# Metal-Insulator Transitions of the Vanadates: New Perspectives of an Old Mystery

### Volker Eyert

Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg

November 15, 2010







### **Basic Theories**

- Density Functional Theory
- Full-Potential ASW Method



Transition-Metal Oxides



ъ





### **Basic Theories**

- Density Functional Theory
- Full-Potential ASW Method



**Transition-Metal Oxides** 



ъ

Density Functional Theory Full-Potential ASW Method





### **Basic Theories**

Density Functional Theory

Full-Potential ASW Method



Transition-Metal Oxides



< E

Density Functional Theory Full-Potential ASW Method

### **Calculated Electronic Properties**

### Moruzzi, Janak, Williams (IBM, 1978)



Density Functional Theory Full-Potential ASW Method

# Energy band structures from screened HF exchange

### Si, AIP, AIAs, GaP, and GaAs



Experimental and theoretical bandgap properties

Shimazaki, Asai JCP **132**, 224105 (2010)



### Hamiltonian (within Born-Oppenheimer approximation)

$$H = H_{el,kin} + H_{el-el} + H_{ext}$$
  
=  $\sum_{i} \left[ -\frac{\hbar^2}{2m} \nabla_i^2 \right] + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \sum_{\substack{i,j \ j \neq i}} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{i} v_{ext}(\mathbf{r}_i)$ 

where

Key Players

$$\sum_{i} v_{ext}(\mathbf{r}_i) = \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \sum_{\substack{\mu\nu\\\mu\neq\nu}} \frac{Z_{\mu}Z_{\nu}}{|\mathbf{R}_{\mu} - \mathbf{R}_{\nu}|} - \frac{e^2}{4\pi\epsilon_0} \sum_{\mu} \sum_{i} \frac{Z_{\mu}}{|\mathbf{R}_{\mu} - \mathbf{r}_i|}$$

 $\mu$ : ions with charge  $Z_{\mu}$ , *i*: electrons

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト



э

Density Functional Theory Full-Potential ASW Method

### **Electron Density Operator**

**Key Players** 

$$\hat{\rho}(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_i) = \sum_{\alpha\beta} \chi_{\alpha}^*(\mathbf{r}) \chi_{\beta}(\mathbf{r}) \mathbf{a}_{\alpha}^+ \mathbf{a}_{\beta}$$

 $\chi_{\alpha}$ : single particle state



Volker@Eyert.de Metal-Insulator Transitions of the Vanadates

### **Electron Density Operator**

$$\hat{\rho}(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_i) = \sum_{\alpha\beta} \chi_{\alpha}^*(\mathbf{r}) \chi_{\beta}(\mathbf{r}) \mathbf{a}_{\alpha}^+ \mathbf{a}_{\beta}$$

 $\chi_{\alpha}$ : single particle state

・ロット (雪) (日) (日)

### Electron Density

Key Players

$$ho(\mathbf{r}) = \langle \Psi | \hat{
ho}(\mathbf{r}) | \Psi 
angle = \sum_{lpha} |\chi_{lpha}(\mathbf{r})|^2 n_{lpha}$$

 $|\Psi\rangle$ : many-body wave function,  $n_{\alpha}$ : occupation number

Normalization: 
$$N = \int d^3 \mathbf{r} \rho(\mathbf{r})$$

э

### **Functionals**

**Key Players** 

Universal Functional (independent of ionic positions!)

$${\sf F}=\langle \Psi | {\it H_{el,kin}}+{\it H_{el-el}}|\Psi 
angle$$

Functional due to External Potential:

$$\begin{aligned} \langle \Psi | H_{\text{ext}} | \Psi \rangle &= \langle \Psi | \sum_{i} v_{\text{ext}}(\mathbf{r}) \delta(\mathbf{r} - \mathbf{r}_{i}) | \Psi \rangle \\ &= \int d^{3}\mathbf{r} \ v_{\text{ext}}(\mathbf{r}) \rho(\mathbf{r}) \end{aligned}$$

< 回 > < 回 > < 回 >

Density Functional Theory Full-Potential ASW Method

### **Authors**

### Pierre C. Hohenberg



### Walter Kohn



### Lu Jeu Sham





Volker@Eyert.de Metal-Insulator Transitions of the Vanadates

< □ > < 同 >

# Hohenberg and Kohn, 1964: Theorems

### **1st Theorem**

The external potential  $v_{ext}(\mathbf{r})$  is determined, apart from a trivial constant, by the electronic ground state density  $\rho(\mathbf{r})$ .

#### 2nd Theorem

The total energy functional  $E[\rho]$  has a minimum equal to the ground state energy at the ground state density.



# Hohenberg and Kohn, 1964: Theorems

### **1st Theorem**

The external potential  $v_{ext}(\mathbf{r})$  is determined, apart from a trivial constant, by the electronic ground state density  $\rho(\mathbf{r})$ .

