From Quantum Mechanics to Materials Design The Basics of Density Functional Theory

Volker Eyert

Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg

December 03, 2010

.⊒ →

Formalism

- Definitions and Theorems
- Approximations

≣ । ⊀ ≣ ।

Formalism

- Definitions and Theorems
- Approximations

≣ । ⊀ ≣ ।

Calculated Electronic Properties

Moruzzi, Janak, Williams (IBM, 1978)

Energy band structures from screened HF exchange

Si, AIP, AIAs, GaP, and GaAs

Experimental and theoretical bandgap properties

Shimazaki, Asai, JCP **132**, 224105 (2010)

Definitions and Theorems Approximations

Formalism

- Definitions and Theorems
- Approximations

æ

(日) (圖) (E) (E)

Definitions and Theorems Approximations

Hamiltonian (within Born-Oppenheimer approximation)

$$H = H_{el,kin} + H_{el-el} + H_{ext}$$

= $\sum_{i} \left[-\frac{\hbar^2}{2m} \nabla_i^2 \right] + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \sum_{\substack{i,j \ j \neq i}} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{i} v_{ext}(\mathbf{r}_i)$

where

Key Players

$$\sum_{i} v_{ext}(\mathbf{r}_i) = \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \sum_{\mu\nu \atop \mu\neq\nu} \frac{Z_{\mu}Z_{\nu}}{|\mathbf{R}_{\mu} - \mathbf{R}_{\nu}|} - \frac{e^2}{4\pi\epsilon_0} \sum_{\mu} \sum_{i} \frac{Z_{\mu}}{|\mathbf{R}_{\mu} - \mathbf{r}_i|}$$

 μ : ions with charge Z_{μ} , *i*: electrons

・ロット (雪) (日) (日)

э

Definitions and Theorems Approximations

Electron Density Operator

Key Players

$$\hat{\rho}(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_i) = \sum_{\alpha\beta} \chi_{\alpha}^*(\mathbf{r}) \chi_{\beta}(\mathbf{r}) a_{\alpha}^+ a_{\beta}$$

 χ_{α} : single particle state

(日) (圖) (E) (E)

Definitions and Theorems Approximations

Electron Density Operator

$$\hat{\rho}(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_{i}) = \sum_{\alpha\beta} \chi_{\alpha}^{*}(\mathbf{r}) \chi_{\beta}(\mathbf{r}) \mathbf{a}_{\alpha}^{+} \mathbf{a}_{\beta}$$

 χ_{α} : single particle state

・ロット (雪) (日) (日)

Electron Density

Key Players

$$ho(\mathbf{r}) = \langle \Psi | \hat{
ho}(\mathbf{r}) | \Psi
angle = \sum_{lpha} |\chi_{lpha}(\mathbf{r})|^2 n_{lpha}$$

 $|\Psi\rangle$: many-body wave function, n_{α} : occupation number

Normalization:
$$N = \int d^3 \mathbf{r} \rho(\mathbf{r})$$

э

Functionals

Key Players

Universal Functional (independent of ionic positions!)

$$\mathsf{F} = \langle \Psi | \mathcal{H}_{ extsf{el}, extsf{kin}} + \mathcal{H}_{ extsf{el}- extsf{el}} | \Psi
angle$$

Functional due to External Potential:

$$\begin{aligned} \langle \Psi | H_{\text{ext}} | \Psi \rangle &= \langle \Psi | \sum_{i} v_{\text{ext}}(\mathbf{r}) \delta(\mathbf{r} - \mathbf{r}_{i}) | \Psi \rangle \\ &= \int d^{3}\mathbf{r} \ v_{\text{ext}}(\mathbf{r}) \rho(\mathbf{r}) \end{aligned}$$

< ロ > < 同 > < 回 > < 回 >

Definitions and Theorems Approximations

Pierre C. Hohenberg

Authors

Walter Kohn

Lu Jeu Sham

≣⊅

-

Image: A matrix and a matrix

FormalismDefinitions and TheoremsApplicationsApproximations

Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential $v_{ext}(\mathbf{r})$ is determined, apart from a trivial constant, by the electronic ground state density $\rho(\mathbf{r})$.

