From Quantum Mechanics to Materials Design The Basics of Density Functional Theory

Volker Eyert

Center for Electronic Correlations and Magnetism Institute for Physics, University of Augsburg

July 29, 2010

.∋⇒

Formalism

- Definitions and Theorems
- Approximations

≣ । ⊀ ≣ ।

Formalism

- Definitions and Theorems
- Approximations

≣ । ⊀ ≣ ।

Definitions and Theorems Approximations

Formalism

- Definitions and Theorems
- Approximations

æ

(日) (圖) (E) (E)

Definitions and Theorems Approximations

Hamiltonian (within Born-Oppenheimer approximation)

$$H_0 = \sum_i \left[-\frac{\hbar^2}{2m} \nabla_i^2 \right] + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \sum_{\substack{i,j\\j\neq i}} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_i v_{ext}(\mathbf{r}_i)$$

where

Key Players

$$\sum_{i} v_{ext}(\mathbf{r}_{i}) = \frac{1}{2} \frac{e^{2}}{4\pi\epsilon_{0}} \sum_{\mu\nu \atop \mu\neq\nu} \frac{Z_{val,\mu}Z_{val,\nu}}{|\mathbf{R}_{\mu} - \mathbf{R}_{\nu}|} + \sum_{i} \left[\sum_{\mu} V_{ion-el}(\mathbf{r}_{i} - \mathbf{R}_{\mu}) \right]$$

 \mathbf{R}_{μ} : ionic positions, \mathbf{r}_i : positions of electrons $Z_{val,\mu}$: number of valence electrons provided by μ 'th ion

< □ > < 同 > < 回 > < 回 > < 回 >

Definitions and Theorems Approximations

Electron Density Operator

Key Players

$$\hat{\rho}(\mathbf{r}) = \sum_{\sigma} \hat{\rho}_{\sigma}(\mathbf{r}) = \sum_{\sigma} \sum_{\alpha\beta} \chi^{*}_{\alpha;\sigma}(\mathbf{r}) \chi_{\beta;\sigma}(\mathbf{r}) \mathbf{a}^{+}_{\alpha} \mathbf{a}_{\beta}$$
$$= \sum_{\sigma} \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_{i}) \delta_{\sigma\sigma_{i}}$$

 χ_{α} : single particle state

æ

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Definitions and Theorems Approximations

Electron Density

Key Players

$$\rho(\mathbf{r}) = \sum_{\sigma} \rho_{\sigma}(\mathbf{r}) = \sum_{\sigma} \langle \Psi | \hat{\rho}_{\sigma}(\mathbf{r}) | \Psi \rangle = \sum_{\sigma} \sum_{\alpha} |\chi_{\alpha;\sigma}(\mathbf{r})|^2 n_{\alpha}$$

 $|\Psi\rangle$: many-body wave function χ_{α} : single particle state n_{α} : occupation number

ground state, non-interacting particles: $|\Psi\rangle \rightarrow$ Slater determinant, $n_{\alpha} = 0, 1$

normalization:

$$N[\rho] = \int d^3 \mathbf{r} \ \rho(\mathbf{r}) = N$$

Definitions and Theorems Approximations

Electron Density

Key Players

$$\rho(\mathbf{r}) = \sum_{\sigma} \rho_{\sigma}(\mathbf{r}) = \sum_{\sigma} \langle \Psi | \hat{\rho}_{\sigma}(\mathbf{r}) | \Psi \rangle = \sum_{\sigma} \sum_{\alpha} |\chi_{\alpha;\sigma}(\mathbf{r})|^2 n_{\alpha}$$

Universal Functional

$$m{F} = \langle \Psi | m{H}_{el,\textit{kin}}(\{m{r}_i\}) + m{H}_{el-el}(\{m{r}_i\}) | \Psi
angle$$

Functional due to External Potential

$$\langle \Psi | \mathcal{H}_{ext}(\{\mathbf{r}_i\}) | \Psi
angle = \int d^3 \mathbf{r} \, v_{ext}(\mathbf{r})
ho(\mathbf{r})$$

(日) (圖) (E) (E)

æ

Density Functional Theory, Local Density Approx.

