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Key Players

Hamiltonian (within Born-Oppenheimer approximation)

H0 =
∑

i

[

−
~

2

2m
∇2

i

]

+
1
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e2

4πǫ0

∑

i,j
j 6=i

1
|ri − rj |

+
∑

i

vext(ri)

where

∑

i

vext(ri) =
1
2

e2

4πǫ0

∑

µν

µ6=ν

Zval ,µZval ,ν

|Rµ − Rν |
+
∑

i

[
∑

µ

Vion−el(ri − Rµ)

]

Rµ: ionic positions, ri : positions of electrons
Zval ,µ: number of valence electrons provided by µ’th ion
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Key Players

Electron Density Operator

ρ̂(r) =
∑

σ

ρ̂σ(r) =
∑

σ

∑

αβ

χ∗
α;σ(r)χβ;σ(r)a+

α aβ

=
∑

σ

N∑

i=1

δ(r − ri)δσσi

χα: single particle state
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Key Players

Electron Density

ρ(r) =
∑

σ

ρσ(r) =
∑

σ

〈Ψ|ρ̂σ(r)|Ψ〉 =
∑

σ

∑

α

|χα;σ(r)|2nα

|Ψ〉: many-body wave function
χα: single particle state
nα: occupation number

ground state, non-interacting particles:
|Ψ〉 → Slater determinant, nα = 0,1

normalization:

N[ρ] =

∫

d3r ρ(r) = N
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Key Players

Electron Density

ρ(r) =
∑

σ

ρσ(r) =
∑

σ

〈Ψ|ρ̂σ(r)|Ψ〉 =
∑

σ

∑

α

|χα;σ(r)|2nα

Universal Functional

F = 〈Ψ|Hel ,kin({ri}) + Hel−el({ri})|Ψ〉

Functional due to External Potential

〈Ψ|Hext({ri})|Ψ〉 =

∫

d3r vext(r)ρ(r)
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Density Functional Theory, Local Density Approx.

Pierre C. Hohenberg Walter Kohn

Lu Jeu Sham

Volker@Eyert.de From Quantum Mechanics to Materials Design



Formalism
Applications

Definitions and Theorems
Approximations

Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential vext(r) is determined, apart from a trivial
constant, by the electronic ground state density ρ(r).

2nd Theorem

The total energy functional E [ρ] has a minimum equal to the
ground state energy at the ground state density.
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Hohenberg and Kohn, 1964: Theorems

1st Theorem

The external potential vext(r) is determined, apart from a trivial
constant, by the electronic ground state density ρ(r).

2nd Theorem

The total energy functional E [ρ] has a minimum equal to the
ground state energy at the ground state density.

Nota bene

Both theorems are formulated for the ground state!

Zero temperature!

No excitations!
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Hohenberg and Kohn, 1964: Theorems

Maps

Ground state |Ψ0〉 (from minimizing 〈Ψ0|H0|Ψ0〉):

vext (r)
(1)
=⇒ |Ψ0〉

(2)
=⇒ ρ0(r)
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Hohenberg and Kohn, 1964: Theorems

Maps

Ground state |Ψ0〉 (from minimizing 〈Ψ0|H0|Ψ0〉):

vext (r)
(1)
=⇒ |Ψ0〉

(2)
=⇒ ρ0(r)

1st Theorem

vext(r)
(1)
⇐⇒|Ψ0〉

(2)
⇐⇒ρ0(r)
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Levy, Lieb, 1979-1983: Constrained Search

Variational principle

E0 = inf
|Ψ〉

〈Ψ|H0|Ψ〉

= inf
|Ψ〉

〈Ψ|Hel ,kin + Hel−el + Hext |Ψ〉

= inf
ρ(r)

[

inf
|Ψ〉∈S(ρ)

〈Ψ|Hel ,kin + Hel−el |Ψ〉+

∫

d3r vext(r)ρ(r)
]

=: inf
ρ(r)

[

FLL[ρ] +

∫

d3r vext(r)ρ(r)
]

= inf
ρ(r)

E [ρ]