2nd Theorem

The total energy functional $E[\rho]$ has a minimum equal to the ground state energy at the ground state density.

Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential $v_{ext}(\mathbf{r})$ is determined, apart from a trivial constant, by the electronic ground state density $\rho(\mathbf{r})$.

2nd Theorem

The total energy functional $E[\rho]$ has a minimum equal to the ground state energy at the ground state density.

Nota bene

Both theorems are formulated for the ground state!

- Zero temperature!
- No excitations!

< ロ > < 同 > < 回 > < 回 >

FormalismDefinitions and TheoremsApplicationsApproximations

Hohenberg and Kohn, 1964: Theorems

Maps

Ground state $|\Psi_0\rangle$ (from minimizing $\langle \Psi_0 | H | \Psi_0 \rangle$):

$$v_{ext}(\mathbf{r}) \stackrel{(1)}{\Longrightarrow} |\Psi_0\rangle \stackrel{(2)}{\Longrightarrow} \rho_0(\mathbf{r})$$

< ロ > < 同 > < 回 > < 回 >

FormalismDefinitions and TheoremsApplicationsApproximations

Hohenberg and Kohn, 1964: Theorems

Maps

Ground state $|\Psi_0\rangle$ (from minimizing $\langle \Psi_0 | H | \Psi_0 \rangle$):

$$v_{ext}(\mathbf{r}) \stackrel{(1)}{\Longrightarrow} |\Psi_0\rangle \stackrel{(2)}{\Longrightarrow}
ho_0(\mathbf{r})$$

1st Theorem

$$v_{ext}(\mathbf{r}) \stackrel{(1)}{\longleftrightarrow} |\Psi_0\rangle \stackrel{(2)}{\longleftrightarrow} \rho_0(\mathbf{r})$$

(日)

Formalism Definitions and Theorems Applications Approximations

Levy, Lieb, 1979-1983: Constrained Search

Percus-Levy partition

FormalismDefinitions and TheoremsApplicationsApproximations

Levy, Lieb, 1979-1983: Constrained Search

Variational principle

$$E_{0} = \inf_{|\Psi\rangle} \langle \Psi | H | \Psi \rangle$$

$$= \inf_{|\Psi\rangle} \langle \Psi | H_{el,kin} + H_{el-el} + H_{ext} | \Psi \rangle$$

$$= \inf_{\rho(\mathbf{r})} \left[\inf_{|\Psi\rangle \in S(\rho)} \langle \Psi | H_{el,kin} + H_{el-el} | \Psi \rangle + \int d^{3}\mathbf{r} \ v_{ext}(\mathbf{r})\rho(\mathbf{r}) \right]$$

$$=: \inf_{\rho(\mathbf{r})} \left[F_{LL}[\rho] + \int d^{3}\mathbf{r} \ v_{ext}(\mathbf{r})\rho(\mathbf{r}) \right] = \inf_{\rho(\mathbf{r})} E[\rho]$$

 $S(\rho)$: set of all wave functions leading to density ρ $F_{LL}[\rho]$: Levy-Lieb functional, universal (independent of H_{ext})

(日)

FormalismDefinitions and TheoremsApplicationsApproximations

Levy, Lieb, 1979-1983: Constrained Search

Levy-Lieb functional

$$F_{LL}[\rho] = \inf_{|\Psi\rangle \in S(\rho)} \langle \Psi | H_{el,kin} + H_{el-el} | \Psi \rangle$$

= $\underbrace{\mathcal{T}[\rho] + \mathcal{W}_{xc}[\rho]}_{=} + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3\mathbf{r} \int d^3\mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$
= $G[\rho] + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3\mathbf{r} \int d^3\mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$

