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Materials Design, Inc. Company Profile 

!   Founded by scientists in 1998 

! Over 400 customers in industry, universities, and government 
laboratories including over 50 major companies worldwide 

!   Products: MedeA® software, support and consulting services 

! Global: Offices in San Diego, Angel Fire, Paris and Stockholm 

! Business partners: Japan, Korea, China, Taiwan, Singapore, and India  

! Core competence in 
•  Computational chemistry & physics 
•  Materials science & chemical engineering  
•  Materials property databases & software engineering  
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 Customers 
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Energy	  	   Metals	  &	  
Alloys	   Chemicals	   Oil	  &	  Gas	  

Electronics	   Automo8ve	  &	  	  
Aerospace	  

Glass	  &	  
Ceramics	  

Mining	  &	  
Drilling	  

Universi8es	  and	  Government	  R&D	  Laboratories	  
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 Customers 
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12 world largest companies by revenue  



Products and Services 

! MedeA® software 
•  Comprehensive atomistic modeling environment with leading technology 
•  Installation, training, online support, and maintenance 
•  Scientific/technological interactions 
•  Yearly users group meetings (Philadelphia, Oct 21-23, 2014)  

!   Contract research 
•  Solution of specific industrial problems 
•  Leverages expertise and resources of MD’s scientists 
•  Publicly funded programs 

!   Technology partnerships 
•  Development of customized modeling capabilities (e.g. Toyota) 
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 Technology Positioning 
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Goal of Atomistic Simulations 

8 © Materials Design, Inc. 2014 

Understanding on 
the level of electrons 

and atoms 

Prediction of 
materials properties of 

engineering value 

MedeA®: Software for Efficient R&D   



Materials Exploration and Design 
Analysis 

© Materials Design, Inc. 2014 9 



 MedeA® Software 
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ICSD NIST Crystal Data Computed 

C O M P U T A T I O N   O F   P R O P E R T I E S 

Experimental and Computed Structure and Property Data 

ab initio QM - VASP 

Mechanical        Thermal        Chemical        Kinetic        Electric        Optic        Magnetic 

D A T A B A S E S 

M O D E L I N G   &   A N A L Y S I S 

Pearson Pauling 

Monte Carlo - GIBBS Mol. dynamics - LAMMPS 

Job Server 

Task Servers 

Builders: crystals, defects, interfaces, surfaces, 
molecules, nanostructures, polymers, amorphous 

materials 

Analysis: geometry, band structures  and DOS, 
electron and spin density, potential, Fermi surface, 
phonons, transition states, dynamics trajectories 

Semi-empirical - MOPAC 



Electronic Properties  
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 Accurate Band Structures 

Note: Standard LDA or GGA predicts Ge to be metallic 
© Materials Design, Inc. 2014 12 



 Accuracy of Computed Band Gaps 
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Performance of VASP 5.2 as reviewed by 
J. Hafner, J. Phys.: Condens. Matter 22, 384205 (2010) 



 Design of III-V Alloys 
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!   Which III-V alloy has a band gap around 0.5 eV and the largest Γ-L separation? 



Computations: Source of Reliable Data 

Geller et al., Appl. Phys. Lett. 79, 368 (2001) 

Band structure engineering 
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Elastic Properties, Phonons 
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 Aluminum Nitride 
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Wurtzite 

Zincblende 

Rocksalt 



 Aluminum Nitride 
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(GPa) Expt1 Expt2 Calculated 
C11 345 411 375 

C12 125 149 130 

C13 120 99 100 

C33 395 389 347 

C44 118 125 113 

C66 110 131 122 

B 202 212 195 

1. K.Tsubouchi, N. Mikoshiba, IEEE Trans. Sonics Ultrason. SU-32, 634 (1985) 

2. L.E. McNeil, M. Grimsditch, R.H. French, J. Am. Ceram. Soc. 76, 1132 (1993) 



Reliability of Computed Properties 
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Reliability of Computed Properties 
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Analyze Phonons of Graphene 

Phonon dispersions 
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Hydrogen Storage 
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Hydrogen in LaNi5Hn and LaCo5Hn 
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Herbst, Hector, Appl. Phys. Lett. 85, 3465 (2004) 



Hydrogen in LaNi5Hn and LaCo5Hn 

!   Enthalpy of hydride 
formation in LaNi5Hn 

•  ΔH (LaNi5Hn) = E (LaNi5Hn)   – 
E(LaNi5) – ½ n E(H2) 