S(ρ): set of all wave functions leading to density ρ
FLL[ρ]: Levy-Lieb functional, universal (independent of Hext )
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Levy, Lieb, 1979-1983: Constrained Search

Percus-Levy partition
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Levy, Lieb, 1979-1983: Constrained Search

Levy-Lieb functional

FLL[ρ] = inf
|Ψ〉∈S(ρ)

〈Ψ|Hel ,kin + Hel−el |Ψ〉

= T [ρ] + Wxc[ρ]
︸ ︷︷ ︸

+
1
2

e2

4πǫ0

∫

d3r
∫

d3r′
ρ(r)ρ(r′)
|r − r′|

= G[ρ] +
1
2

e2

4πǫ0

∫

d3r
∫

d3r′
ρ(r)ρ(r′)
|r − r′|

Functionals

Kinetic energy funct.: T [ρ] not known!

Exchange-correlation energy funct.: Wxc[ρ] not known!

Hartree energy funct.: 1
2

e2

4πǫ0

∫
d3r

∫
d3r′ ρ(r)ρ(r′)

|r−r′| known!
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Thomas, Fermi, 1927: Early Theory

Approximations

ignore exchange-correlation energy functional:

Wxc[ρ]
!
= 0

approximate kinetic energy functional:

T [ρ] = CF

∫

d3r (ρ(r))
5
3 , CF =

3
5

~
2

2m

(

3π2
) 2

3

Failures
1 atomic shell structure missing

→ periodic table can not be described
2 no-binding theorem (Teller, 1962)
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Kohn and Sham, 1965: Single-Particle Equations

Test-Case: Non-Interacting Electrons

E [ρ] = T0[ρ] +

∫

d3r vext(r)ρ(r)

ρ0(r) =
∑

σ

occ∑

α

|χα;σ(r)|2

T0[ρ] =
∑

σ

occ∑

α

∫

d3r χ∗
α;σ(r)

[

−
~

2

2m
∇2

]

χα;σ(r)
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Kohn and Sham, 1965: Single-Particle Equations

Test-Case: Non-Interacting Electrons

E [ρ] = T0[ρ] +

∫

d3r vext(r)ρ(r)

Euler-Lagrange Equations

δE [ρ]

δρ
− µ =

δT0[ρ]

δρ
+ vext(r) − µ

!
= 0

δE [ρ]

δχ∗
α;σ(r)

− εαχα;σ(r) =
[

−
~

2

2m
∇2 + vext (r)− εα

]

χα;σ(r)
!
= 0

µ: charge conservation, „chemical potential“
εα: orthonormalization, „single-particle energies“
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Kohn and Sham, 1965: Single-Particle Equations

Interacting Electrons

1 reintroduce single-particle wave functions
2 use different splitting of the functional G[ρ]

T [ρ] + Wxc[ρ] = G[ρ]
!
= T0[ρ] + Exc[ρ]

T0[ρ] is known, Exc[ρ] is not known!
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Kohn and Sham, 1965: Single-Particle Equations

Interacting Electrons

T [ρ] + Wxc[ρ] = G[ρ]
!
= T0[ρ] + Exc[ρ]

T0[ρ] is known, Exc[ρ] is not known!

Euler-Lagrange Equations

δE [ρ]

δρ
− µ =

δT0[ρ]

δρ
+ vext(r) + vH(r) + vxc(r)

︸ ︷︷ ︸

veff (r)

−µ
!
= 0

vxc(r) :=
δExc[ρ]

δρ

µ: charge conservation, „chemical potential“
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Kohn and Sham, 1965: Single-Particle Equations

Interacting Electrons

T [ρ] + Wxc[ρ] = G[ρ]
!
= T0[ρ] + Exc[ρ]

T0[ρ] is known, Exc[ρ] is not known!

Euler-Lagrange Equations (Kohn-Sham Equations)

δE [ρ]

δχ∗
α;σ(r)

− εαχα;σ(r) =
[

−
~

2

2m
∇2 + veff (r)− εα

]

χα;σ(r)
!
= 0

veff (r) := vext(r) + vH(r) + vxc(r) , vxc(r) :=
δExc[ρ]

δρ

εα: orthonormalization, „single-particle energies“
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Kohn and Sham, 1965: Local Density Approximation

Be Specific!

