From Quantum Mechanics to Materials Design

Volker Eyert

Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg

October 14, 2010

Quantum Mechanics

- Density Functional Theory
- Full-Potential ASW Method

∃⇒

Quantum Mechanics

- Density Functional Theory
- Full-Potential ASW Method

(2) "Materials Design"

∃⇒

Density Functional Theory Full-Potential ASW Method

Outline

Quantum Mechanics

- Density Functional Theory
- Full-Potential ASW Method

▶ < ∃ >

P.

Density Functional Theory Full-Potential ASW Method

Calculated Electronic Properties

Moruzzi, Janak, Williams (IBM, 1978)

Density Functional Theory Full-Potential ASW Method

Energy band structures from screened HF exchange

Si, AIP, AIAs, GaP, and GaAs

Experimental and theoretical bandgap properties

Shimazaki, Asai JCP **132**, 224105 (2010)

Hamiltonian (within Born-Oppenheimer approximation)

$$H = H_{el,kin} + H_{el-el} + H_{ext}$$

= $\sum_{i} \left[-\frac{\hbar^2}{2m} \nabla_i^2 \right] + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \sum_{\substack{i,j \ j \neq i}} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{i} v_{ext}(\mathbf{r}_i)$

where

Key Players

$$\sum_{i} v_{ext}(\mathbf{r}_i) = \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \sum_{\substack{\mu\nu\\\mu\neq\nu}} \frac{Z_{\mu}Z_{\nu}}{|\mathbf{R}_{\mu} - \mathbf{R}_{\nu}|} - \frac{e^2}{4\pi\epsilon_0} \sum_{\mu} \sum_{i} \frac{Z_{\mu}}{|\mathbf{R}_{\mu} - \mathbf{r}_i|}$$

 μ : ions with charge Z_{μ} , *i*: electrons

・ロット (雪) (日) (日)

э

Electron Density Operator

Key Players

$$\hat{\rho}(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_i) = \sum_{\alpha\beta} \chi_{\alpha}^*(\mathbf{r}) \chi_{\beta}(\mathbf{r}) a_{\alpha}^+ a_{\beta}$$

 χ_{α} : single particle state

Electron Density Operator

$$\hat{\rho}(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_i) = \sum_{\alpha\beta} \chi_{\alpha}^*(\mathbf{r}) \chi_{\beta}(\mathbf{r}) \mathbf{a}_{\alpha}^+ \mathbf{a}_{\beta}$$

 χ_{α} : single particle state

・ロット (雪) (日) (日)

Electron Density

Key Players

$$ho(\mathbf{r}) = \langle \Psi | \hat{
ho}(\mathbf{r}) | \Psi
angle = \sum_{lpha} |\chi_{lpha}(\mathbf{r})|^2 n_{lpha}$$

 $|\Psi\rangle$: many-body wave function, n_{α} : occupation number

Normalization:
$$N = \int d^3 \mathbf{r} \rho(\mathbf{r})$$

э

Functionals

Key Players

Universal Functional (independent of ionic positions!)

$$\mathsf{F} = \langle \Psi | \mathcal{H}_{ extsf{el}, extsf{kin}} + \mathcal{H}_{ extsf{el}- extsf{el}} | \Psi
angle$$

Functional due to External Potential:

$$\begin{aligned} \langle \Psi | H_{\text{ext}} | \Psi \rangle &= \langle \Psi | \sum_{i} v_{\text{ext}}(\mathbf{r}) \delta(\mathbf{r} - \mathbf{r}_{i}) | \Psi \rangle \\ &= \int d^{3}\mathbf{r} \ v_{\text{ext}}(\mathbf{r}) \rho(\mathbf{r}) \end{aligned}$$

< 回 > < 回 > < 回 >

Density Functional Theory Full-Potential ASW Method

Authors

Pierre C. Hohenberg

Walter Kohn

Lu Jeu Sham

∃⇒

< □ > < 同 >

Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential $v_{ext}(\mathbf{r})$ is determined, apart from a trivial constant, by the electronic ground state density $\rho(\mathbf{r})$.

2nd Theorem

The total energy functional $E[\rho]$ has a minimum equal to the ground state energy at the ground state density.

Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential $v_{ext}(\mathbf{r})$ is determined, apart from a trivial constant, by the electronic ground state density $\rho(\mathbf{r})$.

2nd Theorem

The total energy functional $E[\rho]$ has a minimum equal to the ground state energy at the ground state density.

Nota bene

Both theorems are formulated for the ground state!

- Zero temperature!
- No excitations!

