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Chapter 1

Introduction

The present notes deal with the electronic structure of materials. They aim at
the macroscopic electronic properties of metals, semiconductors and insulators
and their relation to the microscopic degrees of freedom. The importance
of the electronic properties stems from the fact that they influence a lot of
different characteristics of matter as e.g. the electrical conductivity, the optical
properties, the magnetic states, as well as the elastic properties. Knowledge of
the electronic states thus provides a lot of information about a material.

Concentration on crystalline materials is mainly for historical reasons. From
the very beginning solid state theory has put much emphasis on this form of
condensed matter and provided a lot of experimental and theoretical tools
adapted to it. As interest grew into other fields like amourphous systems,
surfaces and interfaces these previously developed means were transferred with
the necessary modifications.

Our goal is essentially twofold: First we want to learn about the concepts
and methods to calculate at a microscopic level the electronic states, since they
determine the macroscopic properties. We thus have to start at an atomistic
level and use a quantum mechanical description. In principle, this “just” means
to write down the Hamiltonian and solve the corresponding Schrödinger equa-
tion. Of course, in practice this problem is much to complicated for a closed
solution and for this reason we call for simplifications. We are thus forced
to use approximations in order to bring the full Hamiltonian into a tractable
form. Fortunetely, the development of solid state theory in the last century has
placed at our disposal several such approximations, which nowadays build the
basis for our current understanding. We mention, in particular:

1. The Born-Oppenheimer approximation, as proposed in 1927, enables an
effective decoupling of the electronic and lattice degrees of freedom and,
hence, allows to ignore the ionic dynamics in many cases, where only the
electronic structure is of interest [20].

2. Of course, modern solid state physics has been benefiting much from
Bloch’s theorem in 1929, which grew out of the early X-ray diffraction
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2 CHAPTER 1. INTRODUCTION

studies and allowed to focus on a small unit cell with only few atoms
instead of the full solid with of the order of 1023 atoms [18]. This way
it was possible for the first time to cast the problem connected with the
macroscopic crystal into a tractable form.

3. Hartree-Fock theory provided a set of eigenvalue equations for the single-
particle states, which, though being quite complicated to solve, laid a
sound basis for the electronic many-body problem and, hence, still influ-
ences further improvements of modern density functional theory [72, 54].

4. Considerable practical problems in solving Schrödingers equations arise
from the fact, that the valence electrons feel the strong potential near
the nuclei and at the same time are able to pass through the solid across
the weak potential between the nuclei. An efficient way to separate these
two aspects was invented by Slater in 1937 by his famous “muffin-tin
approximation”, which enabled for a piecewise determination of the wave
function [151].

5. A much different approach to the same problem started out from the rep-
resentation of the wave function in terms of orthogonalized plane waves,
which laid ground for the pseudopotential method lateron developed by
Herring, Phillips and others [78, 138, 9].

6. The invention of density functional theory (DFT) and the local density
approximation (LDA) in the mid sixties by Hohenberg, Kohn and Sham
marked a milestone [80, 91], which has been described in numerous text-
books (see Sec. 9.1) and, providing the basis for modern materials science,
has been honoured by the donation of the 1998 Nobel Prize in Chemistry
to Walter Kohn.

7. The seventies witnessed such important steps as the concept of the so-
called linear methods invented by Andersen [3, 4], which enabled for
performing first principles calculations for unit cells of so far unaccessible
size and, hence, furthened our understanding of materials considerably.

8. Finally, Car and Parrinello, by introducing first principles molecular dy-
namics, made the simultaneous ab initio investigation of electronic and
ionic properties accessible [27].

All these approximations helped to bring the full Hamiltonian step by step
into a form, which allowed for an efficient solution. While the approximations
themselves are the subject of the first part of this book, we will turn in the sec-
ond part in more detail to different calculational schemes. In doing so, we will
especially concentrate on first principles approaches, which have established as
an important branch of condensed matter physics and solid state chemistry in
the past decades. In particular, the last ten years of this century have seen
an increasing distribution of density functional based computational methods,
which allow for a detailed understanding of electronic, magnetic and structural
properties of condensed matter. Nowadays these methods can be easily applied
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to rather complex systems and thus enable for the investigation of “real materi-
als”. For this reason, band structure methods have left the realm of only a few
specialists and have become a standard tool of materials science in university,
research institutes and industry.

