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Exercises 3

1. Hellmann-Feynman theorem
Consider a Hamiltonian, which depends on a parameter A. Of course, all eigenfunctions

and eigenvalues will then also depend on this parameter and the eigenvalues are given by
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Here n labels different eigenstates. According to the theorem by Hellmann and Feynman
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any eigenstate then fulfils the relation
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Prove the Hellmann-Feynman theorem.

2. Ritz variational method
According to the variational principle the solutions of Schrodingers equation are charac-

terized by a vanishing variation of the expextation value of the Hamiltonian
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with respect to variations of the wave function, i.e.
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Consider the situation, where the wave function |¢)) can be represented as a linear com-

bination of a set of fixed trial functions,
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and express the variational principle in terms of the Hamiltonian matrix (xx|H|x;) and

the overlap matrix (xx|x:)-



3. Calculate the maximum of the function
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for all pairs (z,y) falling on the ellipse with semiaxes a and b, respectively, i.e. for all

pairs (z,y) fulfilling the condition
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using the method of Lagrange multipliers.
4. Yukawa potential
Calculate the Fourier transform v,(q) of the screened Coulomb potential
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