< □ > < 同 > < 回 > < 回 >

Density Functional Theory Full-Potential ASW Method

Levy, Lieb, 1979-1983: Constrained Search

Percus-Levy partition

Density Functional Theory Full-Potential ASW Method

Levy, Lieb, 1979-1983: Constrained Search

Variational principle

$$E_{0} = \inf_{|\Psi\rangle} \langle \Psi | H | \Psi \rangle$$

$$= \inf_{|\Psi\rangle} \langle \Psi | H_{el,kin} + H_{el-el} + H_{ext} | \Psi \rangle$$

$$= \inf_{\rho(\mathbf{r})} \left[\inf_{|\Psi\rangle \in S(\rho)} \langle \Psi | H_{el,kin} + H_{el-el} | \Psi \rangle + \int d^{3}\mathbf{r} \ v_{ext}(\mathbf{r})\rho(\mathbf{r}) \right]$$

$$=: \inf_{\rho(\mathbf{r})} \left[F_{LL}[\rho] + \int d^{3}\mathbf{r} \ v_{ext}(\mathbf{r})\rho(\mathbf{r}) \right] = \inf_{\rho(\mathbf{r})} E[\rho]$$

 $S(\rho)$: set of all wave functions leading to density ρ $F_{LL}[\rho]$: Levy-Lieb functional

< □ > < 同 > < 回 > < 回 > < 回 >

Density Functional Theory Full-Potential ASW Method

Levy, Lieb, 1979-1983: Constrained Search

Levy-Lieb functional

$$F_{LL}[\rho] = \inf_{|\Psi\rangle \in S(\rho)} \langle \Psi | H_{el,kin} + H_{el-el} | \Psi \rangle$$

= $\underbrace{\mathcal{T}[\rho] + \mathcal{W}_{xc}[\rho]}_{=} + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3\mathbf{r} \int d^3\mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$
= $G[\rho] + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3\mathbf{r} \int d^3\mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$

Functionals

- Kinetic energy funct.: $T[\rho]$
- Exchange-correlation energy funct.: W_{xc}[ρ] not known!
- Hartree energy funct.: $\frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3\mathbf{r} \int d^3\mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$

not known!

known

Density Functional Theory Full-Potential ASW Method

Kohn and Sham, 1965: Single-Particle Equations

Ansatz

• use different splitting of the functional $G[\rho]$

$$T[\rho] + W_{xc}[\rho] = G[\rho] \stackrel{!}{=} T_0[\rho] + E_{xc}[\rho]$$

Preintroduce single-particle wave functions

Imagine: non-interacting electrons with same density

- Density: $ho(\mathbf{r}) = \sum_{\alpha}^{occ} |\chi_{\alpha}(\mathbf{r})|^2$
- Kinetic energy funct.:

$$T_0[\rho] = \sum_{\alpha}^{occ} \int d^3 \mathbf{r} \ \chi_{\alpha}^*(\mathbf{r}) \left[-\frac{\hbar^2}{2m} \nabla^2 \right] \chi_{\alpha}(\mathbf{r})$$

Exchange-correlation energy funct.: E_{xc}[ρ]

known!

known!

not known!

< □ > < 同 > < 回 > < 回 > < 回 >

Kohn and Sham, 1965: Single-Particle Equations

Euler-Lagrange Equations (Kohn-Sham Equations)

$$\frac{\delta E[\rho]}{\delta \chi_{\alpha}^{*}(\mathbf{r})} - \varepsilon_{\alpha} \chi_{\alpha}(\mathbf{r}) = \left[-\frac{\hbar^{2}}{2m} \nabla^{2} + v_{\text{eff}}(\mathbf{r}) - \varepsilon_{\alpha} \right] \chi_{\alpha}(\mathbf{r}) \stackrel{!}{=} 0$$

- Effective potential: $v_{eff}(\mathbf{r}) := v_{ext}(\mathbf{r}) + v_{H}(\mathbf{r}) + v_{xc}(\mathbf{r})$
- Exchange-correlation potential:

$$\mathbf{v}_{\mathbf{xc}}(\mathbf{r}) := \frac{\delta \mathbf{E}_{\mathbf{xc}}[\rho]}{\delta \rho}$$

• "Single-particle energies": ε_{α} (Lagrange-parameters, orthonormalization)

not known!

< □ > < 同 > < 回 > < 回 > < 回 >

Kohn and Sham, 1965: Local Density Approximation

Be Specific!

Approximate exchange-correlation energy functional

$$\mathsf{E}_{\mathsf{xc}}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{\mathsf{xc}}(\rho(\mathbf{r})) d^3 \mathbf{r}$$

- Exchange-correlation energy density $\varepsilon_{xc}(\rho(\mathbf{r}))$
 - depends on local density only!
 - is calculated from homogeneous, interacting electron gas
- Exchange-correlation potential

$$\mathbf{v}_{\mathbf{xc}}(\rho(\mathbf{r})) = \left[\frac{\partial}{\partial \rho} \left\{\rho \varepsilon_{\mathbf{xc}}(\rho)\right\}\right]_{\rho = \rho(\mathbf{r})}$$

