

Atomistic Simulations for Industrial Applications

Volker Eyert

Materials Design Inc.

8 October 2014

© Materials Design, Inc. 2014

Agenda

- Company Profile Materials Design, Inc.
 - Products and Services: Software and Consulting
- Challenges and Solutions
 - Capabilities of the MedeA[®] software environment
- Current trends in materials research
 - Thermo-mechanical properties, material fatigue, ageing effects
 - Battery materials
 - Electronic and thermal conductivity, thermoelectricity
- Summary and Perspectives

Company Profile

- Founded by scientists in 1998
- Over 400 customers in industry, universities, and government laboratories including over 50 major companies worldwide
- Products: MedeA[®] software, support and consulting services
- Global: Offices in San Diego, Angel Fire, Paris and Stockholm
- Business partners: Japan, Korea, China, Taiwan, Singapore, and India
- Core competence in
 - Computational chemistry & physics
 - Materials science & chemical engineering
 - Materials property databases & software engineering

Customers

Energy	Metals & Alloys	Chemicals	Oil & Gas		
Electronics	Automotive & Aerospace	Glass & Ceramics	Mining & Drilling		
Universities and Government R&D Laboratories					

Customers

Ranking ¢	Name +	Industry \$	Revenue (USD ÷ billions)	FY ÷	Capitalization (USD billions) [‡]	Employees +	Listing +	Headquarters ÷	CEO ÷	Ref(s) ÷
1	Exxon Mobil	Oil and gas	\$491	December 31, 2013	\$438	76,900	NYSE: XOM ₪	Irving, Texas	Rex W. Tillerson	[2]
2	Sinopec Group	Oil and gas	\$486	December 31, 2013		401,000	-	Beijing	Wang Tianpu	[3]
з	Royal Dutch Shell	Oil and gas	\$478	December 31, 2013	\$243	90,000	LSE: RDSA 🗗	The Hague;	Ben van Beurden	[4]
4	Wal-Mart Stores, Inc	Retail	\$476	January 31, 2014	\$203	2,200,000	NYSE: WMT &	Bentonville, Arkansas	Doug McMillon	[5]
5	China National Petroleum Corporation	Oil and gas	\$455	December 31, 2013		1,668,072	_	Beijing	Zhou Jiping	[6]
6	BP	Oil and gas	\$379	December 31, 2013	\$89	83,900	LSE: BP 🖉	🚟 London	Bob Dudley	[7]
7	Saudi Aramco	Oil and gas	\$365	2011		54,041	-	💻 Dhahran	Khalid A. Al- Falih	[8]
8	State Grid Corporation of China	Electric utility	\$338	2013		1,564,000	-	Beijing	Liu Zhenya	[9]
9	Vitol	Commodities	\$307	2013		5,441	-	Rotterdam;	lan Taylor	[10]
10	Volkswagen Group	Automotive	\$263	December 31, 2013	\$77	572,800	ISIN: DE0007664005 ଜ	Wolfsburg	Martin Winterkorn	[11]
11	Total	Oil and gas	\$253	December 31, 2013	\$120	98,799	Euronext: FP &	Courbevoie	Christophe de Margerie	[12]
12	Toyota	Automotive	\$249	March 31, 2014	<mark>\$14</mark> 9	326,000	TYO: 7203 ₪; NYSE: TM ₪	 Toyota, Aichi 	Akio Toyoda	[13]

12 world largest companies by revenue

Products and Services

MedeA[®] software

- Comprehensive atomistic modeling environment with leading technology
- Installation, training, online support, and maintenance
- Scientific/technological interactions
- Yearly users group meetings (Philadelphia, Oct 21-23, 2014)

Contract research

- Solution of specific industrial problems
- Leverages expertise and resources of MD's scientists
- Publicly funded programs

Technology partnerships

• Development of customized modeling capabilities (e.g. Toyota)

