New Perspectives in *ab initio* Calculations for Semiconducting Oxides

Volker Eyert

Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg

October 28, 2010

æ.

Volker@Eyert.de New Perspectives in *ab initio* Calculations

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ.

Volker@Eyert.de New Perspectives in *ab initio* Calculations

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Calculated Electronic Properties

Moruzzi, Janak, Williams (IBM, 1978)

Energy band structures from screened HF exchange

Si, AIP, AIAs, GaP, and GaAs

Experimental and theoretical bandgap properties

Shimazaki, Asai JCP **132**, 224105 (2010)

æ.

Volker@Eyert.de New Perspectives in ab initio Calculations

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

LAOSTO

2D Electron Gas at LaAlO₃-SrTiO₃ Interface

2D Electron Gas at LaAlO₃-SrTiO₃ Interface

Issues

- Role of electronic correlations?
 - SrTiO₃, LaAlO₃: band insulators
 - SrTiO₃/LaAlO₃ interface: MIT (# LaAlO₃ layers)
 - magnetic properties of the interface
 - superconductivity below $\approx 200\,mK$
- What is the origin of the 2-DEG?
 - intrinsic mechanism?
 - defect-doping?

Slab Calculations for the LaAlO₃-SrTiO₃ Interface

Structural setup of calculations

- central region: 5 layers SrTiO₃, TiO₂-terminated
- sandwiches: 2 to 5 layers LaAlO₃, AlO₂ surface
- vacuum region \approx 20 Å
- inversion symmetry
- lattice constant of SrTiO₃ from GGA (3.944 Å)

LAOSTO

Slab Calculations for the LaAlO₃-SrTiO₃ Interface

Calculational method

- Vienna Ab Initio Simulation Package (VASP)
- GGA-PBE
- Steps:
- optimization of SrTiO₃ lattice constant
- Islab calculations
 - full relaxation of all atomic positions
 - 5 × 5 × 1 k-points
 - Γ-centered k-mesh
 - Methfessel-Paxton BZ-integration

くぼ くち くち くち

Slab Calculations for the LaAlO₃-SrTiO₃ Interface

Structural relaxation

- AIO₂ surface layers
 - strong inward relaxation
 - weak buckling
- LaO layers
 - strong buckling
- AIO₂ subsurface layers
 - buckling
- TiO₂ interface layers
 - small outward relaxation

Slab Calculations for the LaAlO₃-SrTiO₃ Interface

LAOSTO

Tunneling Spectroscopy of LaAlO₃-SrTiO₃ Interface

What is the origin of the 2-DEG? Intrinsic mechanism or defect-doping?

Tunneling Spectroscopy of LaAlO₃-SrTiO₃ Interface

 4uc LaAlO₃ on SrTiO₃, tunneling data

 4uc LaAlO₃ on SrTiO₃, LDA calculations, DOS of interface Ti

 4uc LaAlO₃ on SrTiO₃, LDA+U calculations, DOS of interface Ti

Tunneling Spectroscopy of LaAlO₃-SrTiO₃ Interface

 bulk SrTiO₃, LDA calculations, conduction band DOS

"2D Electron Liquid State" at LaAIO₃-SrTiO₃ Interface

M. Breitschaft et al., PRB 81, 153414 (2010)

Critical review of the Local Density Approximation

Limitations and Beyond

- LDA exact for homogeneous electron gas (within QMC)
- Spatial variation of ρ ignored
 - \rightarrow include $\nabla \rho(\mathbf{r}), \dots$
 - \rightarrow Generalized Gradient Approximation (GGA)
- Self-interaction cancellation in $v_{Hartree} + v_x$ violated
 - → repair using exact Hartree-Fock exchange functional
 - → hybrid functionals (PBE0, HSE03, HSE06)

Critical review of the Local Density Approximation

Limitations and Beyond

- Self-interaction cancellation in $v_{Hartree} + v_x$ violated
 - → repair using exact Hartree-Fock exchange functional
 - \rightarrow hybrid functionals (PBE0, HSE03, HSE06)