### 2nd Theorem

The total energy functional  $E[\rho]$  has a minimum equal to the ground state energy at the ground state density.

### Nota bene

Both theorems are formulated for the ground state!

- Zero temperature!
- No excitations!

< □ > < 同 > < 回 > < 回 >

Density Functional Theory Full-Potential ASW Method

### Levy, Lieb, 1979-1983: Constrained Search

### Percus-Levy partition





Density Functional Theory Full-Potential ASW Method

# Levy, Lieb, 1979-1983: Constrained Search

### Variational principle

$$E_{0} = \inf_{|\Psi\rangle} \langle \Psi | H | \Psi \rangle$$
  

$$= \inf_{|\Psi\rangle} \langle \Psi | H_{el,kin} + H_{el-el} + H_{ext} | \Psi \rangle$$
  

$$= \inf_{\rho(\mathbf{r})} \left[ \inf_{|\Psi\rangle \in S(\rho)} \langle \Psi | H_{el,kin} + H_{el-el} | \Psi \rangle + \int d^{3}\mathbf{r} \ v_{ext}(\mathbf{r})\rho(\mathbf{r}) \right]$$
  

$$=: \inf_{\rho(\mathbf{r})} \left[ F_{LL}[\rho] + \int d^{3}\mathbf{r} \ v_{ext}(\mathbf{r})\rho(\mathbf{r}) \right] = \inf_{\rho(\mathbf{r})} E[\rho]$$

 $S(\rho)$ : set of all wave functions leading to density  $\rho$  $F_{LL}[\rho]$ : Levy-Lieb functional

< □ > < 同 > < 回 > < 回 > < 回 >

Density Functional Theory Full-Potential ASW Method

# Levy, Lieb, 1979-1983: Constrained Search

### Levy-Lieb functional

$$F_{LL}[\rho] = \inf_{|\Psi\rangle \in S(\rho)} \langle \Psi | H_{el,kin} + H_{el-el} | \Psi \rangle$$
  
=  $\underbrace{\mathcal{T}[\rho] + \mathcal{W}_{xc}[\rho]}_{=} + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3 \mathbf{r} \int d^3 \mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$   
=  $G[\rho] + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3 \mathbf{r} \int d^3 \mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$ 

### Functionals

- Kinetic energy funct.:  $T[\rho]$
- Exchange-correlation energy funct.: W<sub>xc</sub>[ρ] not known!
- Hartree energy funct.:  $\frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3\mathbf{r} \int d^3\mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$



not known!

known

# Kohn and Sham, 1965: Single-Particle Equations

#### Ansatz

• use different splitting of the functional  $G[\rho]$ 

$$T[\rho] + W_{xc}[\rho] = G[\rho] \stackrel{!}{=} T_0[\rho] + E_{xc}[\rho]$$

Preintroduce single-particle wave functions

### Imagine: non-interacting electrons with same density

• Density:  $ho(\mathbf{r}) = \sum_{\alpha}^{occ} |\chi_{\alpha}(\mathbf{r})|^2$ 

• Kinetic energy funct.:

$$T_0[\rho] = \sum_{\alpha}^{occ} \int d^3 \mathbf{r} \; \chi_{\alpha}^*(\mathbf{r}) \left[ -\frac{\hbar^2}{2m} \nabla^2 
ight] \chi_{lpha}(\mathbf{r})$$

Exchange-correlation energy funct.: E<sub>xc</sub>[ρ]

known!

known!

not known!

< □ > < 同 > < 回 > < 回 > < 回 >

# Kohn and Sham, 1965: Single-Particle Equations

Euler-Lagrange Equations (Kohn-Sham Equations)

$$\frac{\delta E[\rho]}{\delta \chi_{\alpha}^{*}(\mathbf{r})} - \varepsilon_{\alpha} \chi_{\alpha}(\mathbf{r}) = \left[ -\frac{\hbar^{2}}{2m} \nabla^{2} + v_{\text{eff}}(\mathbf{r}) - \varepsilon_{\alpha} \right] \chi_{\alpha}(\mathbf{r}) \stackrel{!}{=} 0$$

- Effective potential:  $v_{eff}(\mathbf{r}) := v_{ext}(\mathbf{r}) + v_{H}(\mathbf{r}) + v_{xc}(\mathbf{r})$
- Exchange-correlation potential:

$$\mathbf{v}_{\mathbf{xc}}(\mathbf{r}) := \frac{\delta \mathbf{E}_{\mathbf{xc}}[\rho]}{\delta \rho}$$

• "Single-particle energies":  $\varepsilon_{\alpha}$  (Lagrange-parameters, orthonormalization)

not known!

< ロ > < 同 > < 回 > < 回 > .