Technology Positioning

Goal of Atomistic Simulations

MedeA[®]: Software for Efficient R&D

Materials Exploration and Design Analysis

MedeA[®] Software

MODELING & ANALYSIS

Builders: crystals, defects, interfaces, surfaces, molecules, nanostructures, polymers, amorphous materials Analysis: geometry, band structures and DOS, electron and spin density, potential, Fermi surface, phonons, transition states, dynamics trajectories

Job Server

Electronic Properties

Accurate Band Structures

Note: Standard LDA or GGA predicts Ge to be metallic

Accuracy of Computed Band Gaps

Performance of VASP 5.2 as reviewed by J. Hafner, J. Phys.: Condens. Matter **22**, 384205 (2010)

Design of III-V Alloys

Which III-V alloy has a band gap around 0.5 eV and the largest Γ-L separation?

Computations: Source of Reliable Data

Band structure engineering

The $\Gamma - L$ and $\Gamma - X$ separations (cf. Table I) show an overall better performance of sX compared with LDA. A remarkable case is the $\Gamma - L$ separation in InAs. The most often reported experimental value is 0.74 eV,¹⁵ whereas sX gives 1.21 eV. Recent measurements, by using improved techniques, resulted in a revised value of 1.10 ± 0.05 eV.¹⁷

A systematic investigation of effective masses reveals a similar picture, namely, that sX improves the overall agreement with experiment. In particular, the performance of sX in predicting m_c^{Γ} is rather remarkable (cf. Table II). Never-

Geller et al., Appl. Phys. Lett. 79, 368 (2001)

Elastic Properties, Phonons

Aluminum Nitride

Aluminum Nitride

(GPa)	Expt ¹	Expt ²	Calculated
C ₁₁	345	411	375
C ₁₂	125	149	130
C ₁₃	120	99	100
C ₃₃	395	389	347
C ₄₄	118	125	113
C ₆₆	110	131	122
В	202	212	195

K.Tsubouchi, N. Mikoshiba, IEEE Trans. Sonics Ultrason. SU-32, 634 (1985)
 L.E. McNeil, M. Grimsditch, R.H. French, J. Am. Ceram. Soc. 76, 1132 (1993)

Reliability of Computed Properties

Elastic coefficients of corundum, Al₂O₃. All values in GPa.

XX		Expt. ^a	Computed ^b	
	C_{II}	497.3	495	
	C_{12}	162.8	171	
	C_{I3}	116.0	130	
	C_{14}	-21.9	+20	
	C_{33}	500.9	486	
	C_{44}	146.8	148	

 α -Al₂O₃

a) T. Goto, O. Anderson, I. Ohno, and S. Yamamoto, J. Geophys. Res. 94, 7588 (1989)
b) J. R. Gladden, J. D. Maynard, J. H. So, P. Saxe, and Y. Le Page, Appl. Phys. Lett. 85, 392 (2004)

Reliability of Computed Properties

Elastic coefficients	of corundum,	Al_2O_3 .	A11	values	in	GPa.
----------------------	--------------	-------------	-----	--------	----	------

		Expt. ^a	Computed ^b	Ex	ot. ^b
(CAN				Sample 1	Sample 2
	C_{II}	497.3	495	495.6	497.4
	C_{12}	162.8	171	160.2	158.3
	C_{13}	116.0	130	117.0	121.0
	C_{14}	-21.9	+20	+22.1	+23.0
	C_{33}	500.9	486	501.0	505.8
	C_{44}	146.8	148	147.0	145.3

 α -Al₂O₃

a) T. Goto, O. Anderson, I. Ohno, and S. Yamamoto, J. Geophys. Res. 94, 7588 (1989) b) J. R. Gladden, J. D. Maynard, J. H. So, P. Saxe, and Y. Le Page, Appl. Phys. Lett. 85, 392 (2004)

Analyze Phonons of Graphene

Hydrogen Storage

Hydrogen in $LaNi_5H_n$ and $LaCo_5H_n$

APPLIED PHYSICS LETTERS

VOLUME 85, NUMBER 16

18 OCTOBER 2004

Hydrogen site energetics in $LaNi_5H_n$ and $LaCo_5H_n$: Toward predicting hydrides