Pierre C. Hohenberg

Walter Kohn

Lu Jeu Sham

Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential $v_{ext}(\mathbf{r})$ is determined, apart from a trivial constant, by the electronic ground state density $\rho(\mathbf{r})$.

2nd Theorem

The total energy functional $E[\rho]$ has a minimum equal to the ground state energy at the ground state density.

Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential $v_{ext}(\mathbf{r})$ is determined, apart from a trivial constant, by the electronic ground state density $\rho(\mathbf{r})$.

2nd Theorem

The total energy functional $E[\rho]$ has a minimum equal to the ground state energy at the ground state density.

Nota bene

Both theorems are formulated for the ground state!

- Zero temperature!
- No excitations!

< ロ > < 同 > < 回 > < 回 >

Hohenberg and Kohn, 1964: Theorems

Maps

Ground state $|\Psi_0\rangle$ (from minimizing $\langle \Psi_0 | H_0 | \Psi_0 \rangle$):

$$v_{ext}(\mathbf{r}) \stackrel{(1)}{\Longrightarrow} |\Psi_0\rangle \stackrel{(2)}{\Longrightarrow} \rho_0(\mathbf{r})$$

< ロ > < 同 > < 回 > < 回 >

Hohenberg and Kohn, 1964: Theorems

Maps

Ground state $|\Psi_0\rangle$ (from minimizing $\langle \Psi_0 | H_0 | \Psi_0 \rangle$):

$$v_{ext}(\mathbf{r}) \stackrel{(1)}{\Longrightarrow} |\Psi_0\rangle \stackrel{(2)}{\Longrightarrow}
ho_0(\mathbf{r})$$

1st Theorem

$$v_{ext}(\mathbf{r}) \stackrel{(1)}{\longleftrightarrow} |\Psi_0\rangle \stackrel{(2)}{\longleftrightarrow} \rho_0(\mathbf{r})$$

< □ > < 同 > < 回 > < 回 > < 回 >

Levy, Lieb, 1979-1983: Constrained Search

Variational principle

$$E_{0} = \inf_{|\Psi\rangle} \langle \Psi | H_{0} | \Psi \rangle$$

$$= \inf_{|\Psi\rangle} \langle \Psi | H_{el,kin} + H_{el-el} + H_{ext} | \Psi \rangle$$

$$= \inf_{\rho(\mathbf{r})} \left[\inf_{|\Psi\rangle \in S(\rho)} \langle \Psi | H_{el,kin} + H_{el-el} | \Psi \rangle + \int d^{3}\mathbf{r} \ v_{ext}(\mathbf{r})\rho(\mathbf{r}) \right]$$

$$=: \inf_{\rho(\mathbf{r})} \left[F_{LL}[\rho] + \int d^{3}\mathbf{r} \ v_{ext}(\mathbf{r})\rho(\mathbf{r}) \right] = \inf_{\rho(\mathbf{r})} E[\rho]$$

 $S(\rho)$: set of all wave functions leading to density ρ $F_{LL}[\rho]$: Levy-Lieb functional, universal (independent of H_{ext})

< □ > < 同 > < 回 > < 回 > < 回 >

Levy, Lieb, 1979-1983: Constrained Search

Percus-Levy partition

Levy, Lieb, 1979-1983: Constrained Search

Levy-Lieb functional

$$F_{LL}[\rho] = \inf_{|\Psi\rangle \in S(\rho)} \langle \Psi | H_{el,kin} + H_{el-el} | \Psi \rangle$$

= $\underbrace{\mathcal{T}[\rho] + \mathcal{W}_{xc}[\rho]}_{=} + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3\mathbf{r} \int d^3\mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$
= $G[\rho] + \frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3\mathbf{r} \int d^3\mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$