# Kohn and Sham, 1965: Local Density Approximation

### Be Specific!

Approximate exchange-correlation energy functional

$$\mathsf{E}_{\mathsf{xc}}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{\mathsf{xc}}(\rho(\mathbf{r})) d^3 \mathbf{r}$$

- Exchange-correlation energy density  $\varepsilon_{xc}(\rho(\mathbf{r}))$ 
  - depends on local density only!
  - is calculated from homogeneous, interacting electron gas
- Exchange-correlation potential

$$\mathbf{v}_{\mathbf{xc}}(\rho(\mathbf{r})) = \left[\frac{\partial}{\partial \rho} \left\{\rho \varepsilon_{\mathbf{xc}}(\rho)\right\}\right]_{\rho = \rho(\mathbf{r})}$$

# Kohn and Sham, 1965: Local Density Approximation

### Limitations and Beyond

- LDA exact for homogeneous electron gas (within QMC)
- Spatial variation of  $\rho$  ignored
  - $\rightarrow$  include  $\nabla \rho(\mathbf{r}), \dots$
  - → Generalized Gradient Approximation (GGA)
- Self-interaction cancellation in  $v_{Hartree} + v_x$  violated



Density Functional Theory Full-Potential ASW Method

# **Muffin-Tin Approximation**

### John C. Slater



### **Full Potential**

spherical symmetric near nuclei flat outside the atomic cores

### **Muffin-Tin Approximation**

$$v^{MT}_{\sigma}(\mathbf{r}) = \cdot$$

 $V_{\sigma}(\mathbf{r})$  : <

spherical symmetric in spheres constant in interstitial region



Density Functional Theory Full-Potential ASW Method

# **Muffin-Tin Approximation**









Density Functional Theory Full-Potential ASW Method

# **Muffin-Tin Approximation**

### Wave Function

- solve Schrödingers eq.
   → partial waves
- ≥ match partial waves
   → basis functions,
   "augmented" partial waves
- use to expand
  - $\rightarrow$  wave function

#### **Muffin-Tin Potential**





Density Functional Theory Full-Potential ASW Method

# **Muffin-Tin Approximation**

#### Flavors

- Muffin-Tin Approximation: touching spheres
- Atomic Sphere Approximation: space-filling spheres
  - interstitial region formally removed
  - only numerical functions in spheres
  - minimal basis set (s, p, d)
    - very high computational efficiency  $\rightarrow \mathcal{O}(ASA)$  speed!!!
  - makes potential more realistic
  - systematic error in total energy

bad!



Density Functional Theory Full-Potential ASW Method

# Iron Pyrite: FeS<sub>2</sub>



#### Pyrite

- Pa3

   (T<sub>h</sub><sup>6</sup>)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
  - iron atoms
  - sulfur pairs
- sulfur pairs  $\|\langle 111 \rangle$  axes
- $x_{\rm S} = 0.38484$
- rotated FeS<sub>6</sub> octahedra

∃ ► 4



Density Functional Theory Full-Potential ASW Method

# FeS<sub>2</sub>: Structure Optimization



Volker@Eyert.de Metal-Insulator Transitions of the Vanadates

- remove total energy error due to overlap of atomic spheres
  - reintroduce non-overlapping muffin-tin spheres
  - restore interstitial region



- remove total energy error due to overlap of atomic spheres
  - reintroduce non-overlapping muffin-tin spheres
  - restore interstitial region
- find representation of electron density and full potential

- inside muffin-tin spheres
- in the interstitial region

- remove total energy error due to overlap of atomic spheres
  - reintroduce non-overlapping muffin-tin spheres
  - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
  - inside muffin-tin spheres
  - in the interstitial region

- remove total energy error due to overlap of atomic spheres
  - reintroduce non-overlapping muffin-tin spheres
  - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
  - inside muffin-tin spheres
  - in the interstitial region

- remove total energy error due to overlap of atomic spheres
  - reintroduce non-overlapping muffin-tin spheres
  - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
  - inside muffin-tin spheres
    - use spherical-harmonics expansions
  - in the interstitial region

- remove total energy error due to overlap of atomic spheres
  - reintroduce non-overlapping muffin-tin spheres
  - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
  - inside muffin-tin spheres
    - use spherical-harmonics expansions
  - in the interstitial region
    - no exact spherical-wave representation available!