J. F. Herbst^{a)} and L. G. Hector, Jr.

Materials and Processes Laboratory, General Motors Research and Development Center, Mail Code 480-106-224, 30500 Mound Road, Warren, Michigan 48090-9055

(Received 30 June 2004; accepted 23 August 2004)

We have investigated the energetics of hydrogen site occupation in LaNi₅H_n (hexagonal $P6_3mc$ structure) and LaCo₅H_n (orthorhombic *Cmmm* structure) via calculation of the site-dependent enthalpies of hydride formation ΔH . For each structure ΔH was determined for a broad variety of hydrogen configurations. In LaNi₅H_n (LaCo₅H_n) we find that the minimum ΔH occurs for hydrogen filling of the $2b6c_16c_2$ (4e4h) sites, precisely those identified by neutron diffraction. Hydrogen-richer hydrides are predicted for both structures, in qualitative agreement with experiments performed at higher pressures. © 2004 American Institute of Physics. [DOI: 10.1063/1.1808503]

Herbst, Hector, Appl. Phys. Lett. 85, 3465 (2004)

Hydrogen in $LaNi_5H_n$ and $LaCo_5H_n$

- Enthalpy of hydride formation in LaNi₅H_n
 - $\Delta H (LaNi_5H_n) = E (LaNi_5H_n) E(LaNi_5) \frac{1}{2} n E(H_2)$
 - $\Delta H_{min} = -40 \text{ kJ/molH}_2$ for H at $2b6c_16c_2$
 - agrees with
 - neutron data
 - calorimetry:
 - ΔH_{min} = (32/37) kJ/molH₂

Herbst, Hector, Appl. Phys. Lett. 85, 3465 (2004)

Hydrogen in $LaNi_5H_n$ and $LaCo_5H_n$

- Enthalpy of hydride formation in LaCo₅H_n
 - $\Delta H (LaCo_5H_n) = E (LaCo_5H_n)$ - $E(LaCo_5) - \frac{1}{2} n E(H_2)$
 - ΔH_{min} = 45.6 kJ/molH₂ for H at 4e4h
 - agrees with
 - neutron data
 - calorimetry:
 - ΔH_{min} = 45.2 kJ/molH₂

Herbst, Hector, Appl. Phys. Lett. 85, 3465 (2004)

Diffusion of H in Ni

Diffusion Coefficients

1. Transition state approach

- Compute initial and final structures (minimization)
- Search transition state (TSS)
- Compute phonon dispersion and phonon density of states
- Apply Eyring's transition state theory to get jump rates
- Use kinetic Monte Carlo for networks
- 2. Mean square displacement (MSD) from molecular dynamics

Diffusion of Interstitial Impurities

Diffusion: Hydrogen in Ni

The diffusion coefficient of H in Ni computed from first-principles has similar accuracy as experimental data at ambient and medium temperatures

Isotope effects are well explained and quantitatively described

Computational approach: Eyring transition state theory Ab initio phonons for entire supercell thermal expansion from quasi harmonic approximation

E. Wimmer, W. Wolf, J. Sticht, P. Saxe, C. B. Geller, R. Najafabadi, and G. A. Young, "Temperature-dependent diffusion coefficients from *ab initio* computations: Hydrogen, deuterium, and tritium in nickel", Phys. Rev. B 77, 134305 (2008)

Grain Boundaries

Fracture in Zr

Development of Fracture Mechanics Method to Evaluate Iodine Stress

Corrosion Cracking of Zirconium Alloys

T.M. Angeliu, B. Kallenburg, D.B. Knorr and J.D. Ballard* *Knolls Atomic Power Laboratory PO Box 1072, Schenectady, NY 12301-1072 Tel: (518) 395-7865, Fax: (518)-395-4422, Email: ballajd@kapl.gov*