From the above list of approximations it is intuitively clear that they all,
while simplifying the Hamiltonian, might exclude certain aspects of the physics
behind it. This is indeed true and nowadays there is some effort to overcome
previous approximations in order to study new phenomena. We already men-
tioned crystalline periodicity, which excludes investigation of amorphous solids,
interfaces, defects, glass states, alloys, or clusters. Another example is the lo-
cal density approximation (LDA) usually coming with density functional theory
(DFT), which considerably underestimates optical band gaps and, hence, will
have to be replaced by more elaborate methods in the future.

The second goal of the present work centers about the calculated results.
We want to learn how they can be understood, interpreted and, last not least,
be combined with experimental data, in order to furthen our insight into new
materials.
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Chapter 2

Reduction of the ionic

degrees of freedom

2.1 The full Hamiltonian

Our understanding of condensed matter is based on the notion of a solid as
being composed of heavy, positively charged ions and light, negatively charged
valence electrons. It evolved at the end of the 19th and the beginning of the
20th century and built the backbone of Drude’s theory of metals. The ions
themselves consist of the nuclei of charge eZ, where e is the electronic charge
and Z the atomic number, and the core electrons, which are tightly bound
to the nuclei and, hence, do not contribute to metallic conductivity. This is
different for the mobile valence electrons, which, in addition, are responsible
for the cohesive and electrical properties of a solid.

Of course, the previous distinction between core and valence electrons is
somewhat artificial. Let us assume, for instance, that we apply isotropic pres-
sure to a solid. In this case the nuclei approach each other and the wave
functions of the outer core electrons start to overlap. As a consequence, these
electrons might escape from their parent nucleus and distribute in the solid,
hence, take part in metallic conductivity just as the valence electrons already
do in the uncompressed state. In order to avoid difficulties, we will thus keep
the distinction between core and valence electrons rather flexible and use it
only as a simplifying notation. In the same manner we will use the term ion
for the nucleus with and without the core electrons depending on the context.

In order to describe the just sketched system of interacting ions and valence
electrons we start out from the full Hamiltonian

H := Hion +Hel +Hion−el , (2.1.1)

where the three contributions are given by

Hion := Hion,kin +Hion−ion

5



6 CHAPTER 2. IONIC DEGREES OF FREEDOM

:=
∑

µ



− h̄2

2Mµ
∇2
µ +

1

2

∑

ν
ν 6=µ

Vion−ion(Rµ − Rν)





:=
∑

µ



− h̄2

2Mµ
∇2
µ +

1

2

e2

4πǫ0

∑

ν
µ6=ν

Zval,µZval,ν
|Rµ − Rν |



 , (2.1.2)

Hel := Hel,kin +Hel−el

:=
∑

i




−

h̄2

2m
∇2
i +

1

2

1

4πǫ0

∑

j
j 6=i

e2

|ri − rj |




 , (2.1.3)

Hion−el :=
∑

µ

∑

i

Vion−el(ri − Rµ)

:= − e2

4πǫ0

∑

µ

∑

i

Zval,µ
|Rµ − ri|

, (2.1.4)

They account for the ionic and electronic subsystems as well as the coupling
between these two. Mµ and m denote the masses of the ions and electrons,
while Rµ and ri are their positions. Zval,µ is the number of valence electrons
provided by the µ’th ion, which is identical to the atomic number minus the
number of core electrons of the ion. The respective first terms in Eqs. (2.1.2)
and (2.1.3) contain the kinetic energy of the ions and electrons and the second
terms comprise the pairwise interactions. Here we already specified that the
electron-electron interaction like the ion-ion and ion-electron interaction are
Coulombic.