Density Functional Theory Full-Potential ASW Method

(AI)

### From Wave Functions to Electron Density

### **Density inside MT-Spheres**



# From Wave Functions to Electron Density

Products of Spherical Waves in Interstitial Region

- expand in spherical waves
  - would be efficient
  - coefficients/integrals not known analytically
  - Methfessel, 1988:

match values and slopes at MT-sphere surfaces





#### Density Functional Theory Full-Potential ASW Method

# From Wave Functions to Electron Density

Products of Spherical Waves in Interstitial Region

- expand in spherical waves
  - match values and slopes at MT-sphere surfaces



Density Functional Theory Full-Potential ASW Method

### Comparison of Approaches

| Ole K. Andersen                                           | 1975  |
|-----------------------------------------------------------|-------|
| <ul> <li>ASA geometry used for basis functions</li> </ul> |       |
| $\rightarrow$ minimal basis set                           | good! |
| ASA geometry used for density and potential               |       |
| $\rightarrow$ error in total energy                       | bad!  |



→
Density Functional Theory Full-Potential ASW Method

# Comparison of Approaches

| Ole K. Andersen                                                                        | 1975  |
|----------------------------------------------------------------------------------------|-------|
| <ul> <li>ASA geometry used for basis functions</li> <li>→ minimal basis set</li> </ul> | good! |
| <ul> <li>ASA geometry used for density and potential</li> </ul>                        | bodi  |
| $\rightarrow$ error in total energy                                                    | iDad! |

| Michael S. Methfessel                                          | 1988  |
|----------------------------------------------------------------|-------|
| <ul> <li>MT geometry used for density and potential</li> </ul> |       |
| ightarrow accurate total energy                                | good! |
| • MT geometry used for basis functions                         |       |
| ightarrow large basis set                                      | bad!  |



→ < ∃ →</p>

< 一 →

bad!

## **Comparison of Approaches**

| Ole K. Andersen                                                 | 1975  |
|-----------------------------------------------------------------|-------|
| ASA geometry used for basis functions                           | good! |
| <ul> <li>ASA geometry used for density and potential</li> </ul> | bad!  |
| Michael S. Methfessel                                           | 1988  |
| <ul> <li>MT geometry used for density and potential</li> </ul>  | good! |

MT geometry used for basis functions

| present approach                                                                                      | 2006   |
|-------------------------------------------------------------------------------------------------------|--------|
| <ul> <li>ASA geometry used for basis functions</li> <li>→ minimal basis set → O(ASA) speed</li> </ul> | great! |
| <ul> <li>MT geometry used for density and potential</li> <li>accurate total energy</li> </ul>         | great  |
|                                                                                                       | great  |

## Implementation: Augmented Spherical Wave Method

Oth Generation ASW (Williams, Kübler, Gelatt, 1970s)

PRB 19, 6094 (1979)

## 1st Generation (VE, 1990s)

- new implementation (accurate, stable, portable)
   VE, Int. J. Quantum Chem. 77, 1007 (2000)
   VE, Lect. Notes Phys. 719 (Springer, 2007)
- xAnderson convergence acceleration scheme VE, J. Comput. Phys. **124**, 271 (1996)
- all LDA- and GGA-parametrizations
- still based on atomic-sphere approximation
   VE, Höck, PRB 57, 12727 (1998)



-∢ ≣ ▶

Image: A matrix

## Implementation: Augmented Spherical Wave Method

## 2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
  - electron densities, spin densities
  - electric field gradients
  - elastic properties, phonon spectra
- optical properties
  - based on linear-response theory
  - direct calculation of  $\Re\sigma$  and  $\Im\sigma$
  - no Kramers-Kronig relations needed
- transport properties, thermoelectrics
- LDA+U method
  - all "flavors" for double-counting terms (AMF, FLL, DFT)

VE, Lect. Notes Phys. (2nd ed., Springer, 2011)



## at O(ASA) speed!

Density Functional Theory Full-Potential ASW Method

## **ASW Method: Further Reading**



Density Functional Theory Full-Potential ASW Method

# Iron Pyrite: FeS<sub>2</sub>



#### Pyrite

- Pa3

   (T<sub>h</sub><sup>6</sup>)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
  - iron atoms
  - sulfur pairs
- sulfur pairs  $\|\langle 111 \rangle$  axes
- $x_{\rm S} = 0.38484$
- rotated FeS<sub>6</sub> octahedra

∃ ► 4



Density Functional Theory Full-Potential ASW Method

## FeS<sub>2</sub>: Structure Optimization





▶ < ∃ >

Density Functional Theory Full-Potential ASW Method

# FeS<sub>2</sub>: Structure Optimization



at  $\mathcal{O}(ASA)$  speed!

< ロ > < 同 > < 回 > < 回 >



Density Functional Theory Full-Potential ASW Method

## Phase Stability in Silicon



#### Bad

β-tin structure most stable # nature (diamond structure)



▶ < ≣

Density Functional Theory Full-Potential ASW Method

## Phase Stability in Silicon



#### **Full-Potential Code**



#### New!

at O(ASA) speed!