Proceedings of Top Fuel 2009 Paris, France, September 6-10, 2009 Paper 2164

Intergranular cracking more prevalent as both temperature and iodine concentration increased

Possible mechanism:

lodine in grain boundary diffuses to crack tip and lowers work of separation

Maximum Stress

Alloying Atoms at Interfaces

Alloying Atoms at Interfaces

Zr GB and Surface Segregation

© Materials Design, Inc. 2014

Cleavage of Zr Grain Boundaries

Computed work of separation

Cleavage energy of pure Zr along (0001) plane	3.15 J m ⁻²
Cleavage energy of Zr along $\Sigma7(0001)$ grain boundary	2.86 J m ⁻²

Effect of Impurities

Change in work of separation of Zr grain boundary by impurities

Embrittlement in Cu Micro-Structures

Contents lists available at ScienceDirect

Materials Science & Engineering A

journal homepage: www.elsevier.com/locate/msea

Temperature dependent transition of intragranular plastic to intergranular brittle failure in electrodeposited Cu micro-tensile samples

MATERIALS

A. Wimmer^a, M. Smolka^b, W. Heinz^a, T. Detzel^c, W. Robl^d, C. Motz^e, V. Eyert^f, E. Wimmer^f, F. Jahnel^g, R. Treichler^g, G. Dehm^{h,*}

^a Kompetenzzentrum Automobil- und Industrie-Elektronik GmbH, A-9524 Villach, Austria

^b Institute of Sensor and Actuator Systems, Vienna University of Technology, A-1040 Vienna, Austria

^c Infineon Technologies Austria AG, A-9500 Villach, Austria

^d Infineon Technologies Germany AG, D-93049 Regensburg, Germany

^e Chair Experimental Methods of Material Science, University of Saarland, D-66123 Saarbrücken, Germany

^f Materials Design SARL, F-92120 Montrouge, France

^g Siemens AG, Otto Hahn Ring 6, D-81739 München, Germany

^h Max-Planck-Institut f
ür Eisenforschung GmbH, D-40237 D
üsseldorf, Germany

ARTICLE INFO

Article history: Received 27 June 2014 Received in revised form 2 September 2014 Accepted 5 September 2014 Available online 16 September 2014

Keywords: Micromechanics Mechanical characterization Microanalysis Grain boundaries Fracture Plasticity

ABSTRACT

Smaller grain sizes are known to improve the strength and ductility of metals by the Hall–Petch effect. Consequently, metallic thin films and structures which must sustain mechanical loads in service are deposited under processing conditions that lead to a fine grain size. In this study, we reveal that at temperatures as low as 473 K the failure mode of 99.99 at% pure electro-deposited Cu can change from ductile intragranular to brittle intergranular fracture. The embrittlement is accompanied by a decrease in strength and elongation to fracture. Chemical analyses indicate that the embrittlement is caused by impurities detected at grain boundaries. *In situ* micromechanical experiments in the scanning electron microscope and atomistic simulations are performed to study the underlying mechanisms.

© 2014 Elsevier B.V. All rights reserved.

- introduce additives to reduce grain size (Hall-Petch effect) ©
- additives cause embrittlement at elevated temperatures ☺

- (a, b, c) sample type A (annealed at 673 K, medium grain size $2.7 \pm 0.6 \mu m$)
- (d) sample type A after additional annealing at 1073 K (15 \pm 5 μ m)
- (e, f, g) sample type B (10.1 ± 2.6 μm)

different additives in samples A and B!

