

Full text on our homepage at www.ann-phys.org

# Special Topic Issue Grassmannian Paths to Cosmology

Guest Editors:

M. P. Dąbrowski (Szczecin), K. A. Meissner (Warsaw), and Yu. V. Shtanov (Kiev)

#### **EDITORIAL**

Page 147-149 \_\_\_\_\_ M. P. Dąbrowski, K. A. Meissner, and Yu. V. Shtanov

#### **INVITED PAPERS**

Page **150–160** \_\_\_\_\_ Hermann Nicolai From Grassmann to maximal (N = 8) supergravity





Page 161–176 \_\_\_\_\_ Anthony Lasenby

Grassmann, geometric algebra and cosmology

Starting with Grassmann's work, a short review is given of the development of 'Geometric Algebra', and the reasons why it is a useful system for describing much of physics. Applications are then discussed in cosmology, including a novel boundary condition for the universe, and efficient ways to encode Bianchi cosmology. Predictions for the Cosmic Microwave Background in such models, and in another area owing much to Grassmann (String Theory), are also discussed.





© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

| Page | 177–185 | A. A. Zheltukhin<br>Dmitrij Volkov, super-Poincaré group and Grassmann variables<br>A fundamental role of the Hermann Grassmann anticommuting variables both<br>in physics and mathematics is discussed on the example of supersymmetry.<br>The talk describes how the D. Volkov question about possibility of the exis-<br>tence of Nambu-Goldstone fermions, realized by the Grassmannian variables,<br>resulted in the discovery of the super-Poincaré group, its spontaneous break-<br>ing and gauging.                                                                                                                                                                                                                                                                         |
|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page | 186–195 | J. Ambjørn, J. Jurkiewicz, and R. Loll<br>Deriving spacetime from first principles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |         | Causal Dynamical Triangulation<br>is a back-to-basics approach to<br>nonperturbative, background-<br>independent quantum gravity,<br>which relies on few ingredients<br>and initial assumptions, has few<br>free parameters and – crucially – is<br>amenable to numerical simulations. After putting the approach in context, the<br>authors briefly describe its set-up and highlight some of its major, and some-<br>times unexpected findings. Prominent among them is the dynamical genera-<br>tion of a classical de Sitter universe from Planckian quantum fluctuations.                                                                                                                                                                                                      |
| Page | 196-201 | Michael Heller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |         | A noncommutative Friedman cosmological model<br>The closed Friedman cosmological model, based on noncommutative geom-<br>etry, is presented. Two global effects exhibited by the model are discussed.<br>The first effect is the "generation of matter out of geometry". Gravitational<br>field equation in this model has the form of the eigenvalue equation for the<br>Einstein operator. It turns out that the eigenvalues of this operator reproduce<br>components of the energy-momentum tensor. The second effect concerns the<br>existence of the initial and final singularities. Because of the strongly proba-<br>bilistic character of the noncommutative dynamics on the fundamental level,<br>although singularities do exist, they are probabilistically irrelevant. |
| Page | 202–210 | John D. Barrow<br>Varving alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |         | Properties of cosmological theories for the variation of the fine structure 'con-<br>stant' are reviewed. Some general features of the cosmological models are<br>highlighted that exist in these theories with reference to recent quasar data<br>that are consistent with time-variation in the fine structure 'constant' since a<br>redshift of 3.5.                                                                                                                                                                                                                                                                                                                                                                                                                             |

www.ann-phys.org

| Page <b>211</b> - | ·218 | Claus Kiefer<br>Can singularities be avoided in quantum cosmology?                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |      | Many cosmological models based on general relativity contain singularities.<br>In this contribution the question is addressed whether consistent models with-<br>out singularities can exist in quantum cosmology. The discussion is based on<br>the Wheeler–DeWitt equation of quantum geometrodynamics. The models<br>under consideration are motivated by recent discussions of dark energy. Em-<br>ploying some natural criteria of singularity avoidance in the quantum theory,<br>it is shown that this can indeed happen in these models. |

#### Page **219–229** \_\_\_\_\_ David Polarski What is the dark energy paradigm?

The present accelerated expansion of the universe is a major challenge for cosmology. Dark Energy models aim to explain this unconventional expansion. We have at the present time a large variety of models which are conceptually very different. Here some of them are reviewed, especially those based on a modification of the laws of gravity. Future high precision observations probing both the background and the perturbations will significantly reduce the class of viable models.

## Page 230–237 \_\_\_\_ Marek Kowalski

Testing dark energy with supernovae

The use of Type Ia Supernovae as cosmic standard candles pose still perhaps the most direct way to probe the Cosmic acceleration history. In this contribution the present status of Supernova cosmology is reviewed. The author focuses on current observations and what they can tell us about the properties of Dark Energy, i.e. our (in-)ability to distinguish dark energy models from cosmological constant. In the last part a brief outlook at what to expect from future surveys is given.



| Page <b>238–248</b> | Salvatore Capozziello and Stefano Vignolo<br>Metric-affine $f(R)$ -gravity with torsion: an overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Torsion and curvature could play a fundamental role in explaining cosmolog-<br>ical dynamics. $f(R)$ -gravity with torsion is an approach aimed to encompass<br>in a comprehensive scheme all the Dark Side of the Universe (Dark Energy<br>and Dark Matter). The field equations in empty space and in presence of per-<br>fect fluid matter are discussed taking into account the analogy with the metric-<br>affine formalism. The result is that the extra curvature and torsion degrees of<br>freedom can be dealt under the standard of an effective scalar field of fully<br>geometric origin. The initial value problem for such theories is also discussed. |

