
Formalism
Applications

From Quantum Mechanics to Materials Design
The Basics of Density Functional Theory

Volker Eyert

Center for Electronic Correlations and Magnetism
Institute of Physics, University of Augsburg

December 03, 2010

Volker@Eyert.de From Quantum Mechanics to Materials Design



Formalism
Applications

Outline

1 Formalism
Definitions and Theorems
Approximations

2 Applications

Volker@Eyert.de From Quantum Mechanics to Materials Design



Formalism
Applications

Outline

1 Formalism
Definitions and Theorems
Approximations

2 Applications

Volker@Eyert.de From Quantum Mechanics to Materials Design



Formalism
Applications

Calculated Electronic Properties

Moruzzi, Janak, Williams (IBM, 1978)
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Energy band structures from screened HF exchange

Si, AlP, AlAs, GaP, and GaAs

Experimental and
theoretical bandgap
properties

Shimazaki, Asai,
JCP 132, 224105 (2010)

Volker@Eyert.de From Quantum Mechanics to Materials Design



Formalism
Applications

Definitions and Theorems
Approximations

Outline

1 Formalism
Definitions and Theorems
Approximations

2 Applications

Volker@Eyert.de From Quantum Mechanics to Materials Design



Formalism
Applications

Definitions and Theorems
Approximations

Key Players

Hamiltonian (within Born-Oppenheimer approximation)

H = Hel ,kin + Hel−el + Hext

=
∑

i

[

−
~

2

2m
∇2

i

]

+
1
2

e2

4πǫ0

∑

i,j
j 6=i

1
|ri − rj |

+
∑

i

vext(ri)

where

∑

i

vext (ri) =
1
2

e2

4πǫ0

∑

µν

µ6=ν

ZµZν

|Rµ − Rν |
−

e2

4πǫ0

∑

µ

∑

i

Zµ

|Rµ − ri |

µ: ions with charge Zµ, i : electrons
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Key Players

Electron Density Operator

ρ̂(r) =

N∑

i=1

δ(r − ri) =
∑

αβ

χ∗
α(r)χβ(r)a+

α aβ

χα: single particle state
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Key Players

Electron Density Operator

ρ̂(r) =

N∑

i=1

δ(r − ri) =
∑

αβ

χ∗
α(r)χβ(r)a+

α aβ

χα: single particle state

Electron Density

ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉 =
∑

α

|χα(r)|2nα

|Ψ〉: many-body wave function, nα: occupation number

Normalization: N =
∫

d3r ρ(r)
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Key Players

Functionals

Universal Functional (independent of ionic positions!)

F = 〈Ψ|Hel ,kin + Hel−el |Ψ〉

Functional due to External Potential:

〈Ψ|Hext |Ψ〉 = 〈Ψ|
∑

i

vext(r)δ(r − ri)|Ψ〉

=

∫

d3r vext(r)ρ(r)
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Authors

Pierre C. Hohenberg Walter Kohn

Lu Jeu Sham
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Definitions and Theorems
Approximations

Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential vext(r) is determined, apart from a trivial
constant, by the electronic ground state density ρ(r).

2nd Theorem

The total energy functional E [ρ] has a minimum equal to the
ground state energy at the ground state density.
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Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential vext(r) is determined, apart from a trivial
constant, by the electronic ground state density ρ(r).

2nd Theorem

The total energy functional E [ρ] has a minimum equal to the
ground state energy at the ground state density.

Nota bene

Both theorems are formulated for the ground state!

Zero temperature!

No excitations!
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Hohenberg and Kohn, 1964: Theorems

Maps

Ground state |Ψ0〉 (from minimizing 〈Ψ0|H|Ψ0〉):

vext (r)
(1)
=⇒ |Ψ0〉

(2)
=⇒ ρ0(r)
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Hohenberg and Kohn, 1964: Theorems

Maps

Ground state |Ψ0〉 (from minimizing 〈Ψ0|H|Ψ0〉):

vext (r)
(1)
=⇒ |Ψ0〉

(2)
=⇒ ρ0(r)

1st Theorem

vext(r)
(1)
⇐⇒|Ψ0〉

(2)
⇐⇒ρ0(r)
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Levy, Lieb, 1979-1983: Constrained Search

Percus-Levy partition
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Levy, Lieb, 1979-1983: Constrained Search

Variational principle

E0 = inf
|Ψ〉

〈Ψ|H|Ψ〉

= inf
|Ψ〉

〈Ψ|Hel ,kin + Hel−el + Hext |Ψ〉

= inf
ρ(r)

[

inf
|Ψ〉∈S(ρ)