•  ΔHmin = - 40 kJ/molH2 for H at 
2b6c16c2 

•  agrees with  
−  neutron data  

−  calorimetry:  

     ΔHmin = - (32/37) kJ/molH2  

24 © Materials Design, Inc. 2014 

Herbst, Hector, Appl. Phys. Lett. 85, 3465 (2004) 



Hydrogen in LaNi5Hn and LaCo5Hn 

!   Enthalpy of hydride 
formation in LaCo5Hn 

•  ΔH (LaCo5Hn) = E (LaCo5Hn)   
– E(LaCo5) – ½ n E(H2) 

•  ΔHmin = - 45.6 kJ/molH2 for H 
at 4e4h 

•  agrees with  
−  neutron data  

−  calorimetry:  

     ΔHmin = - 45.2 kJ/molH2  
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Herbst, Hector, Appl. Phys. Lett. 85, 3465 (2004) 



 Diffusion of H in Ni 
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 Diffusion Coefficients 

1. Transition state approach 

!   Compute initial and final structures (minimization) 

!   Search transition state (TSS) 

!   Compute phonon dispersion and phonon density of states 

!   Apply Eyring’s transition state theory to get jump rates 

!   Use kinetic Monte Carlo for networks 

2. Mean square displacement (MSD) from molecular dynamics 
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Diffusion of Interstitial Impurities 
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Diffusion of Interstitial Impurities 
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Diffusion of Interstitial Impurities 
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Diffusion of Interstitial Impurities 
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Diffusion of Interstitial Impurities 
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Diffusion of Interstitial Impurities 
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Diffusion of Interstitial Impurities 
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Diffusion of Interstitial Impurities 
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Diffusion of Interstitial Impurities 
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Diffusion of Interstitial Impurities 
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The diffusion coefficient of H in Ni 
computed from first-principles has 
similar accuracy as experimental 
data at ambient and medium 
temperatures 
 
Isotope effects are well explained 
and quantitatively described 
 
Computational approach: 
Eyring transition state theory 
Ab initio phonons for entire supercell 
thermal expansion from quasi 
harmonic approximation 

Diffusion: Hydrogen in Ni 

E. Wimmer, W. Wolf, J. Sticht, P. Saxe, C. B. 
Geller, R. Najafabadi, and G. A. Young, 
“Temperature-dependent diffusion coefficients 
from ab initio computations: Hydrogen, 
deuterium, and tritium in nickel”, Phys. Rev. B 
77, 134305 (2008) 
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Grain Boundaries 
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Fracture in Zr 

Intergranular cracking more prevalent 
as both temperature and  
iodine concentration increased 

Possible mechanism: 
 
Iodine in grain boundary diffuses to 
crack tip and lowers work of separation 
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Maximum Stress 

with additive 
without  

with additive 
without                

Grain boundary 
of hcp metal 
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Alloying Atoms at Interfaces 
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Grain 1 Grain 2 hcp - Zr 

Zr(0001)/Zr(0001) Σ7 
twist grain boundary 
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Alloying Atoms at Interfaces 

43 

Grain 1 Grain 2 hcp - Zr 

Zr(0001)/Zr(0001) S7 
twist grain boundary 
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Zr GB and Surface Segregation 
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Impurity prefers 
bulk 

 

Impurity prefers 
surface 

 

Zr grain boundary 
Impurity prefers 

bulk 
 

Impurity prefers 
grain boundary 

 Same preference of elements bulk - GB 

Zr surface 

Substitutional 
Interstitial 

Adatoms 
Substitutional 
Interstitial 
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Cleavage of Zr Grain Boundaries 
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Cleavage energy of pure Zr along (0001) plane 3.15 J m-2 
Cleavage energy of Zr along Σ7(0001) grain boundary 2.86 J m-2 

transgranular intergranular 

Computed work of separation 
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Effect of Impurities 
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Change in work of separation of Zr grain boundary by impurities 
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Embrittlement in Cu Micro-
Structures 
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•  improve strength and ductility of Cu 
microstructures  

•  introduce additives to reduce grain 
size (Hall-Petch effect) J 

•  additives cause embrittlement at 
elevated temperatures L  



Stress-Strain in Cu Microstructures 
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•  (a, b, c) sample type A (annealed at 673 K, medium grain size 2.7 ± 0.6 µm)  
•  (d) sample type A after additional annealing at 1073 K (15 ± 5 µm)  
•  (e, f, g) sample type B (10.1 ± 2.6 µm) 

different additives in 
samples A and B! 