- diamond structure most stable
- pressure induced phase transition to β-tin structure

Volker@Eyert.de Metal-Insulator Transitions of the Vanadates

Density Functional Theory Full-Potential ASW Method

## LTO( $\Gamma$ )-Phonon in Silicon



Density Functional Theory Full-Potential ASW Method

# LTO( $\Gamma$ )-Phonon in Silicon



(日)

500

э

## Outline



Density Functional Theory

Full-Potential ASW Method





∃⇒

# Metal-Insulator Transition of VO2



## Metal-Insulator Transitions (MIT)

- VO<sub>2</sub> (d<sup>1</sup>)
  - 1st order, 340 K,  $\Delta \sigma \approx 10^4$
  - $\bullet \ \ rutile \to M_1 \ (monoclinic)$
- V<sub>2</sub>O<sub>3</sub> (*d*<sup>2</sup>)
  - 1st order, 170 K,  $\Delta \sigma \approx 10^6$
  - corundum  $\rightarrow$  monoclinic
  - paramagn.  $\rightarrow$  AF order

## Origin of the MIT???

- Structural Changes?
- Electron Correlations?

## Metal-Insulator Transition of VO<sub>2</sub>



## Metal-Insulator Transition of VO2



## $e_q^{\sigma}$ Orbitals



Volker@Eyert.de Metal-Insulator Transitions of the Vanadates



#### **Rutile Structure**

- simple tetragonal
- P4<sub>2</sub>/mnm (D<sup>14</sup><sub>4h</sub>)



# Metal-Insulator Transition of VO<sub>2</sub>



## $t_{2g}$ Orbitals



$$\begin{cases} \mathbf{e}_{g}^{\pi} = \mathbf{f}_{g}^{\pi} \\ \mathbf{a}_{1g} = \mathbf{f}_{g}^{\pi} \end{cases}$$



500

## Metal-Insulator Transition of VO<sub>2</sub>



#### **Structural Changes**

- V-V dimerization || c<sub>R</sub>
- antiferroelectric displacement \product c<sub>R</sub>

#### M<sub>1</sub>-Structure





- Goodenough, 1960-1972
  - metal-metal dimerization  $\parallel c_R \rightarrow \text{splitting into } d_{\parallel}, d_{\parallel}^*$
  - antiferroelectric displacement  $\perp c_R \rightarrow \text{upshift of } \pi^*$
- Zylbersztejn and Mott, 1975
  - splitting of  $d_{\parallel}$  by electronic correlations
  - upshift of  $\pi^*$  unscreenes  $d_{\parallel}$  electrons

3 b 4

## Other Compounds

|                                                        | d <sup>0</sup>          | d <sup>1</sup>              | d <sup>2</sup>            | d <sup>3</sup>             | d <sup>4</sup>          | d <sup>5</sup>          | d <sup>6</sup>          |  |
|--------------------------------------------------------|-------------------------|-----------------------------|---------------------------|----------------------------|-------------------------|-------------------------|-------------------------|--|
| 3d                                                     | TiO <sub>2</sub><br>(S) | VO <sub>2</sub> *<br>(M–S)  | CrO <sub>2</sub><br>(F–M) | MnO <sub>2</sub><br>(AF–S) |                         |                         |                         |  |
| 4d                                                     |                         | NbO <sub>2</sub> *<br>(M–S) | MoO <sub>2</sub> *<br>(M) | TcO <sub>2</sub><br>(M)    | RuO <sub>2</sub><br>(M) | RhO <sub>2</sub><br>(M) |                         |  |
| 5d                                                     |                         | TaO <sub>2</sub><br>(?)     | WO <sub>2</sub> *<br>(M)  | ReO <sub>2</sub><br>(M)    | OsO <sub>2</sub><br>(M) | IrO <sub>2</sub><br>(M) | PtO <sub>2</sub><br>(M) |  |
| * deviations from rutile, M = metal, S = semiconductor |                         |                             |                           |                            |                         |                         |                         |  |
| F/AF = ferro-/antiferromagnet                          |                         |                             |                           |                            |                         |                         |                         |  |

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

æ

## Other Compounds



Volker@Eyert.de Metal-Insulator Transitions of the Vanadates

## Metal-Insulator Transition of VO<sub>2</sub>

#### **Other Phases**



 doping with Cr, Al, Fe, Ga

uniaxial pressure
 || (110)

 $Cr_xV_{1-x}O_2$ Pouget, Launois, 1976

# **Electronic Structure in Detail**

#### Rutile Structure

- molecular-orbital picture √
- octahedral crystal field ⇒ V 3d t<sub>2g</sub>/e<sub>g</sub>
- V 3d–O 2p hybridization



Ann. Phys. (Leipzig) 11, 650 (2002)



э

# **Electronic Structure in Detail**

## **Rutile Structure**

- molecular-orbital picture ✓
- octahedral crystal field ⇒ V 3d t<sub>2g</sub>/e<sub>g</sub>
- V 3d–O 2p hybridization
- $t_{2g}$  at E<sub>F</sub>:  $d_{x^2-y^2}$ ,  $d_{yz}$ ,  $d_{xz}$
- $n(d_{x^2-y^2}) \approx n(d_{yz}) \approx n(d_{xz})$



Ann. Phys. (Leipzig) **11**, 650 (2002)