Approximate exchange-correlation energy functional

Exc[ρ] =

∫

ρ(r)εxc(ρ(r))d3r

Exchange-correlation energy density εxc(ρ(r))
depends on local density only!
is calculated from homogeneous, interacting electron gas

Exchange-correlation potential

vxc(ρ(r)) =
[
∂

∂ρ
{ρεxc(ρ)}

]

ρ=ρ(r)
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Kohn and Sham, 1965: Local Density Approximation

Homogeneous, Interacting Electron Gas

Split
εxc(ρ) = εx (ρ) + εc(ρ)

Exchange energy density εx (ρ)
(exact for homogeneous electron gas)

εx (ρ) = −
3

4π
e2

4πǫ0
(3π2ρ)

1
3

vx (ρ) = −
1
π

e2

4πǫ0
(3π2ρ)

1
3

Correlation energy density εc(ρ)
Calculate and parametrize

RPA (Hedin, Lundqvist; von Barth, Hedin)
QMC (Ceperley, Alder; Vosko, Wilk, Nusair; Perdew, Wang)
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Kohn and Sham, 1965: Local Density Approximation

Limitations and Beyond

LDA exact for homogeneous electron gas (within QMC)
Spatial variation of ρ ignored
→ include ∇ρ(r), . . .
→ Generalized Gradient Approximation (GGA)

Cancellation of self-interaction in vHartree(ρ(r)) and vx (ρ(r))
violated for ρ = ρ(r)
→ Self-Interaction Correction (SIC)
→ Exact Exchange (EXX),

Optimized Effective Potential (OEP)
→ Screened Exchange (SX)
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Kohn/Sham Equations in Practice
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Calculated Electronic Properties

Moruzzi, Janak, Williams (IBM, 1978)
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Fermi Surface of MoO2

ARPES vs. DFT(LDA)
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Moosburger et al.,
PRB 79, 115113 (2009)
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Dielectric Function of Al2O3
Imaginary Part

FLAPW, Hosseini et al., 2005
FPLMTO, Ahuja et al., 2004 FPASW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  5  10  15  20  25  30

ε

E (eV)

Im εxx
Im εzz

Volker@Eyert.de From Quantum Mechanics to Materials Design



Formalism
Applications

Dielectric Function of Al2O3
Real Part

FLAPW, Hosseini et al., 2005
FPLMTO, Ahuja et al., 2004

FPASW
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Energy band structures from screened HF exchange

Si, AlP, AlAs, GaP, and GaAs

Experimental and
theoretical bandgap
properties

Shimazaki, Asai,
JCP 132, 224105 (2010)
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Hydrogen site energetics in LaNi5Hn and LaCo5Hn

Enthalpy of hydride formation in LaNi5Hn

∆Hmin = −40kJ/molH2

for H at 2b6c16c2

agrees with

neutron data

calorimetry:
∆Hmin =
−(32/37)kJ/molH2

Herbst, Hector,
APL 85, 3465 (2004)
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Hydrogen site energetics in LaNi5Hn and LaCo5Hn

Enthalpy of hydride formation in LaCo5Hn

∆Hmin = −45.6kJ/molH2

for H at 4e4h

agrees with

neutron data

calorimetry:
∆Hmin =
−45.2kJ/molH2

Herbst, Hector,
APL 85, 3465 (2004)
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Industrial Applications

Computational Materials Engineering

Automotive

Energy & Power
Generation

Aerospace

Steel & Metal Alloys

Glass & Ceramics

Electronics

Display & Lighting

Chemical &
Petrochemical

Drilling & Mining
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Summary

Density Functional Theory

exact (!) mapping of full many-body problem to an effective
single-particle problem

Local Density Approximation

approximative treatment of exchange (!) and correlation

considerable improvement: exact treatment of exchange

Applications

very good agreement DFT/Exp. in numerous cases

theory meets industry

Further Reading

V. Eyert and U. Eckern, PhiuZ 31, 276 (2000)
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