die schwarzen Körper sehr tiefe Temperatur besitzen sollen, so würde zwischen ihnen und dem Gas eine sehr grosse Temperaturdifferenz bestehen bleiben, weil das Gas nicht soweit abgekühlt werden darf, ohne die vorausgesetzten Eigenschaften des ideellen Gases zu verlieren. Da ausserdem für sehr kleine Werthe der Temperatur nach
dem Stefan’schen Gesetz die ausgestrahlte Energie verschwindend klein ist gegen den Betrag bei höherer Temperatur, so kann das sonst verschwindende Ausstrahlungsvermögen des Gases selbst und namentlich auch der dem Gase anliegenden diathermanen Platten, welche mit dem Gase gleiche Temperatur haben müssen, gegen die Energie der Strahlung in Betracht kommen.

Dass den Hertz’schen Schwingungen gegenüber die festen Körper als stetige Massen und nicht wie bei den Lichtschwingungen als Molekülgruppen wirken, ist bereits von Bjerknes\(^1\) ausgesprochen. Es können dann auch durch die Molecularbewegungen der Wärme keine Hertz’schen Wellen ausgesandt werden. Es mag aber schliesslich noch besonders hervorgehoben werden, dass aus unseren Betrachtungen keineswegs eine Unstetigkeit des Verhaltens der Strahlen verschiedener Wellenlänge folgt. Es sollte nur gezeigt werden, dass die Eigenschaften langer Wellen uns zu der Annahme führen, dass in der Wärmestrahlung durchaus nicht Strahlen jeder Wellenlänge vorhanden sind, sondern dass die Energiecurve, als Function der Wellenlänge dargestellt, auf der Seite der grossen Wellenlängen schon im endlichen Gebiet stetig auf unendlich kleine Werthe herabsinkt.