〈Ψ|Hel ,kin + Hel−el |Ψ〉 +

∫

d3r vext(r)ρ(r)
]

=: inf
ρ(r)

[

FLL[ρ] +

∫

d3r vext(r)ρ(r)
]

= inf
ρ(r)

E [ρ]

S(ρ): set of all wave functions leading to density ρ
FLL[ρ]: Levy-Lieb functional, universal (independent of Hext )
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Levy, Lieb, 1979-1983: Constrained Search

Levy-Lieb functional

FLL[ρ] = inf
|Ψ〉∈S(ρ)

〈Ψ|Hel ,kin + Hel−el |Ψ〉

= T [ρ] + Wxc[ρ]
︸ ︷︷ ︸

+
1
2

e2

4πǫ0

∫

d3r
∫

d3r′
ρ(r)ρ(r′)
|r − r′|

= G[ρ] +
1
2

e2

4πǫ0

∫

d3r
∫

d3r′
ρ(r)ρ(r′)
|r − r′|

Functionals

Kinetic energy funct.: T [ρ] not known!

Exchange-correlation energy funct.: Wxc[ρ] not known!

Hartree energy funct.: 1
2

e2

4πǫ0

∫
d3r

∫
d3r′ ρ(r)ρ(r′)

|r−r′| known!
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Thomas, Fermi, 1927: Early Theory

Approximations

ignore exchange-correlation energy functional:

Wxc[ρ]
!
= 0

approximate kinetic energy functional:

T [ρ] = CF

∫

d3r (ρ(r))
5
3 , CF =

3
5

~
2

2m

(

3π2
) 2

3

Failures
1 atomic shell structure missing

→ periodic table can not be described
2 no-binding theorem (Teller, 1962)

Volker@Eyert.de From Quantum Mechanics to Materials Design



Formalism
Applications

Definitions and Theorems
Approximations

Kohn and Sham, 1965: Single-Particle Equations

Ansatz
1 use different splitting of the functional G[ρ]

T [ρ] + Wxc[ρ] = G[ρ]
!
= T0[ρ] + Exc[ρ]

2 reintroduce single-particle wave functions

Imagine: non-interacting electrons with same density

Density: ρ(r) =
∑occ

α |χα(r)|2 known!

Kinetic energy funct.:

T0[ρ] =
∑occ

α

∫
d3r χ∗

α(r)
[

− ~2

2m∇2
]

χα(r) known!

Exchange-correlation energy funct.: Exc[ρ] not known!
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Kohn and Sham, 1965: Single-Particle Equations

Euler-Lagrange Equations (Kohn-Sham Equations)

δE [ρ]

δχ∗
α(r)

− εαχα(r) =

[

−
~

2

2m
∇2 + veff (r) − εα

]

χα(r) !
= 0

Effective potential: veff (r) := vext(r) + vH(r) + vxc(r)

Exchange-correlation potential: not known!

vxc(r) :=
δExc[ρ]

δρ

„Single-particle energies“:
εα (Lagrange-parameters, orthonormalization)
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Kohn and Sham, 1965: Local Density Approximation

Be Specific!

Approximate exchange-correlation energy functional

Exc[ρ] =

∫

ρ(r)εxc(ρ(r))d3r

Exchange-correlation energy density εxc(ρ(r))
depends on local density only!
is calculated from homogeneous, interacting electron gas

Exchange-correlation potential

vxc(ρ(r)) =

[
∂

∂ρ
{ρεxc(ρ)}

]

ρ=ρ(r)
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Kohn and Sham, 1965: Local Density Approximation

Homogeneous, Interacting Electron Gas

Split
εxc(ρ) = εx (ρ) + εc(ρ)

Exchange energy density εx (ρ)
(exact for homogeneous electron gas)

εx (ρ) = −
3

4π

e2

4πǫ0
(3π2ρ)

1
3

vx (ρ) = −
1
π

e2

4πǫ0
(3π2ρ)

1
3

Correlation energy density εc(ρ)
Calculate and parametrize

RPA (Hedin, Lundqvist; von Barth, Hedin)
QMC (Ceperley, Alder; Vosko, Wilk, Nusair; Perdew, Wang)
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Kohn and Sham, 1965: Local Density Approximation

Limitations and Beyond

LDA exact for homogeneous electron gas (within QMC)
Spatial variation of ρ ignored
→ include ∇ρ(r), . . .
→ Generalized Gradient Approximation (GGA)

Cancellation of self-interaction in vHartree(ρ(r)) and vx (ρ(r))
violated for ρ = ρ(r)
→ Self-Interaction Correction (SIC)
→ Exact Exchange (EXX),