For the following discussion it is useful to denote the full set of ionic and
electronic coordinates, respectively as {Rµ} and {ri}. Then we have from Eqs.
(2.1.1) to (2.1.4)

H = H({ri,Rµ})
= Hion({Rµ}) +Hel({ri}) +Hion−el({ri,Rµ}) . (2.1.5)

In the following two sections we will learn about approximations, which
reduce especially the structural degrees of freedom of the above Hamiltonian.
While the Born-Oppenheimer approximation deals with the kinetic energy term
of the ionic Hamiltonian the assumption of a perfectly periodic crystal lattice
aims at the ion-ion as well as the ion-electron interaction.

2.2 Born-Oppenheimer approximation

From the previous section it becomes clear that, while aiming at the calculation
of the electronic states, we are, nevertheless, faced with the full problem posed
by the Hamiltonian (2.1.1) containing both the ionic and electronic degrees of
freedom. We thus have to solve Schrödinger’s equation

HΦγ({ri,Rµ}) = Ẽγ({Rµ})Φγ({ri,Rµ}) , (2.2.1)
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where γ labels the different eigenstates Φγ({ri,Rµ}). Eq. (2.2.1) poses a so far
unsolvable problem and for this reason an approach for an effective decoupling
of the electronic and ionic problems is called for. This is where the Born-
Oppenheimer comes in [20]. From a physical point of view it is based on the
fact that the electrons are much lighter than the nuclei. As a consequence, if
the ions are not too far from their equilibrium positions the electrons move
much faster than the nuclei and, hence, follow the ionic motion adiabatically.
In other words, on the timescale of electronic motion the ions appear as being
at fixed positions. At the same time the electronic distribution adds an extra
term to the ion-ion potential.

A theoretical justification of the Born-Oppenheimer approximation can be
achieved within the framework of perturbation theory where the small expan-
sion parameter is the ratio of electronic and ionic masses. We will not follow
this approach here but rather sketch some of the basic ideas while referring the
more interested reader to the literature (see e.g. [176, 73, 24, 85]).

Since the electronic dynamics is much faster than the ionic motion, we as-
sume, for the time being, the ions to be at fixed positions and solve Schrödinger’s
equation connected with the electronic problem, i.e.

Hel,0ψᾱ({ri,Rµ}) :=
(

Hel +Hion−el
)

ψᾱ({ri,Rµ})
= Eᾱ({Rµ})ψᾱ({ri,Rµ}) , (2.2.2)

where ᾱ labels different solutions of the electronic system, which, being eigen-
states of Hel,0, are orthogonal and assumed to be normalized as well as real
functions. The latter fact is a consequence of the real potential seen by the
electrons. Note that the positions of the nuclei still enter the Hamiltonian
Hel,0, the electronic wave functions ψᾱ, and the energies Eᾱ. However, they
are just parameters here.

Since the solutions of Schrödinger’s equation (2.2.2) form a complete set we
are able to expand the solutions Φγ of Schrödinger’s equation (2.2.1) connected
with the full Hamiltonian (2.1.1) in the electronic states ψᾱ, i.e.

Φγ({ri,Rµ}) =
∑

ᾱ

ϕγᾱ({Rµ})ψᾱ({ri,Rµ}) . (2.2.3)

Combining this expansion with Eq. (2.2.1) as well as with Schrödinger’s equa-
tion (2.2.2) for the electronic problem we obtain

HΦγ({ri,Rµ})
= (Hion +Hel,0)

∑

ᾱ

ϕγᾱ({Rµ})ψᾱ({ri,Rµ})

= Hion

∑

ᾱ

ϕγᾱ({Rµ})ψᾱ({ri,Rµ})

+
∑

ᾱ

Eᾱ({Rµ})ϕγᾱ({Rµ})ψᾱ({ri,Rµ})

!
= Ẽγ({Rµ})Φγ({ri,Rµ}) . (2.2.4)
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With the help of the identity

Hionϕγᾱ({Rµ})ψᾱ({ri,Rµ})

=
∑

µ



− h̄2

2Mµ
∇2
µ +

1

2

∑

ν
ν 6=µ

Vion−ion(Rµ − Rν)