293 K: coarse-grained \rightarrow fine-grained

- yield stress and ultimate stress increase
- changes explained by Hall-Petch effect

473 K and 673 K:

- drastic reduction of elongation to fracture for fine-grained samples
- scattering of results for coarse-grained structures due to small number of grains

fine-grained samples A:

- strong plastic deformation
- grain-boundary embrittlement at elevated temperatures

coarse-grained samples B:

- glide steps across grains
- same morphology for all temperatures

- Atomistic Simulations
- 1. understand grain
- boundary and surfacesegregation; computesegregation energies
- 2. understand grain boundary weakening due to S and Cl
- 3. find elements which could compensate the detrimental effect of S and CI but maintain the electronic and thermo-mechanical properties of Cu
- higher S, CI content in fine-grained samples (additives)
- O, S, CI enrichment at grain boundaries
- segregation of O, S, CI to grain boundaries and surfaces

Calculated energy release during segregation ΔE_{seg} of Cl and S in Cu.

CI and S have strong tendency to	ΔE_{seg} [kJ/mol]		
and, even more so, to the surface	Cl	S	
GB segregation, $\sum 5$ (001) surface segregation, (001) GB segregation, $\sum 7$ (111) surface segregation, (111)	69.9 321.5 53.5 272.0	- 54.3 - 145.3 - 56.3 - 129.9	
grain boundary segregation	surface segregation		

© Materials Design, Inc. 2014

Calculated work of separation E_{sep} of $\sum 5$ and $\sum 7$ grain boundaries of pure Cu and Cu contaminated with Cl and S with planar impurity concentration c_{imp} in atoms per nm².

	c_{imp} [1/nm ²]	E_{sep} [J/m ²]		
		Pure Cu	Cl	S
∑5 (001) ∑7 (111)	0.77 0.62	1.08 1.13	0.82 0.89	1.01 1.04

- CI, more than S, has a pronounced weakening effect on grain boundary
- Formation of chlorides, more than sulfides, at the grain boundary may weaken the microstructure
- Objective: Find alloying elements, which already at low concentration
 - can be inserted into grain boundaries
 - compensate the detrimental role of CI and S
 - maintain electronic and thermo-mechanical properties of Cu

Microelectronics: Gate Stacks

Problem

Semiconductor devices

How can one reduce the power consumption?

Complementary Metal Oxide Semiconductor

Next-Generation CMOS Devices

- SiO₂ cannot be used at thicknesses less than 15 Å (leakage current is too high)
- \blacktriangleright HfO₂ is replacement for SiO₂ as a dielectric
- A critical design parameter is the work function of the metal – which metallic material should be used so that it can be tuned for PMOS and CMOS devices?

HfO₂/Ru/TaN gate stack

ADVANCED FABRICATION PROCESSES FOR SUB-50 nm CMOS Muhammad Mustafa Hussain http://www.lib.utexas.edu/etd/d/2005/ hussainm51214/hussainm51214.pdf

Complete Gate Stack Model

Modeling the TiN/HfO₂ Interface

Construction of Surface Models

- 1. Define low-index Miller planes
- 2. Cut crystal with various surface terminations
- 3. Create slab models containing multiples of (HfO₂) units with identical upper and lower surfaces

Finding Stable Surfaces of HfO₂

Stable Surface of HfO₂

Relaxed HfO_2 (111) surface

Computation of Interface Structure

HfO₂(-111)/TiN(111) Interface

1. Find supercell and orientation with best match of $HfO_2(-111)$ and TiN(111) surfaces using MedeA-Interface builder

2. Create thin slab of HfO_2 surface

3. Deposit thin layer of TiN

4. Perform simulated annealing keeping bottom layers of oxide frozen

unrelaxed

5. Add more layers of HfO_2 and TiN and relax all atoms in the system

Interface remains abrupt with some relaxation of O towards Ti and N towards Hf

annealed and relaxed

Annealing of TiN Film on HfO₂ Surface

Structure of Interface

[©] Materials Design, Inc. 2014

Local Structure at Interface

HfO₂/TiN Effective Work Function

Experiments showed increase of EWF after annealing of stack under oxygen atmosphere

Interpretation: oxygen inside TiN increase the work function

Reference: Hinkle et al., Appl. Phys. Lett. 96, 103502 (2010), cooperation TI & MD