## **Electronic Structure in Detail**





- 1D-dispersion of  $d_{\parallel}$  bands
- 3D-dispersion of  $\pi^*$  bands
- no hybridization between  $d_{||}$  and  $\pi^*$

э

伺 とく ヨ とく ヨ とう

500

## Electronic Structure in Detail







- bonding-antibonding splitting of  $d_{\parallel}$  bands  $\Longrightarrow$  embedded Peierls instability
- energetical upshift of  $\pi^*$  bands  $\Longrightarrow$  orbital ordering
- optical band gap on the verge of opening

## **Electronic Structure in Detail**



- bonding-antibonding splitting of  $d_{\parallel}$  bands  $\Longrightarrow$  embedded Peierls instability
- energetical upshift of  $\pi^*$  bands  $\Longrightarrow$  orbital ordering
- optical band gap on the verge of opening

→ ∃ → ∃

# **Further Investigations**

#### **Cluster-DMFT Calculations**

- Rutile-VO<sub>2</sub>
  - moderately correlated metal
- M<sub>1</sub>-VO<sub>2</sub>
  - correlations strong/weak on  $d_{||}/\pi^*$
  - optical band gap of 0.6 eV
- Phase Transition
  - "correlation-assisted Peierls transition"

S. Biermann, A. Poteryaev, A. I. Lichtenstein, A. Georges PRL 94, 026404 (2005)



# **Further Investigations**



# Transition-Metal Dioxides: Partial d t<sub>2g</sub> DOS



Volker@Eyert.de Metal-Insulator Transitions of the Vanadates

# Transition-Metal Dioxides: Partial d t<sub>2g</sub> DOS



Volker@Eyert.de Metal-Insulator Transitions of the Vanadates

## Electronic Structure in Detail: M<sub>2</sub>-VO<sub>2</sub>



# zigzag chains



▶ < ⊒ ▶

## Electronic Structure in Detail: M<sub>2</sub>-VO<sub>2</sub> (AF)







# Critical review of the Local Density Approximation

## Limitations and Beyond

- Self-interaction cancellation in  $v_{Hartree} + v_x$  violated
- Repair using exact Hartree-Fock exchange functional

   → class of hybrid functionals

PBE0

$$E_{xc}^{PBE0}=rac{1}{4}E_{x}^{HF}+rac{3}{4}E_{x}^{PBE}+E_{c}^{PBE}$$

HSE03, HSE06

$$E_{xc}^{HSE} = rac{1}{4}E_x^{HF,sr,\mu} + rac{3}{4}E_x^{PBE,sr,\mu} + E_x^{PBE,lr,\mu} + E_c^{PBE}$$

based on decomposition of Coulomb kernel

$$\frac{1}{r} = S_{\mu}(r) + L_{\mu}(r) = \frac{\operatorname{erfc}(\mu r)}{r} + \frac{\operatorname{erf}(\mu r)}{r}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Critical review of the Local Density Approximation

#### Limitations and Beyond

- Self-interaction cancellation in  $v_{Hartree} + v_x$  violated
- Repair using exact Hartree-Fock exchange functional

   → class of hybrid functionals


# Critical review of the Local Density Approximation

#### Limitations and Beyond

- Self-interaction cancellation in  $v_{Hartree} + v_x$  violated
- Repair using exact Hartree-Fock exchange functional

   → class of hybrid functionals



## Critical review of the Local Density Approximation

#### Calculated vs. experimental bandgaps



Volker@Eyert.de Metal-Insulator Transitions of the Vanadates

# SrTiO<sub>3</sub>



# Bandgap GGA: ≈ 1.6 eV, exp.: 3.2 eV

Volker@Eyert.de Metal-Insulator Transitions of the Vanadates

# SrTiO<sub>3</sub>



#### Bandgap

GGA:  $\approx$  1.6 eV, HSE:  $\approx$  3.1 eV, exp.: 3.2 eV

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

# LaAIO<sub>3</sub>





Volker@Eyert.de Metal-Insulator Transitions of the Vanadates

# LaAIO<sub>3</sub>



#### Bandgap

GGA:  $\approx$  3.5 eV, HSE:  $\approx$  5.0 eV, exp.: 5.6 eV

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

## 2D Electron Gas at LaAlO<sub>3</sub>-SrTiO<sub>3</sub> Interface





# 2D Electron Gas at LaAlO<sub>3</sub>-SrTiO<sub>3</sub> Interface

#### Issues

- Role of electronic correlations?
  - SrTiO<sub>3</sub>, LaAlO<sub>3</sub>: band insulators
  - SrTiO<sub>3</sub>/LaAlO<sub>3</sub> interface: MIT (# LaAlO<sub>3</sub> layers)
  - magnetic properties of the interface
  - superconductivity below  $\approx 200\,mK$
- What is the origin of the 2-DEG?
  - intrinsic mechanism?
  - defect-doping?