ϕγᾱ({Rµ})ψᾱ({ri,Rµ})

= ψᾱ({ri,Rµ})Hionϕγᾱ({Rµ})

−
∑

ν

h̄2

2Mν

[(

∇2
νψᾱ({ri,Rµ})

)

ϕγᾱ({Rµ})

+2∇νψᾱ({ri,Rµ}) · ∇νϕγᾱ({Rµ})
]

(2.2.5)

this can be cast into the form

H
∑

ᾱ

ϕγᾱ({Rµ})ψᾱ({ri,Rµ})

=
∑

ᾱ

ψᾱ({ri,Rµ})Hionϕγᾱ({Rµ})

−
∑

ᾱ

∑

ν

h̄2

2Mν

[(

∇2
νψᾱ({ri,Rµ})

)

ϕγᾱ({Rµ})

+2∇νψᾱ({ri,Rµ}) · ∇νϕγᾱ({Rµ})
]

+
∑

ᾱ

Eᾱ({Rµ})ϕγᾱ({Rµ})ψᾱ({ri,Rµ}) . (2.2.6)

Next we multiply from the left with ψᾱ′({ri,Rµ}) and integrate out the elec-
tronic coordinates this leading to

〈ψᾱ′({ri,Rµ})|H |
∑

ᾱ

ϕγᾱ({Rµ})ψᾱ({ri,Rµ})〉

=
∑

ᾱ

[(

Hion + Eᾱ({Rµ})
)

δᾱ′ᾱ + Cᾱ′ᾱ({Rµ})
]

ϕγᾱ({Rµ})

= Ẽγ({Rµ})ϕγᾱ′({Rµ}) (2.2.7)

where the operator Cᾱ′ᾱ({Rµ}) is given by

Cᾱ′ᾱ({Rµ})

= −
∫

d3{ri}ψ∗
ᾱ′({ri,Rµ})

∑

ν

h̄2

2Mν

[(

∇2
νψᾱ({ri,Rµ})

)

+ 2∇νψᾱ({ri,Rµ})∇ν

]

.

(2.2.8)
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In further evaluating this operator we follow the lines of Haug [73] and Ziman
[175, 176]. We distinguish the non-diagonal from the diagonal terms and write
for the second term

∫

d3{ri}ψ∗
ᾱ({ri,Rµ})2∇νψᾱ({ri,Rµ})

= ∇ν

∫

d3{ri}ψ∗
ᾱ({ri,Rµ})ψᾱ({ri,Rµ}) = ∇νQel = 0 , (2.2.9)

where Qel is the total electronic charge contained in the state ψᾱ({ri,Rµ}).
Furthermore we note that the electrons are, at worst, tightly bound to their
ions and, hence, the electronic wave functions depend on the electronic as well
as ionic coordinates only via the differences rj − Rν . We may thus write for
the first term in Eq. (2.2.8)

∫

d3{ri}ψ∗
ᾱ({ri,Rµ})

h̄2

2Mν
∇2
νψᾱ({ri,Rµ})

=

∫

d3{ri}ψ∗
ᾱ({ri,Rµ})

h̄2

2Mν
∇2
jψᾱ({ri,Rµ})

=
m

Mν

∫

d3{ri}ψ∗
ᾱ({ri,Rµ})

h̄2

2m
∇2
jψᾱ({ri,Rµ}) , (2.2.10)

which is just m/Mν times the kinetic energy of the electrons. Since the ratio
of the electronic and ionic masses is of the order of 10−3 to 10−4 this term is
small compared to thermal energies and can thus be neglected.