Functionals

- Kinetic energy funct.: $T[\rho]$
- Exchange-correlation energy funct.: W_{xc}[ρ] not known!
- Hartree energy funct.: $\frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \int d^3 \mathbf{r} \int d^3 \mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$

not known!

known

Formalism Defi Applications App

Definitions and Theorems Approximations

Thomas, Fermi, 1927: Early Theory

Approximations

• ignore exchange-correlation energy functional:

$$W_{xc}[\rho] \stackrel{!}{=} 0$$

• approximate kinetic energy functional:

$$\mathcal{T}[
ho] = C_{F} \int d^{3}\mathbf{r} \, \left(
ho(\mathbf{r})
ight)^{rac{5}{3}} \, , \qquad C_{F} = rac{3}{5} \, rac{\hbar^{2}}{2m} \left(3\pi^{2}
ight)^{rac{2}{3}}$$

Failures

- atomic shell structure missing → periodic table can not be described
- no-binding theorem (Teller, 1962)

Kohn and Sham, 1965: Single-Particle Equations

Test-Case: Non-Interacting Electrons

$$E[\rho] = T_0[\rho] + \int d^3 \mathbf{r} \, v_{ext}(\mathbf{r})\rho(\mathbf{r})$$

$$\rho_0(\mathbf{r}) = \sum_{\sigma} \sum_{\alpha}^{occ} |\chi_{\alpha;\sigma}(\mathbf{r})|^2$$

$$T_0[\rho] = \sum_{\sigma} \sum_{\alpha}^{occ} \int d^3 \mathbf{r} \; \chi^*_{\alpha;\sigma}(\mathbf{r}) \left[-\frac{\hbar^2}{2m} \nabla^2 \right] \chi_{\alpha;\sigma}(\mathbf{r})$$

< □ > < @ > <

Kohn and Sham, 1965: Single-Particle Equations

Test-Case: Non-Interacting Electrons

$$E[
ho] = T_0[
ho] + \int d^3 \mathbf{r} \, v_{ext}(\mathbf{r})
ho(\mathbf{r})$$

Euler-Lagrange Equations

 $\delta \gamma$

$$\frac{\delta \boldsymbol{E}[\rho]}{\delta \rho} - \mu = \frac{\delta T_0[\rho]}{\delta \rho} + \boldsymbol{v}_{\text{ext}}(\mathbf{r}) - \mu \stackrel{!}{=} \mathbf{0}$$
$$\frac{\delta \boldsymbol{E}[\rho]}{\zeta_{\alpha;\sigma}^*(\mathbf{r})} - \varepsilon_{\alpha} \chi_{\alpha;\sigma}(\mathbf{r}) = \left[-\frac{\hbar^2}{2m} \nabla^2 + \boldsymbol{v}_{\text{ext}}(\mathbf{r}) - \varepsilon_{\alpha} \right] \chi_{\alpha;\sigma}(\mathbf{r}) \stackrel{!}{=} \mathbf{0}$$

 μ : charge conservation, "chemical potential" ε_{α} : orthonormalization, "single-particle energies"

< □ > < 同 > < 回 > < 回 > < 回 >

Formalism Define Applications Appli

Definitions and Theorems Approximations

Kohn and Sham, 1965: Single-Particle Equations

Interacting Electrons

- reintroduce single-particle wave functions
- 2 use different splitting of the functional $G[\rho]$

$$T[\rho] + W_{xc}[\rho] = G[\rho] \stackrel{!}{=} T_0[\rho] + E_{xc}[\rho]$$

 $T_0[\rho]$ is known, $E_{xc}[\rho]$ is not known!

.∋⇒

Kohn and Sham, 1965: Single-Particle Equations

Interacting Electrons

$$T[\rho] + W_{xc}[\rho] = G[\rho] \stackrel{!}{=} T_0[\rho] + E_{xc}[\rho]$$

 $T_0[\rho]$ is known, $E_{xc}[\rho]$ is not known!