Kohn and Sham, 1965: Local Density Approximation

Limitations and Beyond

- LDA exact for homogeneous electron gas (within QMC)
- Spatial variation of ρ ignored
 - \rightarrow include $\nabla \rho(\mathbf{r}), \dots$
 - → Generalized Gradient Approximation (GGA)
- Self-interaction cancellation in $v_{Hartree} + v_x$ violated

Density Functional Theory Full-Potential ASW Method

Muffin-Tin Approximation

John C. Slater

Full Potential

spherical symmetric near nuclei flat outside the atomic cores

Muffin-Tin Approximation

$$v^{MT}_{\sigma}(\mathbf{r}) = \cdot$$

 $v_{\sigma}(\mathbf{r})$: -

spherical symmetric in spheres constant in interstitial region

Density Functional Theory Full-Potential ASW Method

Muffin-Tin Approximation

э

Density Functional Theory Full-Potential ASW Method

Muffin-Tin Approximation

Wave Function

- solve Schrödingers eq.
 → partial waves
- ⊘ match partial waves
 → basis functions,
 "augmented" partial waves
- use to expand
 - \rightarrow wave function

Muffin-Tin Potential

Density Functional Theory Full-Potential ASW Method

Muffin-Tin Approximation

Flavors

- Muffin-Tin Approximation: touching spheres
- Atomic Sphere Approximation: space-filling spheres
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency $\rightarrow \mathcal{O}(ASA)$ speed!!!
 - makes potential more realistic
 - systematic error in total energy

bad!

Iron Pyrite: FeS₂

Pyrite

- Pa3

 (T_h⁶)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs $\|\langle 111 \rangle$ axes
- $x_{\rm S} = 0.38484$
- rotated FeS₆ octahedra

3 🕨 🖌 🖻

Density Functional Theory Full-Potential ASW Method

FeS₂: Structure Optimization

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region

< ∃⇒

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential

- inside muffin-tin spheres
- in the interstitial region

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
 - inside muffin-tin spheres
 - in the interstitial region

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - in the interstitial region

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - use spherical-harmonics expansions
 - in the interstitial region

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - use spherical-harmonics expansions
 - in the interstitial region
 - no exact spherical-wave representation available!

Density Functional Theory Full-Potential ASW Method

(AI)

From Wave Functions to Electron Density

Density inside MT-Spheres

From Wave Functions to Electron Density

Products of Spherical Waves in Interstitial Region

- expand in spherical waves
 - would be efficient
 - coefficients/integrals not known analytically
 - Methfessel, 1988:

match values and slopes at MT-sphere surfaces

From Wave Functions to Electron Density

Products of Spherical Waves in Interstitial Region

- expand in spherical waves
 - match values and slopes at MT-sphere surfaces

Density Functional Theory Full-Potential ASW Method

Comparison of Approaches

Ole K. Andersen	1975
 ASA geometry used for basis functions 	
\rightarrow minimal basis set	good!
 ASA geometry used for density and potential 	
\rightarrow error in total energy	bad!

▶ < ∃ >

< □ > < 同 >
Quantum Mechanics Densit "Materials Design" Full-Po

Density Functional Theory Full-Potential ASW Method

Comparison of Approaches

Ole K. Andersen	1975
 ASA geometry used for basis functions → minimal basis set 	good!
 ASA geometry used for density and potential arror in total approve 	badl
	Dau!

Michael S. Methfessel	1988
• MT geometry used for density and potential	
ightarrow accurate total energy	good!
• MT geometry used for basis functions	
\rightarrow large basis set	bad!

▶ < ∃ >

< □ > < 同 >

Quantum Mechanics Densi "Materials Design" Full-P

Density Functional Theory Full-Potential ASW Method

Comparison of Approaches

Ole K. Andersen	1975
ASA geometry used for basis functions	good!
 ASA geometry used for density and potential 	bad!
Michael S. Methfessel	1988
• MT geometry used for density and potential	good!

• MT geometry used for basis functions bad!

present approach	2006
 ASA geometry used for basis functions → minimal basis set → O(ASA) speed 	great!
 MT geometry used for density and potential → accurate total energy 	great!

Implementation: Augmented Spherical Wave Method

Oth Generation ASW (Williams, Kübler, Gelatt, 1970s)

PRB 19, 6094 (1979)

1st Generation (VE, 1990s)

- new implementation (accurate, stable, portable)
 VE, Int. J. Quantum Chem. 77, 1007 (2000)
 VE, Lect. Notes Phys. 719 (Springer, 2007)
- xAnderson convergence acceleration scheme VE, J. Comput. Phys. **124**, 271 (1996)
- all LDA- and GGA-parametrizations
- still based on atomic-sphere approximation
 VE, Höck, PRB 57, 12727 (1998)

.∋⇒

< □ > < @ >

Implementation: Augmented Spherical Wave Method

2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of $\Re\sigma$ and $\Im\sigma$
 - no Kramers-Kronig relations needed
- transport properties, thermoelectrics
- LDA+U method
 - all "flavors" for double-counting terms (AMF, FLL, DFT)

VE, Lect. Notes Phys. (2nd ed., Springer, 2011)

at $\mathcal{O}(ASA)$ speed!