Critical review of the Local Density Approximation

Limitations and Beyond

- Self-interaction cancellation in $v_{Hartree} + v_x$ violated
 - \rightarrow repair using exact Hartree-Fock exchange functional
 - \rightarrow hybrid functionals (PBE0, HSE03, HSE06)

LAOSTO

Critical review of the Local Density Approximation

Calculated vs. experimental bandgaps

Volker@Eyert.de New Perspectives in ab initio Calculations

SrTiO₃

Bandgap GGA: ≈ 1.6 eV, exp.: 3.2 eV

Volker@Eyert.de New Perspectives in ab initio Calculations

LAOSTO

SrTiO₃

Bandgap

GGA: \approx 1.6 eV, HSE: \approx 3.1 eV, exp.: 3.2 eV

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

500

LaAIO₃

Bandgap GGA: ≈ 3.5 eV, exp.: 5.6 eV Image: Contract of the second s

Volker@Eyert.de New Perspectives in ab initio Calculations

LAOSTO

LaAIO₃

GGA: \approx 3.5 eV, HSE: \approx 5.0 eV, exp.: 5.6 eV

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

500

æ.

Volker@Eyert.de New Perspectives in *ab initio* Calculations

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Metal-Insulator Transition of VO₂

Metal-Insulator Transitions (MIT)

- VO₂ (d¹)
 - 1st order, 340 K, $\Delta\sigma \approx 10^4$
 - rutile $\rightarrow M_1$ (monoclinic)
- V₂O₃ (*d*²)
 - 1st order, 170 K, $\Delta \sigma \approx 10^6$
 - corundum \rightarrow monoclinic
 - paramagn. \rightarrow AF order

Origin of the MIT???

- Structural Changes?
- Electron Correlations?

Metal-Insulator Transition of VO₂

Metal-Insulator Transition of VO₂

e_q^{σ} Orbitals

Volker@Eyert.de

New Perspectives in ab initio Calculations

VO_2 Metal-Insulator Transition of VO₂

- simple tetragonal
- P4₂/mnm (D¹⁴_{4b})

Metal-Insulator Transition of VO₂

t_{2g} Orbitals

$$\begin{cases} \mathbf{e}_{g}^{\pi} = \mathbf{a}_{1g}^{\pi*"} \\ \mathbf{a}_{1g} = \mathbf{d}_{\parallel}^{"} \end{cases}$$

500

Metal-Insulator Transition of VO₂

 VO_2

Structural Changes

- V-V dimerization || c_R
- antiferroelectric displacement \product c_R

M₁-Structure

Metal-Insulator Transition of VO2

LAOSTO VO₂

- Goodenough, 1960-1972
 - metal-metal dimerization $\parallel c_R \rightarrow \text{splitting into } d_{\parallel}, d_{\parallel}^*$
 - antiferroelectric displacement $\perp c_R \rightarrow \text{upshift of } \pi^*$
- Zylbersztejn and Mott, 1975
 - splitting of d_{\parallel} by electronic correlations
 - upshift of π^* unscreenes d_{\parallel} electrons

Metal-Insulator Transition of VO₂

Other Compounds

	d ⁰	d ¹	d ²	d ³	d ⁴	d ⁵	d ⁶
3d	TiO ₂ (S)	VO ₂ * (M–S)	CrO ₂ (F–M)	MnO ₂ (AF–S)			
4d		NbO ₂ * (M–S)	MoO ₂ (M)	TcO ₂ (M)	RuO ₂ (M)	RhO ₂ (M)	
5d		TaO ₂ (?)	WO ₂ (M)	ReO ₂ (M)	OsO ₂ (M)	IrO ₂ (M)	PtO ₂ (M)
* deviations from rutile, M = metal, S = semiconductor							
F/AF = ferro-/antiferromagnet							

・ロト ・聞 ト ・ヨ ト ・ ヨ ト

æ

500

Metal-Insulator Transition of VO₂

Other Phases

 doping with Cr, Al, Fe, Ga

uniaxial pressure
 || (110)

 $Cr_xV_{1-x}O_2$ Pouget, Launois, 1976

Electronic Structure in Detail

Rutile Structure

- molecular-orbital picture ✓
- octahedral crystal field ⇒ V 3d t_{2g}/e_g
- V 3d–O 2p hybridization