Functionals

- Kinetic energy funct.: $T[\rho]$
- Exchange-correlation energy funct.: W_{xc}[ρ] not known!
- Hartree energy funct.: $\frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3 \mathbf{r} \int d^3 \mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$

not known!

known

Formalism Defi Applications App

Definitions and Theorems Approximations

Thomas, Fermi, 1927: Early Theory

Approximations

• ignore exchange-correlation energy functional:

$$W_{xc}[\rho] \stackrel{!}{=} 0$$

• approximate kinetic energy functional:

$$\mathcal{T}[
ho] = C_{F} \int d^{3}\mathbf{r} \, \left(
ho(\mathbf{r})
ight)^{rac{5}{3}} \, , \qquad C_{F} = rac{3}{5} \, rac{\hbar^{2}}{2m} \left(3\pi^{2}
ight)^{rac{2}{3}}$$

Failures

- atomic shell structure missing pariodic table can not be defined.
 - \rightarrow periodic table can not be described
- Ino-binding theorem (Teller, 1962)

FormalismDefinitions and TheoremsApplicationsApproximations

Kohn and Sham, 1965: Single-Particle Equations

Ansatz

• use different splitting of the functional $G[\rho]$

$$T[\rho] + W_{xc}[\rho] = G[\rho] \stackrel{!}{=} T_0[\rho] + E_{xc}[\rho]$$

2 reintroduce single-particle wave functions

Imagine: non-interacting electrons with same density

• Density: $ho(\mathbf{r}) = \sum_{\alpha}^{occ} |\chi_{\alpha}(\mathbf{r})|^2$

• Kinetic energy funct.:

$$T_0[
ho] = \sum_{lpha}^{
m occ} \int d^3 \mathbf{r} \; \chi_{lpha}^*(\mathbf{r}) \left[-rac{\hbar^2}{2m}
abla^2
ight] \chi_{lpha}(\mathbf{r})$$

Exchange-correlation energy funct.: E_{xc}[ρ]

known!

known!

not known!

(日)

FormalismDefinitions and TheoremsApplicationsApproximations

Kohn and Sham, 1965: Single-Particle Equations

Euler-Lagrange Equations (Kohn-Sham Equations)

$$\frac{\delta E[\rho]}{\delta \chi_{\alpha}^{*}(\mathbf{r})} - \varepsilon_{\alpha} \chi_{\alpha}(\mathbf{r}) = \left[-\frac{\hbar^{2}}{2m} \nabla^{2} + v_{\text{eff}}(\mathbf{r}) - \varepsilon_{\alpha} \right] \chi_{\alpha}(\mathbf{r}) \stackrel{!}{=} 0$$

- Effective potential: $v_{eff}(\mathbf{r}) := v_{ext}(\mathbf{r}) + v_H(\mathbf{r}) + v_{xc}(\mathbf{r})$
- Exchange-correlation potential:

$$\mathbf{v}_{\mathbf{xc}}(\mathbf{r}) := \frac{\delta \mathbf{E}_{\mathbf{xc}}[\rho]}{\delta \rho}$$

• "Single-particle energies": ε_{α} (Lagrange-parameters, orthonormalization)

not known!

< ∃ →

Image: A matrix and a matrix

Kohn and Sham, 1965: Local Density Approximation

Be Specific!