HfO₂/TiN Effective Work Function

© Materials Design, Inc. 2014

Interface HfO₂/TiN

APPLIED PHYSICS LETTERS 96, 103502 (2010)

Interfacial oxygen and nitrogen induced dipole formation and vacancy passivation for increased effective work functions in TiN/HfO₂ gate stacks

C. L. Hinkle,^{1,2,a)} R. V. Galatage,² R. A. Chapman,² E. M. Vogel,^{1,2} H. N. Alshareef,³ C. Freeman,⁴ E. Wimmer,⁴ H. Niimi,⁵ A. Li-Fatou,⁵ J. B. Shaw,⁵ and J. J. Chambers⁵ ¹Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA ²Department of Electrical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA ³King Abdullah University of Science & Technology, Thuwal 23955-6900, Saudi Arabia ⁴Materials Design, Incorporated, Angel Fire, New Mexico 87710, USA ⁵Advanced CMOS, Texas Instruments Incorporated, Dallas, Texas 75243, USA

(Received 20 November 2009; accepted 14 February 2010; published online 9 March 2010)

Effective work function (EWF) changes of TiN/HfO₂ annealed at low temperatures in different ambient environments are correlated with the atomic concentration of oxygen in the TiN near the metal/dielectric interface. EWF increases of 550 meV are achieved with anneals that incorporate oxygen throughout the TiN with $[O]=2.8 \times 10^{21}$ cm⁻³ near the TiN/HfO₂ interface. However, further increasing the oxygen concentration via more aggressive anneals results in a relative decrease of the EWF and increase in electrical thickness. First-principles calculations indicate the exchange of O and N atoms near the TiN/HfO₂ interface cause the formation of dipoles that increase the EWF. © 2010 American Institute of Physics. [doi:10.1063/1.3353993]

Schottky-Barriers

Importance

Reduction of power consumption of electronic devices is a global imperative.

In complementary metal oxide semiconductor (CMOS) devices some parts of the resistance are reduced by scaling to smaller sizes, but not the contact resistance at the source and drain. This contact resistance is becoming a critical bottleneck.

- The contact resistance is controlled by the Schottky barrier (SB) at the interface between the metallic (NiSi) and semiconducting (doped Si) regions.
- The critical interface can be simulated on the atomistic scale providing detailed understanding and guidance to innovative solutions.

Zooming in with MedeA®

Simulating Formation of SB

Metal (NiSi)

Semiconductor (Si)

Simulating Formation of SB

MedeA[®]-VASP Provides the Answers

MedeA[®]-VASP Provides the Answers

Preferred Location of Dopants

Tuning of SBH

APPLIED PHYSICS LETTERS 86, 062108 (2005)

Tuning of NiSi/Si Schottky barrier heights by sulfur segregation during Ni silicidation

Q. T. Zhao

Institut für Schichten und Grenzflächen (ISG1-IT), and Center of Nanoelectronic Systems for Information Technology (CNI), Forschungszentrum Jülich, 52425 Jülich, Germany

U. Breuer

Zentralabteilung für Chemische Analysen (ZCH), Forschungszentrum Jülich, 52425 Jülich, Germany

E. Rije, St. Lenk, and S. Mantl

Institut für Schichten und Grenzflächen (ISG1-IT), and Center of Nanoelectronic Systems for Information Technology (CNI), Forschungszentrum Jülich, 52425 Jülich, Germany

(Received 27 September 2004; accepted 14 December 2004; published online 2 February 2005)

The Schottky barrier height (SBH) of NiSi on Si(100) was tuned in a controlled manner by the segregation of sulfur (S) to the silicide/silicon interface. S was implanted into silicon prior to silicidation. During subsequent Ni silicidation, the segregation of S at the NiSi/Si interface leads to the change of the SBH. The SBH of NiSi decreased gradually on n-Si(100) from 0.65 eV to 0.07 eV and increased correspondingly on p-Si(100). © 2005 American Institute of Physics. [DOI: 10.1063/1.1863442]

FIG. 1. XTEM image of a NiSi layer formed at 550 °C for 1 min on the n-Si(100) substrate implanted with 15 keV, $2 \times 10^{14} \text{ S}^+/\text{cm}^2$ prior to Ni deposition.