In contrast, the non-diagonal elements of the operator Cᾱ′ᾱ({Rµ}) cou-
ple different ionic states ϕγᾱ({Rµ}) and induce transitions between different
electronic states as the ions move. Hence, these elements mediate the electron-
phonon interaction. In the Born-Oppenheimer approximation the operator
Cᾱ′ᾱ({Rµ}) is entirely ignored. Then we are left with only the diagonal terms
of Eq. (2.2.7) and obtain

(

Hion + Eᾱ({Rµ})
)

ϕγᾱ({Rµ}) = Ẽγ({Rµ})ϕγᾱ({Rµ}) , (2.2.11)

which is just Schrödinger’s equation for the ionic states. The Hamiltonian
entering Eq. (2.2.11) thus results from the bare Hamiltonian Hion of the ions
as given by Eq. (2.1.2) by adding the “potential” Eᾱ({Rµ}), which is the
total energy of the electronic systems as a function of the ionic positions. As
the ions move this energy changes and adds an adiabatic contribution to the
lattice energy. However, this extra term, although depending on the electronic
wave functions ψᾱ({ri,Rµ}), is quite insensitive to the details of the electronic
distribution since under normal conductivity conditions rearrangements of the
electrons affect only states near the Fermi energy.

Finally, note that in Schrödinger’s equation (2.2.2) for the electronic states
the ions enter in their momentary positions. In contrast, in Eq. (2.2.11), which
determines the ionic states, the average of the electronic distribution is consid-
ered. This reflects the abovementioned presence of different timescales of the
ionic and electronic motion.
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In summary, thanks to the Born-Oppenheimer approximation we are able
to concentrate on the electronic problem posed by Eq. (2.2.2) while assum-
ing the ions to stay at fixed positions. Nevertheless, even the Hamiltonian
Hel,0({ri,Rµ}) alone, which determines the electronic wave functions, still con-
stitutes a difficult problem, which awaits further simplification.

Nevertheless, we should keep in mind that the Hamiltonian does not just
reduce to Hel,0({ri,Rµ}). Since the Borhn-Oppenheimer approximation affects
only the kinetic energy of the ions we are still left with the ion-ion interaction,
which must be included. Although we may regard Hion−ion just as a constant
adding to the electronic energies its detailed form (2.1.2) becomes important
whenever we have to perform lattice summations, which converge only due to
the charge neutrality of each single unit cell. This point will become clearer
when we deal with the homogeneous electron gas in Sec. 7.1. As a consequence
of these considerations we are left with the Hamiltonian

H0 := Hion−ion +Hel +Hion−el , (2.2.12)

with the single contributions given by Eqs. (2.1.2) to (2.1.4). This is the Hamil-
tonian, we will deal with in large parts of the remaining chapters.

2.3 Crystalline periodicity

The unique characteristic, which distinguishes crystals from all other modifica-
tions of matter, is discrete translational symmetry (see e.g. [10, 86] or any other
textbook on solid state physics). It grew out of the early X-ray diffraction stud-
ies, which revealed that most materials condense into almost perfect periodic
arrays at low temperatures. On the theoretical side translational symmetry led
to the famous theorem formulated by Bloch, which allowed one to reduce the
problem connected with the macroscopic crystal to that of a microscopic unit
cell [18].

Although physically speaking the translational invariance of a crystal orig-
inates from a corresponding symmetry of the Hamiltonian the basic notions
may, nevertheless, be understood from purely geometric considerations. From
this rather mathematical point of view translational symmetry is equivalent to
the existence of a lattice of points

Rµ =
d∑

i=1

nµiai nµi integer , (2.3.1)

which fulfil the condition that the whole crystal (potential) looks the same
when translated by a lattice vector Rµ. d is the dimension of space and the
vectors ai form a set of d linear independent vectors. For each µ the set of
integers nµi, i = 1, . . . , d uniquely determines a lattice point. As is easily seen
from the definition (2.3.1) the lattice points form an Abelian set with respect to
addition, since the sum of two lattice points is again a lattice points irrespective
of the order of summation. Moreover, a neutral elements exists (nµi = 0) as
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well as an inverse element for each lattice point. We will come back to this
property of the Bravais lattice in Sec. 2.5 when we derive the Bloch theorem.