Stress-Strain in Cu Microstructures 
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293 K: coarse-grained à fine-grained   
•  yield stress and ultimate stress increase 
•  changes explained by Hall-Petch effect 

sample type A 
(fine-grained)  

sample type B 
(coarse-grained)  

473 K and 673 K:   
•  drastic reduction of elongation to fracture 

for fine-grained samples 
•  scattering of results for coarse-grained 

structures due to small number of grains 

different additives in samples A and B! 



Stress-Strain in Cu Microstructures 
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fine-grained samples A:  
•  strong plastic deformation  
•  grain-boundary embrittlement at 

elevated temperatures 

coarse-grained samples B:   
•  glide steps across grains  
•  same morphology for all 

temperatures 

293 K 473 K 673 K 

673 K 673 K 

473 K 293 K 



Stress-Strain in Cu Microstructures 
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•  higher S, Cl content in fine-grained samples (additives)  
•  O, S, Cl enrichment at grain boundaries 
•  segregation of O, S, Cl to grain boundaries and surfaces  

sample type A 
(fine-grained)  

sample type B 
(coarse-grained)  

Atomistic Simulations 
1. understand grain 

boundary and surface 
segregation; compute 
segregation energies 

2. understand grain 
boundary weakening 
due to S and Cl  

3. find elements which 
could compensate the 
detrimental effect of S 
and Cl but maintain 
the electronic and 
thermo-mechanical 
properties of Cu 



Stress-Strain in Cu Microstructures 
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Cl and S have strong tendency to 
segregate from the bulk to the GB 
and, even more so, to the surface 



Stress-Strain in Cu Microstructures 
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•  Cl, more than S, has a pronounced weakening effect on grain boundary 
•  Formation of chlorides, more than sulfides, at the grain boundary may 

weaken the microstructure 
•  Objective: Find alloying elements, which already at low concentration 

•  can be inserted into grain boundaries 
•  compensate the detrimental role of Cl and S 
•  maintain electronic and thermo-mechanical properties of Cu 



Microelectronics: Gate Stacks 
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Problem 

56 

Complementary Metal Oxide Semiconductor 

Source Drain 

Gate  metal 

oxide 

MOS 

semiconductor 

doped semiconductor 

metal/semiconductor 
interface 

45 nm and less 

Semiconductor devices 
!   How can one reduce the power consumption? 
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Next-Generation CMOS Devices 
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! SiO2 cannot be used at thicknesses 
less than 15 Å (leakage current is too high) 

! HfO2 is replacement for SiO2 as a dielectric 

! A critical design parameter is the work 
function of the metal – which metallic 
material should be used so that it can be 
tuned for PMOS and CMOS devices? 

ADVANCED FABRICATION PROCESSES  FOR SUB-50 nm CMOS 
Muhammad Mustafa Hussain 
http://www.lib.utexas.edu/etd/d/2005/ 
hussainm51214/hussainm51214.pdf 
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Complete Gate Stack Model 

!   Scientific and technological context 

Si SiO2 HfO2 TiN Al 

1.7nm 1.5nm 1.4nm 1.2nm 
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 Modeling the TiN/HfO2 Interface 
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Construction of Surface Models 

1.  Define low-index Miller planes 

2.  Cut crystal with various surface terminations 

3.  Create slab models containing multiples of (HfO2) units with 
identical upper and lower surfaces 

(100), (010),(001) (110), (101),(101) (111), (-111),(-1-11) 

© Materials Design, Inc. 2014 60 



Finding Stable Surfaces of HfO2 
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Stable Surface of HfO2 
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Computation of Interface Structure 

3. Deposit thin 
layer of TiN 

5. Add more layers 
of HfO2 and TiN 
and relax all atoms 
in the system 

Interface remains 
abrupt with some 
relaxation of O 
towards Ti and N 
towards Hf 

2. Create thin 
slab of HfO2 
surface 

4. Perform 
simulated 
annealing 
keeping 
bottom layers 
of oxide frozen 

1. Find supercell 
and orientation 
with best match 
of HfO2(-111) and 
TiN(111) surfaces 
using MedeA-
Interface builder 
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Annealing of TiN Film on HfO2 Surface 