## 2D Electron Gas at LaAlO<sub>3</sub>-SrTiO<sub>3</sub> Interface

#### Insulator-Metal Transition



Chen, Kolpak, Ismail-Beigi, Adv. Mater. 22, 2881 (2010)

## Slab Calculations for the LaAlO<sub>3</sub>-SrTiO<sub>3</sub> Interface



#### Structural setup of calculations

- central region: 5 layers SrTiO<sub>3</sub>, TiO<sub>2</sub>-terminated
- sandwiches: 2 to 5 layers LaAlO<sub>3</sub>, AlO<sub>2</sub> surface
- vacuum region  $\approx$  20 Å
- inversion symmetry
- lattice constant of SrTiO<sub>3</sub> from GGA (3.944 Å)

## Slab Calculations for the LaAlO<sub>3</sub>-SrTiO<sub>3</sub> Interface





くぼ くち くち くち

#### Calculational method

- Vienna Ab Initio Simulation Package (VASP)
- GGA-PBE
- Steps:
- optimization of SrTiO<sub>3</sub> lattice constant
- Islab calculations
  - full relaxation of all atomic positions
  - 5 × 5 × 1 k-points
  - Γ-centered k-mesh
  - Methfessel-Paxton BZ-integration

# Slab Calculations for the LaAlO<sub>3</sub>-SrTiO<sub>3</sub> Interface



#### Structural relaxation

- AIO<sub>2</sub> surface layers
  - strong inward relaxation
  - weak buckling
- LaO layers
  - strong buckling
- AIO<sub>2</sub> subsurface layers
  - buckling
- TiO<sub>2</sub> interface layers
  - small outward relaxation



## Slab Calculations for the LaAlO<sub>3</sub>-SrTiO<sub>3</sub> Interface





# New Calculations: GGA vs. HSE



#### Rutile Structure: $GGA \Longrightarrow HSE$

- broadening of O 2p and V 3d t<sub>2g</sub>(!) bands
- splitting within V 3d t<sub>2g</sub> bands

< ロ > < 同 > < 回 > < 回 >

# New Calculations: GGA vs. HSE



#### $M_1$ Structure: GGA $\Longrightarrow$ HSE

- splitting of  $d_{||}$  bands, upshift of  $\pi^*$  bands
- $\bullet\,$  optical bandgap of  $\approx 1\,\,eV$

## New Calculations: GGA vs. HSE



#### $M_1$ Structure: GGA $\Longrightarrow$ HSE

- splitting of  $d_{\parallel}$  bands, upshift of  $\pi^*$  bands
- optical bandgap of  $\approx$  1 eV

## New Calculations: GGA vs. HSE



#### $M_2$ Structure: GGA $\Longrightarrow$ HSE

- localized magentic moment of 1  $\mu_{\rm B}$
- optical bandgap of  $\approx$  1.6 eV

Sac

**3 X 4 3 X** 

# **Unified Picture**

#### **Rutile-Related Transition-Metal Dioxides**

VO<sub>2</sub> (3*d*<sup>1</sup>), NbO<sub>2</sub> (4*d*<sup>1</sup>), MoO<sub>2</sub> (4*d*<sup>2</sup>) (WO<sub>2</sub> (5*d*<sup>2</sup>), TcO<sub>2</sub> (4*d*<sup>3</sup>), ReO<sub>2</sub> (5*d*<sup>3</sup>))

instability against similar local distortions

- metal-metal dimerization || c<sub>R</sub>
- antiferroelectric displacement \(\box) c\_R\)

• ("accidental") metal-insulator transition of the d<sup>1</sup>-members

```
VE et al., J. Phys.: CM 12, 4923 (2000)
VE, Ann. Phys. 11, 650 (2002)
VE, EPL 58, 851 (2002)
J. Moosburger-Will et al., PRB 79, 115113 (2009)
```

< ∃→

# From $VO_2$ to ...

#### ... CrO<sub>2</sub>: Applications

- half-metallic ferromagnet
- $T_C \approx 391 \, \text{K}$

#### Partial DOS



J. Phys. I France **2**, 315 (1992) J. Phys. I France **4**, 1199 (1994)

5

\*)90

# From $VO_2$ to ...

#### ... CrO<sub>2</sub>: Applications

- half-metallic ferromagnet
- $T_C \approx 391 \, \text{K}$



#### Partial DOS



J. Phys. I France **2**, 315 (1992) J. Phys. I France **4**, 1199 (1994)

5

\*)90

Volker@Eyert.de

Metal-Insulator Transitions of the Vanadates

#### ....V<sub>2</sub>O<sub>3</sub>: Magnéli-Phases

- $V_n O_{2n-1} = V_2 O_3 + (n-2) V O_2$ 
  - $n \to \infty$ : VO<sub>2</sub>
  - n = 2: V<sub>2</sub>O<sub>3</sub>
  - variation of d-band filling
  - metal-insulator transitions
  - structural transformations
  - rutile-type slabs of thickness ~ n
  - corundum-like shear planes