Density Functional Theory Full-Potential ASW Method

Iron Pyrite: FeS₂

Pyrite

- Pa3

 (T_h⁶)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs $\|\langle 111 \rangle$ axes
- $x_{\rm S} = 0.38484$
- rotated FeS₆ octahedra

3 🕨 🖌 🖻

Density Functional Theory Full-Potential ASW Method

FeS₂: Structure Optimization

▶ < ⊒ >

Density Functional Theory Full-Potential ASW Method

FeS₂: Structure Optimization

at $\mathcal{O}(ASA)$ speed!

< ロ > < 同 > < 回 > < 回 >

Density Functional Theory Full-Potential ASW Method

Phase Stability in Silicon

Bad

β-tin structure most stable # nature (diamond structure)

.⊒ →

< □ > < 同 >

Density Functional Theory Full-Potential ASW Method

Phase Stability in Silicon

Full-Potential Code

New!

at O(ASA) speed!

- diamond structure most stable
- pressure induced phase transition to β-tin structure

Volker@Eyert.de From Quantum Mechanics to Materials Design

Full-Potential ASW Method

LTO(Γ)-Phonon in Silicon

Image: A matrix and a matrix

Density Functional Theory Full-Potential ASW Method

LTO(Γ)-Phonon in Silicon

Volker@Eyert.de From Quantum Mechanics to Materials Design

(日)

500

Outline

- Density Functional Theory
- Full-Potential ASW Method

< ∃⇒

Industrial Applications

Computational Materials Engineering

- Automotive
- Energy & Power Generation
- Aerospace
- Steel & Metal Alloys
- Glass & Ceramics
- Electronics
- Display & Lighting
- Chemical & Petrochemical
- Drilling & Mining

Delafossites: ABO₂

Delafossite Structure

Building Blocks

- rhombohedral lattice
- triangular A-atom layers
- BO₂ sandwich layers
- B-atoms octahedrally coordinated
- Iinear O–A–O bonds

.⊒ →

Delafossites: ABO₂

Delafossite Structure

Building Blocks

- rhombohedral lattice
- triangular A-atom layers
- BO₂ sandwich layers
- B-atoms octahedrally coordinated

< /⊒ > <

Iinear O–A–O bonds

Issues

- dimensionality
- geometric frustration
- play chemistry

Delafossites: ABO₂

Delafossite Structure

Prototype Materials

- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CulnO₂, ...
- PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂

Properties

- semiconductors, AF interactions, (distorted) triangular
- non-magn. semicond., thermopower
- wide-gap semicond., p-type TCO
- very good metals, high anisotropy

ヘロマ ヘ動 マイロマー

э

Delafossites: ABO₂

Prototype Materials

- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CuInO₂, ...
- PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂

Properties

- semiconductors, AF interactions, (distorted) triangular
- non-magn. semicond., thermopower

wide-gap semicond., p-type TCO

very good metals, high anisotropy

ヘロマ ヘ動 マイロマー

э

Delafossites: ABO₂

Prototype Materials

- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CuInO₂, ...

• PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂

Properties

- semiconductors, AF interactions, (distorted) triangular
- onn-magn. semicond., thermopower
- wide-gap semicond., p-type TCO

very good metals, high anisotropy

ヘロマ ヘ動 マイロマー

э

Delafossites: ABO₂

Prototype Materials

- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CuInO₂, ...
- PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂

Properties

- semiconductors, AF interactions, (distorted) triangular
- non-magn. semicond., thermopower
- wide-gap semicond., p-type TCO
- very good metals, high anisotropy

・ロット (雪) (日) (日)

PdCoO₂ and PtCoO₂

Delafossite Structure

Experimental Results

- very low resistivity
- anisotropy ratio \approx 200
- PES: only Pd 4d states at E_F
- PES/IPES: E_F in shallow DOS minimum
 - high thermopower on doping?

PdCoO₂ and PtCoO₂

Delafossite Structure

Experimental Results

- very low resistivity
- anisotropy ratio \approx 200
- PES: only Pd 4d states at E_F
- PES/IPES: E_F in shallow DOS minimum
 - high thermopower on doping?

Open Issues

role of Pd 4d, Co 3d, and O 2p orbitals?