Optimized Effective Potential (OEP)
→ Screened Exchange (SX)
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Iron Pyrite: FeS2

Pyrite

Pa3̄ (T 6
h )

a = 5.4160 Å

“NaCl structure”
sublattices occupied by

iron atoms
sulfur pairs

sulfur pairs ‖ 〈111〉 axes

xS = 0.38484

rotated FeS6 octahedra
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FeS2: Equilibrium Volume and Bulk Modulus
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FeS2: From Atoms to the Solid
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FeS2: Structure Optimization
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Phase Stability in Silicon
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LTO(Γ)-Phonon in Silicon
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Dielectric Function of Al2O3
Imaginary Part

FLAPW, Hosseini et al., 2005
FPLMTO, Ahuja et al., 2004 FPASW
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Dielectric Function of Al2O3
Real Part

FLAPW, Hosseini et al., 2005
FPLMTO, Ahuja et al., 2004

FPASW
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Hydrogen site energetics in LaNi5Hn and LaCo5Hn

Enthalpy of hydride formation in LaNi5Hn

∆Hmin = −40kJ/molH2

for H at 2b6c16c2

agrees with

neutron data

calorimetry:
∆Hmin =
−(32/37)kJ/molH2

Herbst, Hector,
APL 85, 3465 (2004)
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Hydrogen site energetics in LaNi5Hn and LaCo5Hn

Enthalpy of hydride formation in LaCo5Hn

∆Hmin = −45.6kJ/molH2

for H at 4e4h

agrees with

neutron data

calorimetry:
∆Hmin =
−45.2kJ/molH2

Herbst, Hector,
APL 85, 3465 (2004)
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Problems of the Past

Si

W L G X W K

E
n

e
r

g
y

 (
e

V
)

− 1 0

0

Si bandgap

exp: 1.11 eV

GGA: 0.57 eV

Ge
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E
n

e
r

g
y

 (
e

V
)

− 1 0

0

Ge bandgap

exp: 0.67 eV

GGA: 0.09 eV
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Critical review of the Local Density Approximation

Limitations and Beyond

Self-interaction cancellation in vHartree + vx violated

Repair using exact Hartree-Fock exchange functional
→ class of hybrid functionals

PBE0

EPBE0
xc =

1
4

EHF
x +

3
4

EPBE
x + EPBE

c

HSE03, HSE06

EHSE
xc =

1
4

EHF ,sr ,µ
x +

3
4

EPBE,sr ,µ
x + EPBE,lr ,µ

x + EPBE
c

based on decomposition of Coulomb kernel

1
r

= Sµ(r) + Lµ(r) =
erfc(µr)

r
+

erf(µr)
r
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Critical review of the Local Density Approximation

Limitations and Beyond

Self-interaction cancellation in vHartree + vx violated

Repair using exact Hartree-Fock exchange functional
→ class of hybrid functionals

GGA
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Critical review of the Local Density Approximation

Limitations and Beyond

Self-interaction cancellation in vHartree + vx violated

Repair using exact Hartree-Fock exchange functional
→ class of hybrid functionals
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Critical review of the Local Density Approximation

GGA
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SrTiO3 Bandgap

GGA: ≈ 1.6 eV, exp.: 3.2 eV
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Critical review of the Local Density Approximation

GGA

 0

 2

 4

 6

 8

 10

-8 -6 -4 -2  0  2  4  6  8  10

D
O

S
 (

1/
eV

)

(E - EV) (eV)

HSE

 0

 2

 4

 6

 8

 10

-8 -6 -4 -2  0  2  4  6  8  10

D
O

S
 (

1/
eV

)

(E - EV) (eV)

SrTiO3 Bandgap

GGA: ≈ 1.6 eV, HSE: ≈ 3.1 eV, exp.: 3.2 eV

Volker@Eyert.de From Quantum Mechanics to Materials Design



Formalism
Applications

LaAlO3

GGA
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LaAlO3

GGA
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Critical review of the Local Density Approximation

Calculated vs. experimental bandgaps
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Industrial Applications

Computational Materials Engineering

Automotive

Energy & Power
Generation

Aerospace

Steel & Metal Alloys

Glass & Ceramics

Electronics

Display & Lighting

Chemical &
Petrochemical

Drilling & Mining
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Summary

Density Functional Theory

exact (!) mapping of full many-body problem to an effective
single-particle problem

Local Density Approximation

approximative treatment of exchange (!) and correlation

considerable improvement: exact treatment of exchange

Applications

very good agreement DFT/Exp. in numerous cases

theory meets industry

Further Reading

V. Eyert and U. Eckern, PhiuZ 31, 276 (2000)
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