#### ... V<sub>2</sub>O<sub>3</sub>: Magnéli-Phases

- $V_nO_{2n-1}=V_2O_3+(n-2)VO_2\\$ 
  - $n \to \infty$ : VO<sub>2</sub>
  - n = 2: V<sub>2</sub>O<sub>3</sub>
  - variation of d-band filling
  - metal-insulator transitions
  - structural transformations
  - rutile-type slabs of thickness ~ n
  - corundum-like shear planes



- O octahedra
- occupied by V
- Magnéli phase characterized by V-chain length n

- ₹ 🖬 🕨

#### ...V<sub>2</sub>O<sub>3</sub>: Magnéli-Phases

- $V_n O_{2n-1} = V_2 O_3 + (n-2) V O_2 \\$ 
  - $n \to \infty$ : VO<sub>2</sub>
  - n = 2: V<sub>2</sub>O<sub>3</sub>
  - variation of d-band filling
  - metal-insulator transitions
  - structural transformations
  - rutile-type slabs of thickness ~ n
  - corundum-like shear planes



- O octahedra
- occupied by V
- Magnéli phase characterized by V-chain length n

< 回 > < 回 > < 回 >

э

#### ... V<sub>2</sub>O<sub>3</sub>: Magnéli-Phases

- $V_nO_{2n-1}=V_2O_3+(n-2)VO_2\\$ 
  - $n \to \infty$ : VO<sub>2</sub>
  - n = 2: V<sub>2</sub>O<sub>3</sub>
  - variation of d-band filling
  - metal-insulator transitions
  - structural transformations
  - rutile-type slabs of thickness ~ n
  - corundum-like shear planes



- O octahedra
- occupied by V
- Magnéli phase characterized by V-chain length n

< ∃ >

#### ...V<sub>2</sub>O<sub>3</sub>: Magnéli-Phases

$$V_n O_{2n-1} = V_2 O_3 + (n-2) V O_2 \\$$

- $n \rightarrow \infty$ : VO<sub>2</sub>
  - one-dimensional
  - Peierls instability
- n = 2: V<sub>2</sub>O<sub>3</sub>
  - Iocalized electrons
  - electronic correlations
- V<sub>n</sub>O<sub>2n-1</sub>
  - "interpolate" between VO<sub>2</sub> and V<sub>2</sub>O<sub>3</sub>
  - charge order, orbital order

#### $V_nO_{2n-1},\,Ti_nO_{2n-1}$

Europhys. Lett. **61**, 361 (2003) Europhys. Lett. **64**, 682 (2003) CPL **390**, 151 (2004) Ann. Phys. **13**, 475 (2004) J. Phys.: CM **18**, 10955 (2006)

### V<sub>2</sub>O<sub>3</sub>, Ti<sub>2</sub>O<sub>3</sub>

PRL **86**, 5345 (2001) PRL **90**, 186403 (2003) PRB **70**, 205116 (2004) Europhys. Lett. **70**, 782 (2005) pss (b) **243**, 2599 (2006)

(日)

э

## **Success Stories**

#### Basics

DFT (exact, ground state)LDA, GGA, ...

#### Percus-Levy partition





э

## **Success Stories**

#### Basics

DFT (exact, ground state)LDA, GGA, ...

#### Implementation

- Muffins and beyond
- Full-Potential ASW

#### Percus-Levy partition



#### Full-Potential Code



## **Success Stories**

#### Metal-Insulator Transitions in VO<sub>2</sub>





▶ ∢ ≣ ▶

## Acknowledgments



#### Augsburg

- U. Eckern, K.-H. Höck, S. Horn, R. Horny, T. Kopp,
- J. Kündel, J. Mannhart,
- J. Moosburger-Will





Bundesministerium für Bildung und Forschung

#### Darmstadt/Jülich

P. C. Schmidt, M. Stephan, J. Sticht †

#### Europe/USA

M. Christensen, C. Freeman, M. Halls, A. Mavromaras, P. Saxe, E. Wimmer, R. Windiks, W. Wolf



## Acknowledgments



#### Augsburg

- U. Eckern, K.-H. Höck, S. Horn, R. Horny, T. Kopp,
- J. Kündel, J. Mannhart,
- J. Moosburger-Will



< E



Bundesministerium für Bildung und Forschung

#### Darmstadt/Jülich

P. C. Schmidt, M. Stephan, J. Sticht †

#### Europe/USA

M. Christensen, C. Freeman, M. Halls, A. Mavromaras, P. Saxe, E. Wimmer, R. Windiks, W. Wolf

▲ 伊 ▶ ▲ 国 ▶

#### Bielefeld

# Thank You for Your Attention!