The vectors ai entering Eq. (2.3.1) are called the primitive translations
of a lattice. However, their determination is not unique. Each set of linear
independent vectors, which allows to represent each lattice point in the form of
Eq. (2.3.1), can be used as primitive translations. This is illustrated in Fig. 2.1
for a twodimensional lattice. The parallelepiped spanned by the vectors ai is
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Figure 2.1: Primitive translations of a twodimensional lattice.

referred to as a primitive unit cell, which, like the primitive translations, is not
uniquely determined. In general, each volume of space, which, when displaced
by all vectors of the lattice, fills space completely without any overlap, is called
a primitive cell. Again, this is illustrated by a twodimensional lattice in Fig.
2.2. A special choice, which is different from the simple parallelepiped, is
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Figure 2.2: Primitive unit cells of a twodimensional lattice.

the socalled Wigner-Seitz cell. In addition to being a primitive unit cell, it
displays the full symmetry of the lattice. The Wigner-Seitz cell is constructed
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by selecting a certain lattice point as the origin and connecting the origin to
the neighbouring points. Then all the planes, which bisect these lines bound
the Wigner-Seitz cell. Again, this is illustrated by a twodimensional lattice
in Fig. 2.3. Usually a fairly small number of such planes suffices to arrive
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Figure 2.3: Wigner-Seitz cell of a twodimensional lattice.

at a closed surface; we only have to include all those 3d − 1 cells, which are
direct neighbours of the original cell. The smallest possible cell constructed
this way then defines the Wigner-Seitz cell. Below we will show examples for
the Wigner-Seitz cells of the most common three-dimensional lattices.

In three dimensions there exist fourteen different lattices. They are called
Bravais lattices in honour of A. Bravais, who was the first to give the correct
number in 1845, and distinguished by additional symmetries beyond transla-
tional invariance as rotations or reflections, which transform the lattice to itself
[10, 86, 24]. We list these lattices in Tab. 2.1, where we also give the restric-
tions of the lattice constants and the angles between the primitive translation
vectors, which are a unique characteristic of each Bravais lattice.

We illustrate the previous notions with the three cubic (simple cubic (sc),
face-centered cubic (fcc), and body-centered cubic (bcc)) as well as the hexago-
nal Bravais lattices. In case of the simple cubic lattice the primitive translations
may be chosen along the Cartesian axes and both the Wigner-Seitz cell and
the first Brillouin zone simply are cubes. The unit cell is shown in Fig. 2.4.
More interesting are the other two cubic lattices. Their primitive translations
read as

a1 =
a

2
(y + z), a2 =

a

2
(z + x), a3 =

a

2
(x + y) (2.3.2)

for the fcc lattice and

a1 =
a

2
(−x + y + z), a2 =

a

2
(z − y + x), a3 =

a

2
(x + y − z) (2.3.3)
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Bravais lattice Lattice constants and angles

cubic simple a = b = c

face-centered α = β = γ = 90◦

body-centered

tetragonal simple a = b 6= c

centered α = β = γ = 90◦

orthorhombic simple a 6= b 6= c

face-centered α = β = γ = 90◦

body-centered

base-centered

monoclinic simple a 6= b 6= c

centered α = γ = 90◦ 6= β

triclinic a 6= b 6= c

α 6= β 6= γ

hexagonal a = b 6= c

α = β = 90◦

γ = 120◦

trigonal a = b = c

α = β = γ < 120◦

Table 2.1: The fourteen three-dimensional Bravais lattices.

for the bcc lattice. Here a denotes the lattice constant and x,y, z are the
Cartesian unit vectors. The corresponding unit cells are displayed in Figs. 2.5
and 2.6. We point out again that such crystal structure figures are meant
only to visualize the symmetry of the full Hamiltonian as given by Eqs. (2.1.1)
to (2.1.4). In order to stress this aspect we complement Fig. 2.5 with the
corresponding crystal potential of copper as growing out of a density functional
calculation plotted about one of the cube faces in Fig. 2.7. In Figs. 2.5 and 2.6
we have used the socalled conventional unit cell. It encloses the primitive cell
but unravels its full symmetry. For this reason, the lattice points corresponding
to the conventional cell are a subset of those of the original Bravais lattice.
For the fcc and bcc lattice, the conventional unit cell is a simple cube, which
comprises four and two primitive cells, respectively. A lot of elemental solids,
which are listed in Tabs. 2.2 and 2.3, crystallize in the fcc and bcc lattices. Note
that, following convention, the lattice constants given in these two tables are
referred to the conventional simple cubic cell. In passing we point, in particular,
to some peculiarities of the fcc lattice, namely the existence of corner-sharing
octahedra formed e.g. by the atoms at the face centers of the cube. Another
striking feature arises from the arrangement of the atoms in regular tetrahedra
with edges of the same length as half of the face diagonal. Such tetrahedra
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Figure 2.4: Simple cubic three-dimensional Bravais lattice.