FIG. 6. SBH values of NiSi on n-Si(100) as a function of the concentration of the S atoms segregated at the NiSi/n-Si(100) interface.

Business Relevance

(19) United States

(12) Patent Application Publication YAMAUCHI et al. (10) Pub. No.: US 2009/0134388 A1 (43) Pub. Date: May 28, 2009

(57)

(54) SEMICONDUCTOR DEVICE AND FABRICATION METHOD OF SAME

(75) Inventors: Takashi YAMAUCHI, Kanagawa (JP); Yoshifumi Nishi, Kanagawa (JP); Yoshinori Tsuchiya, Kanagawa (JP); Junji Koga, Kanagawa (JP); Koichi Kato, Kanagawa (JP)

> Correspondence Address: OBLON, SPIVAK, MCCLELLAND MAIER & NEUSTADT, P.C. 1940 DUKE STREET ALEXANDRIA, VA 22314 (US)

(73)	Assignee:	KABUSHIKI KAISHA TOSHIBA, Tokyo (JP)	
(21)	Appl. No.:	12/203,409	
(22)	Filed:	Sep. 3, 2008	
(30)	0) Foreign Application Priority Data		
Nov. 26, 2007		(JP) 2007-304572	

Publication Classification

(51)	Int. Cl. H01L 29/08 H01L 21/06	(2006.01) (2006.01)
(52)	U.S. Cl	257/42 ; 438/102; 257/E21.068; 257/E29.029

ABSTRACT

A semiconductor device having a metal insulator semiconductor field effect transistor (MISFET) with interface resistance-reduced source/drain electrodes is disclosed. This device includes a p-type MISFET formed on a semiconductor substrate. The p-MISFET has a channel region in the substrate, a gate insulating film on the channel region, a gate electrode on the gate insulating film, and a pair of laterally spaced-apart source and drain electrodes on both sides of the channel region. These source/drain electrodes are each formed of a nickel (Ni)-containing silicide layer. The p-MIS-FET further includes an interface layer which is formed on the substrate side of an interface between the substrate and each source/drain electrode. This interface layer contains magnesium (Mg), calcium (Ca) or barium (Ba) therein. A fabrication method of the semiconductor device is also disclosed.

> **[0018]** FIG. **47** is a graph showing SBH calculation results. Its lateral axis indicates the energy of an electron whereas the longitudinal axis indicates the local density of states (LDOS). For comparison purposes, calculation values in the case of an impurity segregation layer being absent are also shown in this graph. As apparent from FIG. **47**, in case a B atom entered to Case 2, SBH is lowered by 0.3 eV. This is ascertainable by measurement of the current-voltage characteristics of a NiSi/ Si Schottky junction, which was formed for calculation of the values shown in FIG. **47**.

Electrical Conductivity in Disordered Materials

Cu_{1-x}Au_x: Intermetallic Phases

- wide range of solubility
- ordered and disordered phases

ordered cubic phases (InfoMaticA):

- ordered phases from literature (InfomaticA) and cluster expansion (CE)
- disordered phases modeled as special quasi-random structure (SQS)
 - mimic first few correlation functions of perfectly random structures

Cu_{1-x}Au_x: Ordered Structures

ordered cubic phases (InfoMaticA):

Cu₃Au

CuAu

CuAu₃

ordered tetragonal phases from cluster expansion (CE):

CuAu₈

© Materials Design, Inc. 2014

Cu_{1-x}Au_x: Electrical Resistivities

- ordered phases show systematically reduced electrical resistivities as compared to disordered alloys
- very good agreement of calculated data with experimental findings

Computational Design and Experimental Verification of Zero- and Low-strain Cathode Materials for Solid-State Li-ion batteries