Euler-Lagrange Equations

$$\frac{\delta E[\rho]}{\delta \rho} - \mu = \frac{\delta T_0[\rho]}{\delta \rho} + \underbrace{v_{ext}(\mathbf{r}) + v_H(\mathbf{r}) + v_{xc}(\mathbf{r})}_{v_{eff}(\mathbf{r})} - \mu \stackrel{!}{=} 0$$
$$v_{xc}(\mathbf{r}) := \frac{\delta E_{xc}[\rho]}{\delta \rho}$$

 μ : charge conservation, "chemical potential"

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Kohn and Sham, 1965: Single-Particle Equations

Interacting Electrons

$$T[\rho] + W_{xc}[\rho] = G[\rho] \stackrel{!}{=} T_0[\rho] + E_{xc}[\rho]$$

 $T_0[\rho]$ is known, $E_{xc}[\rho]$ is not known!

Euler-Lagrange Equations (Kohn-Sham Equations)

$$\frac{\delta E[\rho]}{\delta \chi^*_{\alpha;\sigma}(\mathbf{r})} - \varepsilon_{\alpha} \chi_{\alpha;\sigma}(\mathbf{r}) = \left[-\frac{\hbar^2}{2m} \nabla^2 + v_{\text{eff}}(\mathbf{r}) - \varepsilon_{\alpha} \right] \chi_{\alpha;\sigma}(\mathbf{r}) \stackrel{!}{=} 0$$

$$\mathbf{v}_{\text{eff}}(\mathbf{r}) := \mathbf{v}_{\text{ext}}(\mathbf{r}) + \mathbf{v}_{H}(\mathbf{r}) + \mathbf{v}_{\text{xc}}(\mathbf{r}) , \qquad \mathbf{v}_{\text{xc}}(\mathbf{r}) := rac{\delta E_{\text{xc}}[
ho]}{\delta
ho}$$

 ε_{α} : orthonormalization, "single-particle energies"

Kohn and Sham, 1965: Local Density Approximation

Be Specific!

Approximate exchange-correlation energy functional

$$\mathsf{E}_{\mathsf{xc}}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{\mathsf{xc}}(\rho(\mathbf{r})) d^3 \mathbf{r}$$

- Exchange-correlation energy density $\varepsilon_{xc}(\rho(\mathbf{r}))$
 - depends on local density only!
 - is calculated from homogeneous, interacting electron gas
- Exchange-correlation potential

$$\mathbf{v}_{\mathbf{xc}}(\rho(\mathbf{r})) = \left[\frac{\partial}{\partial \rho} \left\{\rho \varepsilon_{\mathbf{xc}}(\rho)\right\}\right]_{\rho = \rho(\mathbf{r})}$$

Kohn and Sham, 1965: Local Density Approximation

Homogeneous, Interacting Electron Gas

Split

$$\varepsilon_{\mathbf{xc}}(\rho) = \varepsilon_{\mathbf{x}}(\rho) + \varepsilon_{\mathbf{c}}(\rho)$$

 Exchange energy density ε_x(ρ) (exact for homogeneous electron gas)

$$\varepsilon_{\mathbf{x}}(\rho) = -\frac{3}{4\pi} \frac{e^2}{4\pi\epsilon_0} (3\pi^2 \rho)^{\frac{1}{3}}$$
$$v_{\mathbf{x}}(\rho) = -\frac{1}{\pi} \frac{e^2}{4\pi\epsilon_0} (3\pi^2 \rho)^{\frac{1}{3}}$$

- Correlation energy density ε_c(ρ)
 Calculate and parametrize
 - RPA (Hedin, Lundqvist; von Barth, Hedin)
 - QMC (Ceperley, Alder; Vosko, Wilk, Nusair; Perdew, Wang)