.⊒ →

Structure Optimization in PdCoO₂

Structural Data

experiment

- *a* = 2.83 Å
- c = 17.743 Å
- *z*₀ = 0.1112

theory

- *a* = 2.8767 Å
- c = 17.7019Å
- $z_0 = 0.1100$

< ロ > < 同 > < 回 > < 回 >

VE, R. Frésard, A. Maignan, Chem. Mat. 20, 2370 (2008)

Volker@Eyert.de From Quantum Mechanics to Materials Design

Electronic Properties of PdCoO₂

Results

- Co 3d-O 2p hybridization
- CoO₆ octahedra: Co $3d \Rightarrow t_{2g}$ and e_g
- Co 3d⁶ (Co³⁺) LS
- Pd 4d⁹ (Pd¹⁺)

< □ > < 同 >

 Co 3d, O 2p: very small DOS at E_F

∃ ▶ ∢

VE, R. Frésard, A. Maignan, Chem. Mat. 20, 2370 (2008)

Electronic Properties of PdCoO₂

Results

- broad Pd d_{xy,x^2-y^2} bands
 - short in-plane Pd-Pd distance

- non-bonding Pd d_{xz,yz}
 bands
- strong Pd $4d_{3z^2-r^2}$ -O 2p hybridization
- states at E_F: Pd d_{xy,x²-y²}, d_{3z²-r²}

VE, R. Frésard, A. Maignan, Chem. Mat. 20, 2370 (2008)

Electronic Properties of PdCoO₂

Fermi Surface

Results

- quasi-2D
- single band crossing E_F
- but: bands below E_F disperse along Γ-A

< ロ > < 同 > < 回 > < 回 >

VE, R. Frésard, A. Maignan, Chem. Mat. 20, 2370 (2008)

CuFeO₂

Basics

- semiconductor
- AF interactions
- triangular lattice

æ

< 17 ▶

CuFeO₂

Basics

- semiconductor
- AF interactions
- triangular lattice

Open Issues

- frustration vs. long-range order
- role of Cu 3d orbitals?
- role of Fe 3d and O 2p orbitals?

.⊒ →

Previous Neutron Data

- $T_{N_1} = 16 \,\mathrm{K}, \ T_{N_2} = 11 \,\mathrm{K}$
- $\Theta_{CW} = -90 \,\mathrm{K}$
- magnetic supercells
- no structural distortion

•
$$m_{Fe^{3+}} = 4.4 \, \mu_{E}$$

∃ ► < ∃ ►</p>

Previous Neutron Data

- $T_{N_1} = 16 \,\mathrm{K}, \ T_{N_2} = 11 \,\mathrm{K}$
- $\Theta_{CW} = -90 \, \mathrm{K}$
- magnetic supercells
- no structural distortion

•
$$m_{Fe^{3+}} = 4.4 \, \mu_B$$

Band Calculations

- rhombohedral structure
- $m_{Fe} = 0.9 \, \mu_B$, $m_{Fe} = 3.8 \, \mu_B$

< ロ > < 同 > < 回 > < 回 >

- $E_g = 0$ in LDA, GGA
- ♯ PES, XES

Previous Neutron Data

- $T_{N_1} = 16 \,\mathrm{K}, \ T_{N_2} = 11 \,\mathrm{K}$
- $\Theta_{CW} = -90 \, \mathrm{K}$
- magnetic supercells
- no structural distortion

• $m_{Fe^{3+}} = 4.4 \, \mu_B$

Band Calculations

- rhombohedral structure
- $m_{Fe} = 0.9 \, \mu_B$, $m_{Fe} = 3.8 \, \mu_B$
- $E_g = 0$ in LDA, GGA
- # PES, XES

New Neutron Data

- magnetic supercells
- monoclinic structure below 4 K

∃ ► < ∃ ►</p>

Previous Neutron Data

- $T_{N_1} = 16 \,\mathrm{K}, \ T_{N_2} = 11 \,\mathrm{K}$
- $\Theta_{CW} = -90 \, \mathrm{K}$
- magnetic supercells
- no structural distortion

• $m_{Fe^{3+}} = 4.4 \, \mu_B$

Band Calculations

- rhombohedral structure
- $m_{Fe} = 0.9 \, \mu_B$, $m_{Fe} = 3.8 \, \mu_B$
- $E_g = 0$ in LDA, GGA
- ♯ PES, XES

Open Issues

- spin-state of Fe?
- influence of monoc. structure?

< ロ > < 同 > < 回 > < 回 >

New Neutron Data

- magnetic supercells
- monoclinic structure below 4 K

Electronic Properties of CuFeO₂

VE, R. Frésard, A. Maignan, PRB 78, 052402 (2008)

Volker@Eyert.de From Quantum Mechanics to Materials Design

Electronic Properties of CuFeO₂

VE, R. Frésard, A. Maignan, PRB 78, 052402 (2008)

Volker@Eyert.de From Quantum Mechanics to Materials Design

・ロト ・聞 ト ・ ヨト ・ ヨト

Magnetic Properties of CuFeO₂

Total Energ	ies (mRyd/f.u.)	, Magn. N	loms. (μ	ι _B), Band	Gaps (eV)
structure	magn. order	ΔE	$m_{\rm Fe}$	m _O	E_{g}
rhomb.	spin-deg.	0.0			-
rhomb.	ferro (LS)	-16.7	1.03	-0.02	-
rhomb.	ferro (IS)	-12.0	2.02	-0.02	-
rhomb.	ferro (HS)	-19.2	3.73	0.21	-

VE, R. Frésard, A. Maignan, PRB 78, 052402 (2008)

< ∃⇒

< □ > < 同 > < 回 > .