### **CONTRIBUTED PAPERS**

| Page | 249–253 | Zoltán Keresztes and László Á. Gergely<br>3+1+1 dimensional covariant gravitational dynamics on an<br>asymmetrically embedded brane: The average equations                                     |
|------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page | 254–257 | Bogdan G. Dimitrov<br>Algebraic geometry approach in gravity theory and new relations<br>between the parameters in type I low-energy string theory action<br>in theories with extra dimensions |
| Page | 258-262 | Walter Tarantino<br>Flavour mixing in an expanding universe                                                                                                                                    |
| Page | 263–267 | Janusz Garecki<br>Superenergy, conformal transformations, and Friedman universes                                                                                                               |
| Page | 268–270 | Alexey Toporensky<br>Stable periodic regime in a scalar field cosmology                                                                                                                        |
| Page | 271–275 | Adam Balcerzak<br>Fourth-order braneworld gravity                                                                                                                                              |
| Page | 276-280 | S. M. M. Rasouli and S. Jalalzadeh<br>On the energy conditions in non-compact Kaluza-Klein gravity                                                                                             |
| Page | 281-284 | Włodzimierz Piechocki<br>Non-standard loop quantum cosmology                                                                                                                                   |
| Page | 285–289 | Pouria Pedram<br>On the initial condition in quantum cosmology                                                                                                                                 |

www.ann-phys.org

| Page <b>290–293</b> | Piotr Dzierżak and Włodzimierz Piechocki<br>Bianchi I model of the universe in terms of nonstandard LQC                                                                    |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page <b>294–298</b> | Evangelos Melas<br>Generalization of Hajicek and Kuchař's canonical quantization<br>scheme to the 3+1 geometries admitting maximally symmetric<br>two-dimensional surfaces |
| Page <b>299–303</b> | Mariusz P. Dąbrowski<br>Dark energy from temporal and spatial singularities of pressure                                                                                    |
| Page <b>304–307</b> | Przemysław Małkiewicz<br>Propagation of extended objects across singularity of time<br>dependent orbifold                                                                  |
| Page <b>308–311</b> | Hoda Ghodsi and Martin A. Hendry<br>Constraining sudden future singularity models                                                                                          |
| Page <b>312–315</b> | Bogusław Broda and Michał Szanecki<br>Dark energy from quantum fluctuations                                                                                                |
| Page <b>316–319</b> | Arman Shafieloo, Varun Sahni, and Alexei A. Starobinsky<br>Presently decaying dark energy?                                                                                 |
| Page <b>320–323</b> | Orest Hrycyna and Marek Szydłowski<br>Three steps to accelerated expansion                                                                                                 |
| Page <b>324–327</b> | Ivan Debono, Anaïs Rassat, Alexandre Réfrégier, Adam Amara, and<br>Thomas D. Kitching<br>Weak lensing forecasts for dark energy, neutrinos and initial<br>conditions       |
| Page <b>328–331</b> | Stefano Camera<br>Constraining unified dark matter models with weak lensing                                                                                                |
| Page <b>332–335</b> | Yuri Shtanov<br>Statistical anisotropy as a consequence of inflation                                                                                                       |
| Page <b>336–339</b> | Aleksandar Rakić, Dennis Simon, Julian Adamek, and Jens C. Niemeyer<br>On the fate of vacuum bubbles on matter backgrounds                                                 |
| Page <b>340–343</b> | Boudewijn F. Roukema<br>Some spaces are more equal than others                                                                                                             |
| Page <b>344–346</b> | Leszek M. Sokołowski<br>On the abuse of gravity theories in cosmology                                                                                                      |

www.ann-phys.org

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

| Page <b>347–350</b> | Mariafelicia De Laurentis, Salvatore Capozziello, Shin'ichi Nojiri, and Sergei Odintsov<br>PPN limit and cosmological gravitational waves as tools to constrain $f(R)$ -gravity |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page <b>351–354</b> | Wojciech A. Hellwing<br>Galactic halos in cosmology with long-range scalar DM<br>interaction                                                                                    |
| Page <b>355–358</b> | Jerzy Król (Quantum) gravity effects via exotic $\mathbb{R}^4$                                                                                                                  |
| Page <b>359–363</b> | Babak Vakili Noether symmetric minisuperspace model of $f(R)$ cosmology                                                                                                         |
| Page <b>364–367</b> | Masahiro Morikawa<br>Bose-Einstein condensation in the early universe                                                                                                           |

Annalen der Physik is indexed in Chemical Abstracts Service/SciFinder, COMPENDEX, Current Contents<sup>®</sup>/Physical, Chemical & Earth Sciences, FIZ Karlsruhe Databases, INIS: International Nuclear Information System Database, INSPEC, Journal Citation Reports/Science Edition, Science Citation Index Expanded<sup>TM</sup>, Science Citation Index<sup>®</sup>, SCOPUS, Statistical Theory & Method Abstracts, VINITI, Web of Science<sup>®</sup>, Zentralblatt MATH/Mathematics Abstracts



Recognized by the European Physical Socity

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.ann-phys.org