Figure 2.5: Face-centered cubic three-dimensional Bravais lattice.

might give rise to frustration effects, if e.g. the magnetic interactions between
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Figure 2.6: Body-centered cubic three-dimensional Bravais lattice.

Element a (Å) Element a (Å) Element a (Å)

Ag 4.08 Cu 3.61 Pt 3.92

Al 4.05 Ir 3.84 Rh 3.80

Au 4.08 Ni 3.52 Sr 6.08

Ca 3.59 Pd 3.89

Table 2.2: Elements with the face-centered cubic crystal structure.

spins located at the atomic sites suggest an antiferromagnetic alignment.

Element a (Å) Element a (Å) Element a (Å)

Cr 2.89 Li 3.48 (4K) Rb 5.70

Fe 2.87 Mo 3.15 Ta 3.30

K 5.32 Na 4.29 V 3.02

K 5.23 (5K) Na 4.23 (5K) W 3.17

Li 3.51 Nb 3.30

Table 2.3: Elements with the body-centered cubic crystal structure.



16 CHAPTER 2. IONIC DEGREES OF FREEDOM
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Figure 2.7: Single particle potential of fcc Cu as growing out of a density
functional calculation.

In case of the hexagonal lattice the primitive translations are given by

a1 = −ay, a2 = a(

√
3

2
x +

1

2
y), a3 = cz , (2.3.4)

in the notation of Bradley and Cracknell [22]. The unit cell of the hexagonal
lattice is presented in Fig. 2.8 and in Tab. 2.4 we list a selection of elements

Element a (Å) c (Å) c/a Element a (Å) c (Å) c/a

Be 2.29 3.58 1.567 Ru 2.71 4.28 1.582

Cd 2.98 5.62 1.886 Sc 3.31 5.27 1.594

Co 2.51 4.07 1.623 Ti 2.95 4.68 1.587

Hf 3.19 5.05 1.581 Tc 2.74 4.40 1.604

Mg 3.21 5.21 1.623 Y 3.65 5.73 1.571

Os 2.74 4.32 1.579 Zn 2.66 4.95 1.856

Re 2.76 4.46 1.615 Zr 3.23 5.15 1.593

Table 2.4: Elements with the hexagonal close-packed crystal structure.

crystallizing in the hexagonal Bravais lattice. Actually, most of these solids
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Figure 2.8: Hexagonal three-dimensional Bravais lattice.

do not form a simple hexagonal lattice but have unit cells, which comprise
two atoms at different sites within the hexagonal cell. This results in the
hexagonal close-packed (hcp) structure, which is shown in Fig. 2.9. It consists
of hexagonal planes, which are vertically displaced by half of the lattice constant
c. In addition, they are horizontally shifted such that an atom in one plane is
at the center of the trigonal prism formed by the six neighbouring atoms in the
planes below and above. To be concrete, if one of the atoms in the basal plane
is located at the origin then the atom at the center of the prism is at

r =
1

3
a1 −

1

3
a2 +

1

2
a3 = − a

2
√

3
x − a

2
y +

c

2
z . (2.3.5)

From this follows

|r| =

√

1

3
+

1

4

c2

a2
a . (2.3.6)

If we require that three atoms in the basal plane and the central atom above
form an ideal tetrahedron the distance |r| must be equal to the lattice constant
a, which is fulfilled if c/a =

√

8/3 = 1.63299. In this case the packing allows
for an optimal filling of space. However, note that the hexagonal closed-packed
structure does not form a Bravais lattice. This is easily seen from a fictitious
lattice, where the inplane primitive translations a1 and a2 are those of the
hexagonal lattice and the third primitive translation is chosen as the vector
connecting atoms of two neighbouring planes. The result is shown in Fig.
2.10, which differs from Fig. 2.9 due to the different orientation of two next-
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Figure 2.9: Hexagonal close-packed crystal structure.