Approximate exchange-correlation energy functional

$$E_{xc}[
ho] = \int
ho(\mathbf{r}) \varepsilon_{xc}(
ho(\mathbf{r})) d^3\mathbf{r}$$

- Exchange-correlation energy density $\varepsilon_{xc}(\rho(\mathbf{r}))$
 - depends on local density only!
 - is calculated from homogeneous, interacting electron gas
- Exchange-correlation potential

$$\mathbf{v}_{\mathbf{xc}}(\rho(\mathbf{r})) = \left[\frac{\partial}{\partial \rho} \left\{\rho \varepsilon_{\mathbf{xc}}(\rho)\right\}\right]_{\rho = \rho(\mathbf{r})}$$

FormalismDefinitions and TheoremsApplicationsApproximations

Kohn and Sham, 1965: Local Density Approximation

Homogeneous, Interacting Electron Gas

Split

$$\varepsilon_{\mathbf{xc}}(\rho) = \varepsilon_{\mathbf{x}}(\rho) + \varepsilon_{\mathbf{c}}(\rho)$$

 Exchange energy density ε_x(ρ) (exact for homogeneous electron gas)

$$\varepsilon_{\mathbf{x}}(\rho) = -\frac{3}{4\pi} \frac{e^2}{4\pi\epsilon_0} (3\pi^2 \rho)^{\frac{1}{3}}$$
$$v_{\mathbf{x}}(\rho) = -\frac{1}{\pi} \frac{e^2}{4\pi\epsilon_0} (3\pi^2 \rho)^{\frac{1}{3}}$$

- Correlation energy density ε_c(ρ)
 Calculate and parametrize
 - RPA (Hedin, Lundqvist; von Barth, Hedin)
 - QMC (Ceperley, Alder; Vosko, Wilk, Nusair; Perdew, Wang)

Kohn and Sham, 1965: Local Density Approximation

Limitations and Beyond

- LDA exact for homogeneous electron gas (within QMC)
- Spatial variation of ρ ignored
 - \rightarrow include $\nabla \rho(\mathbf{r}), \ldots$
 - → Generalized Gradient Approximation (GGA)
- Cancellation of self-interaction in $v_{Hartree}(\rho(\mathbf{r}))$ and $v_x(\rho(\mathbf{r}))$ violated for $\rho = \rho(\mathbf{r})$
 - → Self-Interaction Correction (SIC)
 - → Exact Exchange (EXX), Optimized Effective Potential (OEP)
 - \rightarrow Screened Exchange (SX)

Outline

- Definitions and Theorems
- Approximations

æ

E ► < E ►</p>

____>

Iron Pyrite: FeS₂

Pyrite

- Pa3

 (T_h⁶)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs $\|\langle 111 \rangle$ axes
- $x_{\rm S} = 0.38484$
- rotated FeS₆ octahedra

ъ

FeS₂: Equilibrium Volume and Bulk Modulus

FeS₂: From Atoms to the Solid

FeS₂: Structure Optimization

Phase Stability in Silicon

diamond structure most stable
 pressure induced phase transition to β-tin structure
 Volker@Eyert.de

LTO(Γ)-Phonon in Silicon

(日) (圖) (E) (E)

Dielectric Function of Al₂O₃ Imaginary Part

Volker@Eyert.de From Quantum Mechanics to Materials Design

Dielectric Function of Al₂O₃ Real Part

Volker@Eyert.de From Quantum Mechanics to Materials Design

Hydrogen site energetics in LaNi₅H_n and LaCo₅H_n

Enthalpy of hydride formation in LaNi5Hn

 $\Delta H_{min} = -40 \text{kJ/molH}_2$ for H at 2*b*6*c*₁6*c*₂

agrees with

- neutron data
- calorimetry: $\Delta H_{min} = -(32/37) \text{kJ/molH}_2$

< ロ > < 同 > < 回 > < 回 >

Herbst, Hector, APL **85**, 3465 (2004)

Hydrogen site energetics in LaNi₅H_n and LaCo₅H_n

Enthalpy of hydride formation in LaCo₅H_n

 $\Delta H_{min} = -45.6 \text{kJ/molH}_2$ for H at 4e4h

agrees with

- neutron data
- calorimetry: $\Delta H_{min} =$ -45.2kJ/molH_2

Herbst, Hector, APL **85**, 3465 (2004)