HfO2 

TiN 
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Structure of Interface  

Some N atoms are 
displaced from 

octahedral TiN sites 

Ti layers nearly flat 
even at interface 

O atoms at interface 
remain close to positions 

at free surface 
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Local Structure at Interface  

N atom in 6-fold coordination 
migrated towards the interface 

O atom at 
interface in 3-fold 

coordination 
bonding Hf and Ti 

Hf atom at interface 
bonded to O and N 

O atom at 
interface in 4-fold 

coordination 
bonding Hf and Ti 
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 HfO2/TiN Effective Work Function 

!    
 

Reference: Hinkle et al., Appl. Phys. Lett. 96, 103502 (2010), cooperation TI & MD 

O in TiN N at interface 

Experiment                                              Simulation  
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!   Experiments showed 
increase of EWF after 
annealing of stack under 
oxygen atmosphere 

!   Interpretation: oxygen 
inside TiN increase the 
work function 

 



 HfO2/TiN Effective Work Function 

!    
 

Reference: Hinkle et al., Appl. Phys. Lett. 96, 103502 (2010), cooperation TI & MD 

O in TiN N at interface 

Experiment                                              Simulation  
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!   Nitrogen replacing oxgyen at the interface plays the key role 
 

•  Interfacial O fills 
vacancies in HfO2 

•  N builds up at 
interface 

•  O fills vacancies 
in TiN 



Interface HfO2/TiN  
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Schottky-Barriers 
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 Importance 

!   Reduction of power consumption of electronic devices is a global 
imperative. 

 

 

!   The contact resistance is controlled by the Schottky barrier (SB) at the 
interface between the metallic (NiSi) and semiconducting (doped Si) 
regions. 

!   The critical interface can be simulated on the atomistic scale providing 
detailed understanding and guidance to innovative solutions. 

!   In complementary metal oxide 
semiconductor (CMOS) devices some 
parts of the resistance are reduced by 
scaling to smaller sizes, but not the 
contact resistance at the source and drain. 
This contact resistance is becoming a 
critical bottleneck. contact resistance  
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 Zooming in with MedeA® 

!   Realistic atomic-scale model of critical 
interface obtained from ab initio total energy 
calculations revealing bonding mechanisms 

NiSi Si 

Si 

Ni 
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 Simulating Formation of SB 

73 

Fermi level 

Density of states 

Metal (NiSi) Semiconductor (Si) 
E

ne
rg

y 

Density of states 

Band gap 

conduction band 

valence band 
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 Simulating Formation of SB 
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Fermi level 

Density of states Density of states 

Band gap 

conduction band 

valence band 

Metal (NiSi) Semiconductor (Si) 
E

ne
rg

y SBH 

!   What is the structure of the 
interface? 

!   What is the value of the SBH? 

!   What is the influence of 
dopants? 

Schottky barrier height 
(SBH) 
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 MedeA®-VASP Provides the Answers 
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!   MedeA®-VASP 
provides 
detailed and 
reliable 
information on 
the structure 
and bonding of 
the interface 

!   MedeA®-VASP  
predicts the 
value of the SBH 
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 MedeA®-VASP Provides the Answers 
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!   MedeA®-VASP  
predicts the 
effect of dopants 
on the SBH 

!   MedeA®-VASP  
predicts core 
level shifts 

© Materials Design, Inc. 2014 



 Preferred Location of Dopants 
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S S S S 

least 
stable 

most 
stable 

!   MedeA®-VASP  
predicts the 
preferred 
locations of 
dopant atoms 
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Tuning of SBH 
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Business Relevance 
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Electrical Conductivity in 
Disordered Materials  
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Cu1-xAux: Intermetallic Phases 
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•  wide range of solubility 
•  ordered and disordered phases Cu3Au CuAu3 

•  ordered phases from literature (InfomaticA) and cluster expansion (CE) 
•  disordered phases modeled as special quasi-random structure (SQS) 

•  mimic first few correlation functions of perfectly random structures 

CuAu 

ordered cubic phases (InfoMaticA): 

disordered cubic phases (SQS): 



Cu1-xAux: Ordered Structures 
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Cu3Au CuAu3 

ordered tetragonal phases from cluster expansion (CE): 

CuAu 

ordered cubic phases (InfoMaticA): 

Cu9Au Cu3Au CuAu CuAu2 CuAu8 



Cu1-xAux: Electrical Resistivities 
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•  ordered phases show systematically reduced electrical resistivities 
as compared to disordered alloys 

•  very good agreement of calculated data with experimental findings  

Pecher, Haarmann, Nachr. Chem. 61, 1017 (2013);  
Riedel, Janiak, Anorg. Chem. (de Gruyter, Berlin 2007) 

disordered (SQS) 

ordered (CE) 

ordered (lit.) 