Magnetic Properties of CuFeO₂

Total Energ	ies (mRyd/f.u.)	, Magn.	Moms.	(μ_B), Band	Gaps (eV)
structure	magn. order	ΔE	$m_{\rm Fe}$	m _O	E_{g}
rhomb.	spin-deg.	0.0			-
rhomb.	ferro (LS)	-16.7	1.03	-0.02	-
rhomb.	ferro (IS)	-12.0	2.02	-0.02	-
rhomb.	ferro (HS)	-19.2	3.73	0.21	-
monoc.	spin-deg.	-6.0			-
monoc.	ferro (LS)	-21.5	1.04	-0.02	-
monoc.	ferro (IS)	-19.0	2.08	-0.02	-
monoc.	ferro (HS)	-32.0	3.62	0.19	-

VE, R. Frésard, A. Maignan, PRB 78, 052402 (2008)

Magnetic Properties of CuFeO₂

Total Energ	ies (mRyd/f.u.)	, Magn.	Moms. (_/	ι _B), Banc	Gaps (eV)
structure	magn. order	ΔE	m _{Fe}	m _o	E_{g}
rhomb.	spin-deg.	0.0			-
rhomb.	ferro (LS)	-16.7	1.03	-0.02	-
rhomb.	ferro (IS)	-12.0	2.02	-0.02	-
rhomb.	ferro (HS)	-19.2	3.73	0.21	-
monoc.	spin-deg.	-6.0			-
monoc.	ferro (LS)	-21.5	1.04	-0.02	-
monoc.	ferro (IS)	-19.0	2.08	-0.02	-
monoc.	ferro (HS)	-32.0	3.62	0.19	-
monoc.	antiferro	-46.0	± 3.72	± 0.08	0.05

VE, R. Frésard, A. Maignan, PRB 78, 052402 (2008)

CuRhO₂

Delafossite Structure

Experimental Findings

- semiconductor
- high thermopower on hole doping
 - $Rh^{3+} \longrightarrow Mg^{2+}$ up to 12%
- high T-independent power factor

CuRhO₂

Delafossite Structure

Experimental Findings

- semiconductor
- high thermopower on hole doping
 Rh³⁺ → Mg²⁺ up to 12%
- high T-independent power factor

Open Issues

- origin of high thermopower
- role of Cu 3d orbitals?
- role of Rh 4d and O 2p orbitals?

ヨト イヨト

Electronic Properties of CuRhO₂

Results

- Rh 4d-O 2p hybridization
- RhO₆ octahedra: Rh 4 $d \Rightarrow t_{2q}$ and e_q
- $E_g \approx 0.75 \, eV$
- Cu 4d¹⁰ (Cu¹⁺)
- electronic structure: strongly 3D

∃⇒

A. Maignan, VE et al., PRB 80, 115103 (2009)

Thermoelectric Power of CuRh_{1-x}Mg_xO₂

A. Maignan, VE *et al.*, PRB **80**, 115103 (2009)

2D Electron Gas at LaAlO₃-SrTiO₃ Interface

2D Electron Gas at LaAlO₃-SrTiO₃ Interface

Insulator-Metal Transition

Chen, Kolpak, Ismail-Beigi, Adv. Mater. 22, 2881 (2010)

Slab Calculations for the LaAlO₃-SrTiO₃ Interface

Structural setup of calculations

- central region: 5 layers SrTiO₃, TiO₂-terminated
- sandwiches: 2 to 5 layers LaAlO₃, AlO₂ surface
- vacuum region \approx 20 Å
- inversion symmetry
- lattice constant of SrTiO₃ from GGA (3.944 Å)

Slab Calculations for the LaAlO₃-SrTiO₃ Interface

ヘロマ ヘビマ ヘロマ

Calculational method

- Vienna Ab Initio Simulation Package (VASP)
- GGA-PBE
- Steps:
- optimization of SrTiO₃ lattice constant
- Islab calculations
 - full relaxation of all atomic positions
 - 5 × 5 × 1 k-points
 - Γ-centered k-mesh
 - Methfessel-Paxton BZ-integration

Slab Calculations for the LaAlO₃-SrTiO₃ Interface

Structural relaxation

- AIO₂ surface layers
 - strong inward relaxation
 - weak buckling
- LaO layers
 - strong buckling
- AIO₂ subsurface layers
 - buckling
- TiO₂ interface layers
 - small outward relaxation

Slab Calculations for the LaAlO₃-SrTiO₃ Interface

Tunneling Spectroscopy of LaAlO₃-SrTiO₃ Interface

What is the origin of the 2-DEG? Intrinsic mechanism or defect-doping?