<u>Fabio Rosciano</u>¹, Mikael Christensen², Volker Eyert², Alexander Mavromaras², Erich Wimmer²

¹Toyota Motor Europe, Advanced Technology 1, Hoge Wei 33, Zaventem, Belgium ²Materials Design S.A.R.L., Montrouge, France

- Volume change of electrodes on charge/discharge major cause of degradation of Li-ion batteries
 - stress generated at grain interfaces leads to destruction of solid-state batteries
- Use atomistic simulations to find high-voltage zerostrain cathode materials

focus on compounds with spinel structure, start from LiMn₂O₄

presented at: International Battery Association, Brisbane March 2014

Optimization Strategy

© Materials Design, Inc. 2014

- Calculate volume for Li_xM₂O₄ with x=0,0.5,1 (M=Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu)
- Interpolate using 2nd degree polynomial
- Only Mg would allow for efficient volume change compensation
- Choose three components
 - Mn to provide structural stability
 - Mg to reduce volume change
 - Cr to compensate for electrochemical inactivity of Mg

F. Rosciano, M. Christensen, V. Eyert, A. Mavromaras, E. Wimmer, IBA 2014

Calculated volume change for the optimized compositions

Result

- $\text{LiMn}_{0.14}\text{Cr}_{1.43}\text{Mg}_{0.43}\text{O}_4$ with projected $\Delta V = 0\text{\AA}^3$
- $\text{LiMn}_{1.1}\text{Cr}_{0.5}\text{Mg}_{0.4}\text{O}_4$ with projected $\Delta V = 3\text{\AA}^3$
- $\text{LiMn}_{0.59}\text{Cr}_{1.21}\text{Mg}_{0.2}\text{O}_4$ with projected $\Delta V = 8\text{\AA}^3$
- Benchmark: $LiMn_{1.5}Ni_{0.5}O_4$ with $\Delta V = 30$ Å³

- Choose three components
 - Mn to provide structural stability
 - Mg to reduce volume change
 - Cr to compensate for electrochemical inactivity of Mg
- Mix according to three different principles
 - free optimization to obtain true zero-strain material
 - optimization constraining Mn content ≥ 1
 - optimization constraining Mg content ≤ 0.2

F. Rosciano et al., IBA 2014

- LiMn_{1.1}Cr_{0.5}Mg_{0.4}O₄ could be synthesized in mostly pure form
- LiMn_{1.1}Cr_{0.5}Mg_{0.4}O₄ used to build electrochemical cells to study volume change on delithiation
- Measured volume change on lithiation/delithiation of LiMn_{1.1}Cr_{0.5}Mg_{0.4}O₄ in the range of 4Å³

F. Rosciano et al., IBA 2014

Summary and Perspectives

Summary

- DFT has become a standard in materials research
- A vast variety of properties can be calculated including
 - structural, mechanical, thermodynamic, kinetic, electronic, optical, and magnetic properties
- Illustrative examples including
 - H storage and diffusion in Ni
 - Fracture at Zr grain boundaries
 - Embrittlement of Cu microstructures
 - Effective work function at the TiN/HfO₂ interface
 - Schottky barriers (with impurities)
 - Electrical conductivity of disordered intermetallics
 - Low-strain cathode materials

Perspectives

Current development efforts

- Simulation of alloys, e.g. ordering effects in Cu_{1-x}Au_x, In_{1-x}Ga_xAs
- Simulation of electronic and thermal conductivity
- Combined quantum mechanical and forcefield simulations
 - Automated forcefields from quantum mechanical calculations
 - Modeling kinetics
 - Diffusion and segregation during processing and during operation
- Efficient use of large-scale computers
 - Automation of simulation protocols (Flowcharts)
 - Automated analysis of computed results
 - BIG DATA, Materials Genome Initiative
- Combination with other engineering simulation software

Better materials with better simulations

www.materialsdesign.com

© Materials Design, Inc. 2014

© Materials Design, Inc., 20193.