VE, Ann. Phys. (Leipzig) 11, 650 (2002)

Electronic Structure in Detail

Rutile Structure

- molecular-orbital picture ✓
- octahedral crystal field ⇒ V 3d t_{2g}/e_g
- V 3d–O 2p hybridization
- t_{2g} at E_F: $d_{x^2-y^2}$, d_{yz} , d_{xz}
- $n(d_{x^2-y^2}) \approx n(d_{yz}) \approx n(d_{xz})$

VE, Ann. Phys. (Leipzig) **11**, 650 (2002)

Electronic Structure in Detail

- bonding-antibonding splitting of d_{\parallel} bands
- energetical upshift of π^* bands \Longrightarrow orbital ordering
- optical band gap on the verge of opening

Further investigations

Cluster-DMFT Calculations

- Rutile-VO₂
 - moderately correlated metal
- M₁-VO₂
 - correlations strong/weak on d_{\parallel}/π^*
 - optical band gap of 0.6 eV
- Phase Transition
 - "correlation-assisted Peierls transition"

S. Biermann, A. Poteryaev, A. I. Lichtenstein, A. Georges PRL 94, 026404 (2005)

New Calculations: GGA vs. HSE

Rutile Structure: $GGA \Longrightarrow HSE$

- broadening of O 2p and V 3d t_{2g}(!) bands
- splitting within V 3d t_{2g} bands

(4) (3) (4) (4) (4)

< □ > < 同 >

New Calculations: GGA vs. HSE

M_1 Structure: GGA \Longrightarrow HSE

- splitting of $d_{||}$ bands, upshift of π^* bands
- $\bullet\,$ optical bandgap of $\approx 1\,\,eV$

New Calculations: GGA vs. HSE

M_1 Structure: GGA \Longrightarrow HSE

- splitting of d_{\parallel} bands, upshift of π^* bands
- optical bandgap of \approx 1 eV

New Calculations: GGA vs. HSE

M_2 Structure: GGA \Longrightarrow HSE

- localized magnetic moment of 1 $\mu_{\rm B}$
- $\bullet\,$ optical bandgap of \approx 1.6 $\,eV$

Sac

Unified Picture

Rutile-Related Transition-Metal Dioxides

VO₂ (3d¹), NbO₂ (4d¹), MoO₂ (4d²) (WO₂ (5d²), TcO₂ (4d³), ReO₂ (5d³))

instability against similar local distortions

- metal-metal dimerization || c_R
- antiferroelectric displacement \(\box) c_R\)

("accidental") metal-insulator transition of the d¹-members

```
VE et al., J. Phys.: CM 12, 4923 (2000)
VE, Ann. Phys. 11, 650 (2002)
VE, EPL 58, 851 (2002)
J. Moosburger-Will et al., PRB 79, 115113 (2009)
```

▶ < ∃ >

Success Stories

Metal-Insulator Transitions in VO₂

Volker@Eyert.de

New Perspectives in ab initio Calculations

500

LAOSTO VO2

Acknowledgments

Augsburg

M. Breitschaft, U. Eckern, K.-H. Höck, S. Horn, R. Horny, T. Kopp, J. Kündel, J. Mannhart, J. Moosburger-Will, N. Pavlenko GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Darmstadt/Jülich

P. C. Schmidt, M. Stephan, J. Sticht †

Europe/USA

M. Christensen, C. Freeman, M. Halls, A. Mavromaras, P. Saxe, E. Wimmer, R. Windiks, W. Wolf

LAOSTO

Acknowledgments

Augsburg

M. Breitschaft, U. Eckern, K.-H. Höck, S. Horn, R. Horny, T. Kopp, J. Kündel, J. Mannhart, J. Moosburger-Will, N. Pavlenko GEFÖRDERT VOM

▲ 伊 ▶ ▲ 国 ▶ ▲

Bundesministerium für Bildung und Forschung

Darmstadt/Jülich

P. C. Schmidt, M. Stephan, J. Sticht †

Europe/USA

M. Christensen, C. Freeman, M. Halls, A. Mavromaras, P. Saxe, E. Wimmer, R. Windiks, W. Wolf

San Diego

Thank You for Your Attention!