Low-Strain Cathode Materials  
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Low-Strain Cathode Materials 

presented at: International Battery Association, Brisbane March 2014 
© Materials Design, Inc. 2014 85 

!   Volume change of electrodes on charge/discharge 
major cause of degradation of Li-ion batteries 
•  stress generated at grain interfaces leads to destruction of 

solid-state batteries 

!   Use atomistic simulations to find high-voltage zero-
strain cathode materials  
•  focus on compounds with spinel structure, start from LiMn2O4 



Optimization Strategy 
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Low-Strain Cathode Materials 
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F. Rosciano, M. Christensen, V. Eyert, A. Mavromaras, E. Wimmer, IBA 2014 

!   Calculate volume for LixM2O4 
with x=0,0.5,1 (M=Mg, Al, V, 
Cr, Mn, Fe, Co, Ni, Cu) 

!   Interpolate using 2nd degree 
polynomial 

!   Only Mg would allow for 
efficient volume change 
compensation 

!   Choose three components 
•  Mn to provide structural stability 
•  Mg to reduce volume change 
•  Cr to compensate for electro-

chemical inactivity of Mg 



Low-Strain Cathode Materials 
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!   Choose three components 
•  Mn to provide structural stability 
•  Mg to reduce volume change 
•  Cr to compensate for electro-

chemical inactivity of Mg 

!   Mix according to three different 
principles 
•  free optimization to obtain true 

zero-strain material 
•  optimization constraining Mn 

content ≥ 1 
•  optimization constraining Mg 

content ≤ 0.2 

F. Rosciano et al., IBA 2014 

!   Result 
•  LiMn0.14Cr1.43Mg0.43O4 with projected ΔV = 0Å3 

•  LiMn1.1Cr0.5Mg0.4O4 with projected ΔV = 3Å3
 

•  LiMn0.59Cr1.21Mg0.2O4 with projected ΔV = 8Å3 

•  Benchmark: LiMn1.5Ni0.5O4 with ΔV = 30Å3  



Low-Strain Cathode Materials 
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!   LiMn1.1Cr0.5Mg0.4O4 could 
be synthesized in mostly 
pure form  

!   LiMn1.1Cr0.5Mg0.4O4 used 
to build electrochemical 
cells to study volume 
change on delithiation 

!   Measured volume change 
on lithiation/delithiation of 
LiMn1.1Cr0.5Mg0.4O4  in the 
range of 4Å3 

F. Rosciano et al., IBA 2014 



Summary and Perspectives  
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 Summary 

!   DFT has become a standard in materials research  

!   A vast variety of properties can be calculated including 
•  structural, mechanical, thermodynamic, kinetic, electronic, 

optical, and magnetic properties 

!   Illustrative examples including 
•  H storage and diffusion in Ni  
•  Fracture at Zr grain boundaries  
•  Embrittlement of Cu microstructures 
•  Effective work function at the TiN/HfO2 interface 
•  Schottky barriers (with impurities) 
•  Electrical conductivity of disordered intermetallics  
•  Low-strain cathode materials 
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Perspectives 

!   Current development efforts 
•  Simulation of alloys, e.g. ordering effects in Cu1-xAux, In1-xGaxAs 
•  Simulation of electronic and thermal conductivity  

!   Combined quantum mechanical and forcefield simulations 
•  Automated forcefields from quantum mechanical calculations 
•  Modeling kinetics  
•  Diffusion and segregation during processing and during operation 

!   Efficient use of large-scale computers 
•  Automation of simulation protocols (Flowcharts) 
•  Automated analysis of computed results 
•  BIG DATA, Materials Genome Initiative 

!   Combination with other engineering simulation software 
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Better materials with 
better simulations 

 

www.materialsdesign.com 
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