Tunneling Spectroscopy of LaAlO₃-SrTiO₃ Interface

 4uc LaAlO₃ on SrTiO₃, tunneling data

 4uc LaAlO₃ on SrTiO₃, LDA calculations, DOS of interface Ti

 4uc LaAlO₃ on SrTiO₃, LDA+U calculations, DOS of interface Ti

Tunneling Spectroscopy of LaAlO₃-SrTiO₃ Interface

 bulk SrTiO₃, LDA calculations, conduction band DOS

Volker@Eyert.de From Quantum Mechanics to Materials Design

"2D Electron Liquid State" at LaAIO₃-SrTiO₃ Interface

M. Breitschaft et al., PRB 81, 153414 (2010)

∃⇒

Critical review of the Local Density Approximation

Limitations and Beyond

- Self-interaction cancellation in $v_{Hartree} + v_x$ violated
- Repair using exact Hartree-Fock exchange functional

 → class of hybrid functionals

PBE0

$$E_{xc}^{PBE0}=rac{1}{4}E_{x}^{HF}+rac{3}{4}E_{x}^{PBE}+E_{c}^{PBE}$$

HSE03, HSE06

$$E_{xc}^{HSE} = rac{1}{4}E_x^{HF,sr,\mu} + rac{3}{4}E_x^{PBE,sr,\mu} + E_x^{PBE,lr,\mu} + E_c^{PBE}$$

based on decomposition of Coulomb kernel

$$\frac{1}{r} = S_{\mu}(r) + L_{\mu}(r) = \frac{\operatorname{erfc}(\mu r)}{r} + \frac{\operatorname{erf}(\mu r)}{r}$$

< □ > < 同 > < 回 > < 回 >

Critical review of the Local Density Approximation

Limitations and Beyond

- Self-interaction cancellation in $v_{Hartree} + v_x$ violated
- Repair using exact Hartree-Fock exchange functional

 → class of hybrid functionals

Critical review of the Local Density Approximation

Limitations and Beyond

- Self-interaction cancellation in $v_{Hartree} + v_x$ violated
- Repair using exact Hartree-Fock exchange functional

 → class of hybrid functionals

Critical review of the Local Density Approximation

Calculated vs. experimental bandgaps

Volker@Eyert.de From Quantum Mechanics to Materials Design

SrTiO₃

Bandgap GGA: ≈ 1.6 eV, exp.: 3.2 eV

Volker@Eyert.de From Quantum Mechanics to Materials Design

SrTiO₃

Bandgap

GGA: \approx 1.6 eV, HSE: \approx 3.1 eV, exp.: 3.2 eV

(日) (圖) (E) (E)

æ

LaAIO₃

Volker@Eyert.de From Quantum Mechanics to Materials Design

LaAIO₃

Bandgap

GGA: $\approx 3.5\,\text{eV},~\text{HSE:}\approx 5.0\,\text{eV},~\text{exp.:}~5.6\,\text{eV}$

(日) (圖) (E) (E)

æ

Metal-Insulator Transition of VO₂

Metal-Insulator Transitions (MIT)

- VO₂ (d¹)
 - 1st order, 340 K, $\Delta\sigma \approx 10^4$
 - rutile $\rightarrow M_1$ (monoclinic)
- V₂O₃ (*d*²)
 - 1st order, 170 K, $\Delta \sigma \approx 10^6$

< ロ > < 同 > < 回 > <

.∋⇒

- corundum \rightarrow monoclinic
- paramagn. \rightarrow AF order

Origin of the MIT???

- Structural Changes?
- Electron Correlations?

Metal-Insulator Transition of VO₂

Metal-Insulator Transition of VO2

e_q^{σ} Orbitals

▲御▶ ▲ 国▶ ▲ 国≯

DQC

Volker@Eyert.de From Quantum Mechanics to Materials Design

Metal-Insulator Transition of VO₂

Rutile Structure

- simple tetragonal
- P4₂/mnm (D¹⁴_{4h})

Metal-Insulator Transition of VO₂

t_{2g} Orbitals

< ロ > < 同 > < 回 > < 回 >

500

Volker@Eyert.de From Quantum Mechanics to Materials Design

Metal-Insulator Transition of VO₂

Structural Changes

- V-V dimerization || c_R
- antiferroelectric displacement \product c_R

M₁-Structure

Metal-Insulator Transition of VO₂

- Goodenough, 1960-1972
 - metal-metal dimerization $\parallel c_R \rightarrow \text{splitting into } d_{\parallel}, d_{\parallel}^*$
 - antiferroelectric displacement $\perp c_R \rightarrow \text{upshift of } \pi^*$
- Zylbersztejn and Mott, 1975
 - splitting of d_{\parallel} by electronic correlations
 - upshift of π^* unscreenes d_{\parallel} electrons