Kohn and Sham, 1965: Local Density Approximation

Limitations and Beyond

- LDA exact for homogeneous electron gas (within QMC)
- Spatial variation of ρ ignored
 - \rightarrow include $\nabla \rho(\mathbf{r}), \dots$
 - → Generalized Gradient Approximation (GGA)
- Cancellation of self-interaction in $v_{Hartree}(\rho(\mathbf{r}))$ and $v_x(\rho(\mathbf{r}))$ violated for $\rho = \rho(\mathbf{r})$
 - → Self-Interaction Correction (SIC)
 - → Exact Exchange (EXX), Optimized Effective Potential (OEP)
 - \rightarrow Screened Exchange (SX)

Kohn/Sham Equations in Practice

DFT Implementations

EVV 1997-2000

Outline

- Definitions and Theorems
- Approximations

æ

E ► < E ►</p>

____▶

Calculated Electronic Properties

Moruzzi, Janak, Williams (IBM, 1978)

Fermi Surface of MoO₂

ARPES vs. DFT(LDA)

ヘロア 人間ア 人間ア 人間ア

Moosburger *et al.*, PRB **79**, 115113 (2009)

Dielectric Function of Al₂O₃ Imaginary Part

Volker@Eyert.de From Quantum Mechanics to Materials Design

Dielectric Function of Al₂O₃ Real Part

Volker@Eyert.de From Quantum Mechanics to Materials Design

Energy band structures from screened HF exchange

Si, AIP, AIAs, GaP, and GaAs

Experimental and theoretical bandgap properties

Shimazaki, Asai, JCP **132**, 224105 (2010)

Hydrogen site energetics in LaNi₅H_n and LaCo₅H_n

Enthalpy of hydride formation in LaNi5Hn

 $\Delta H_{min} = -40 \text{kJ/molH}_2$ for H at 2*b*6*c*₁6*c*₂

agrees with

- neutron data
- calorimetry: $\Delta H_{min} = -(32/37) \text{kJ/molH}_2$

< ロ > < 同 > < 回 > < 回 >

Herbst, Hector, APL **85**, 3465 (2004)

Hydrogen site energetics in LaNi₅H_n and LaCo₅H_n

Enthalpy of hydride formation in LaCo₅H_n

 $\Delta H_{min} = -45.6 \text{kJ/molH}_2$ for H at 4e4h

agrees with

- neutron data
- calorimetry: $\Delta H_{min} =$ -45.2kJ/molH_2

Herbst, Hector, APL **85**, 3465 (2004)

< 同 > < 回 > < 回 >

Industrial Applications

Computational Materials Engineering

- Automotive
- Energy & Power Generation
- Aerospace
- Steel & Metal Alloys
- Glass & Ceramics
- Electronics
- Display & Lighting
- Chemical & Petrochemical
- Drilling & Mining

Density Functional Theory

 exact (!) mapping of full many-body problem to an effective single-particle problem

_ocal Density Approximation

- approximative treatment of exchange (!) and correlation
- considerable improvement: exact treatment of exchange

Applications

- very good agreement DFT/Exp. in numerous cases
- theory meets industry

Further Reading

Density Functional Theory

 exact (!) mapping of full many-body problem to an effective single-particle problem

Local Density Approximation

- approximative treatment of exchange (!) and correlation
- considerable improvement: exact treatment of exchange

Applications

- very good agreement DFT/Exp. in numerous cases
- theory meets industry

Further Reading

Density Functional Theory

 exact (!) mapping of full many-body problem to an effective single-particle problem

Local Density Approximation

- approximative treatment of exchange (!) and correlation
- considerable improvement: exact treatment of exchange

Applications

- very good agreement DFT/Exp. in numerous cases
- theory meets industry

Further Reading

Density Functional Theory

 exact (!) mapping of full many-body problem to an effective single-particle problem

Local Density Approximation

- approximative treatment of exchange (!) and correlation
- considerable improvement: exact treatment of exchange

Applications

- very good agreement DFT/Exp. in numerous cases
- theory meets industry

Further Reading

Acknowledgments

ъ

Volker@Eyert.de From Quantum Mechanics to Materials Design

Acknowledgments

ACIT Workshop

Thank You for Your Attention!