< 同 > < 回 > < 回 >

Problems of the Past

Si bandgap

- exp: 1.11 eV
- GGA: 0.57 eV

Ge bandgap

- exp: 0.67 eV
- GGA: 0.09 eV

Volker@Eyert.de

From Quantum Mechanics to Materials Design

Critical review of the Local Density Approximation

Limitations and Beyond

- Self-interaction cancellation in $v_{Hartree} + v_x$ violated
- Repair using exact Hartree-Fock exchange functional

 → class of hybrid functionals

PBE0

$$E_{xc}^{PBE0}=rac{1}{4}E_{x}^{HF}+rac{3}{4}E_{x}^{PBE}+E_{c}^{PBE}$$

HSE03, HSE06

$$E_{xc}^{HSE} = rac{1}{4}E_x^{HF,sr,\mu} + rac{3}{4}E_x^{PBE,sr,\mu} + E_x^{PBE,lr,\mu} + E_c^{PBE}$$

based on decomposition of Coulomb kernel

$$\frac{1}{r} = S_{\mu}(r) + L_{\mu}(r) = \frac{\operatorname{erfc}(\mu r)}{r} + \frac{\operatorname{erf}(\mu r)}{r}$$

< □ > < 同 > < 回 > < 回 >

Critical review of the Local Density Approximation

Limitations and Beyond

- Self-interaction cancellation in $v_{Hartree} + v_x$ violated
- Repair using exact Hartree-Fock exchange functional

 → class of hybrid functionals

Critical review of the Local Density Approximation

Limitations and Beyond

- Self-interaction cancellation in $v_{Hartree} + v_x$ violated
- Repair using exact Hartree-Fock exchange functional

 → class of hybrid functionals

Critical review of the Local Density Approximation

Critical review of the Local Density Approximation

SrTiO₃ Bandgap

GGA: \approx 1.6 eV, HSE: \approx 3.1 eV, exp.: 3.2 eV

< ∃⇒

< 一 →

LaAIO₃

Volker@Eyert.de From Quantum Mechanics to Materials Design

Applications

LaAIO₃

Volker@Eyert.de From Quantum Mechanics to Materials Design

Critical review of the Local Density Approximation

Calculated vs. experimental bandgaps

Volker@Eyert.de From Quantum Mechanics to Materials Design

Industrial Applications

Computational Materials Engineering

- Automotive
- Energy & Power Generation
- Aerospace
- Steel & Metal Alloys
- Glass & Ceramics
- Electronics
- Display & Lighting
- Chemical & Petrochemical
- Drilling & Mining

Density Functional Theory

 exact (!) mapping of full many-body problem to an effective single-particle problem

_ocal Density Approximation

- approximative treatment of exchange (!) and correlation
- considerable improvement: exact treatment of exchange

Applications

- very good agreement DFT/Exp. in numerous cases
- theory meets industry

Further Reading

Density Functional Theory

 exact (!) mapping of full many-body problem to an effective single-particle problem

Local Density Approximation

- approximative treatment of exchange (!) and correlation
- considerable improvement: exact treatment of exchange

Applications

- very good agreement DFT/Exp. in numerous cases
- theory meets industry

Further Reading

Density Functional Theory

 exact (!) mapping of full many-body problem to an effective single-particle problem

Local Density Approximation

- approximative treatment of exchange (!) and correlation
- considerable improvement: exact treatment of exchange

Applications

- very good agreement DFT/Exp. in numerous cases
- theory meets industry

Further Reading

Density Functional Theory

 exact (!) mapping of full many-body problem to an effective single-particle problem

Local Density Approximation

- approximative treatment of exchange (!) and correlation
- considerable improvement: exact treatment of exchange

Applications

- very good agreement DFT/Exp. in numerous cases
- theory meets industry

Further Reading

Acknowledgments

ъ

Volker@Eyert.de From Quantum Mechanics to Materials Design

Acknowledgments

Augsburg/München

Thank You for Your Attention!