Image: A matrix and a matrix

Metal-Insulator Transition of VO₂

Other Phases

 doping with Cr, Al, Fe, Ga

uniaxial pressure
 || (110)

 $Cr_xV_{1-x}O_2$ Pouget, Launois, 1976

Electronic Structure in Detail

Rutile Structure

- molecular-orbital picture ✓
- octahedral crystal field ⇒ V 3d t_{2g}/e_g
- V 3d–O 2p hybridization

Ann. Phys. (Leipzig) 11, 650 (2002)

∃⇒

Electronic Structure in Detail

Rutile Structure

- molecular-orbital picture √
- octahedral crystal field ⇒ V 3d t_{2g}/e_g
- V 3d–O 2p hybridization
- t_{2g} at E_F: $d_{\chi^2-y^2}$, d_{yz} , d_{xz}
- $n(d_{x^2-y^2}) \approx n(d_{yz}) \approx n(d_{xz})$

Ann. Phys. (Leipzig) **11**, 650 (2002)

Electronic Structure in Detail

- bonding-antibonding splitting of d_{\parallel} bands
- energetical upshift of π^* bands \Longrightarrow orbital ordering
- optical band gap on the verge of opening

New Calculations: GGA vs. HSE

Rutile Structure: $GGA \Longrightarrow HSE$

- broadening of O 2p and V 3d t_{2g}(!) bands
- splitting within V 3d t_{2g} bands

(日)

New Calculations: GGA vs. HSE

M_1 Structure: GGA \Longrightarrow HSE

- splitting of $d_{||}$ bands, upshift of π^* bands
- $\bullet\,$ optical bandgap of $\approx 1\,\,eV$

New Calculations: GGA vs. HSE

M_1 Structure: GGA \Longrightarrow HSE

- splitting of $d_{||}$ bands, upshift of π^* bands
- optical bandgap of \approx 1 eV
New Calculations: GGA vs. HSE

M_2 Structure: GGA \implies HSE

- localized magentic moment of 1 $\mu_{\rm B}$
- optical bandgap of \approx 1.6 eV

Sac

Unified Picture

Rutile-Related Transition-Metal Dioxides

VO₂ (3*d*¹), NbO₂ (4*d*¹), MoO₂ (4*d*²) (WO₂ (5*d*²), TcO₂ (4*d*³), ReO₂ (5*d*³))

instability against similar local distortions

- metal-metal dimerization || c_R
- antiferroelectric displacement $\perp c_R$
- ("accidental") metal-insulator transition of the d¹-members

```
VE et al., J. Phys.: CM 12, 4923 (2000)
VE, Ann. Phys. 11, 650 (2002)
VE, EPL 58, 851 (2002)
J. Moosburger-Will et al., PRB 79, 115113 (2009)
```

< ∃→

Success Stories

Basics

DFT (exact, ground state)LDA, GGA, ...

Percus-Levy partition

Success Stories

Basics

DFT (exact, ground state)LDA, GGA, ...

Implementation

- Muffins and beyond
- Full-Potential ASW

Percus-Levy partition

Full-Potential Code

Success Stories

æ

▶ ★ 臣 ▶

Volker@Eyert.de From Quantum Mechanics to Materials Design

< □ > < 同 >

Success Stories

æ

▶ < ∃ >

< □ > < 同 >

Success Stories

▶ < ∃ >

ъ

< 同 ▶

Volker@Eyert.de From Quantum Mechanics to Materials Design

Visions

Materials

æ

Acknowledgments

Augsburg

M. Breitschaft, U. Eckern, K.-H. Höck, S. Horn, R. Horny, T. Kopp, J. Kündel, J. Mannhart, J. Moosburger-Will, N. Pavlenko, W. Scherer, D. Vollhardt

Caen

R. Frésard, S. Hébert, A. Maignan, C. Martin

Darmstadt/Jülich

P. C. Schmidt, M. Stephan,

J. Sticht †

Europe/USA

E. Wimmer, A. Mavromaras, P. Saxe, R. Windiks, W. Wolf

Acknowledgments

Augsburg

M. Breitschaft, U. Eckern, K.-H. Höck, S. Horn, R. Horny, T. Kopp, J. Kündel, J. Mannhart, J. Moosburger-Will, N. Pavlenko, W. Scherer, D. Vollhardt

Caen

R. Frésard, S. Hébert, A. Maignan, C. Martin

Darmstadt/Jülich

- P. C. Schmidt, M. Stephan,
- J. Sticht †

Europe/USA

E. Wimmer, A. Mavromaras, P. Saxe, R. Windiks, W. Wolf

伺 ト イ ヨ ト イ ヨ ト

Würzburg

Thank You for Your Attention!