Figure 2.10: Fictitious close-packed crystal structure.

nearest layers. For this reason the hcp structure cannot be described as a



2.3. CRYSTALLINE PERIODICITY 19

Bravais lattice without basis. As becomes obvious from Figs. 2.9 and 2.10
both structures can be distinguished by the different stacking of atoms. While
the hcp structure follows an ABAB-type sequence, the stacking in Fig. 2.10 is
of type ABCABC, since atoms in the second and third layer, respectively, are
placed above different triangles formed by the first layer. Actually, this stacking
gives rise to the fcc lattice, which is indeed shown in Fig. 2.10 with the z axis
being the body diagonal of the cube. We recognize, in particular, the regular
tetrahedra, which we discussed before. Still, the identity with the fcc lattice
holds only for the ideal c/a value of 1.63299. In contrast, if we change c/a,
hence, the separation of the layers or, viewed from within the cubic system,
pull the unit cell along the body diagonal, we end up with the trigonal Bravais
lattice, which may thus be regarded as a generalization of both the hexagonal
and the fcc Bravais lattices.

As a matter of fact, the hcp structure is just one example of a crystal struc-
ture, where each primitive cell contains two atoms or more, which cannot be
connected by a lattice vector of any Bravais lattice. This situation is called a
lattice with a basis, where the latter is defined as the collection of atoms within
a single primitive cell. Another example is the diamond structure, which we
display in Fig. 2.11. It is characterized by a fcc Bravais lattice with two atoms

Figure 2.11: Diamond structure.

per primitive unit cell at points (0, 0, 0) and (1/4, 1/4, 1/4)a. Elements crystal-
lizing in this structure are listed in Tab. 2.5. A straightforward generalization
of the diamond lattice arises, if we allow the two basis sites to be occupied
by different atoms, this resulting in the zincblende structure, named after the
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Element a (Å) Element a (Å)

C 3.57 Si 5.43

Ge 5.66 α-Sn 6.49

Table 2.5: Elements with the diamond structure.

compound ZnS. It is displayed in Fig. 2.12 and in Tab. 2.6 we give a number of

Figure 2.12: Zincblende structure.

compounds crystallizing in this structure. The list includes several transition
metal halides as well as a lot of II-VI and III-V semiconductors.

Two prominent types of lattices for binary compounds arise as interprene-
tating simple and face-centered cubic lattices with the origins displaced by half
of the body diagonal. The results are the cesium chloride and the sodium chlo-
ride structure, respectively, which we display in Figs. 2.13 and 2.14, respectively.
Typical compounds for both classes are listed in Tabs. 2.7 and 2.8. We finish
this short survey by displaying in Fig. 2.15 the pyrite structure, which has
a simple cubic lattice but a more complex arrangements of the atoms. This
structure is adopted by several transition metal disulfides as e.g. FeS2 and
RuS2. While the transition metal atoms form an fcc lattice the sulfur atoms
are placed at (xS , xS , xS). As a consequence, in order to completely specify
this crystal structure we need, in addition, to the cubic lattice constant, the
parameter xS . For FeS2 we have xS = 0.38484. The pyrite crystal structure is
best described in terms of the NaCl structure with the sublattices occupied by
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Compound a (Å) Compound a (Å) Compound a (Å)

CdS 5.82 AlP 5.45 CuF 4.26

CdTe 6.48 AlAs 5.62 CuCl 5.41

ZnS 5.41 AlSb 6.13 CuBr 5.69

ZnSe 5.67 GaP 5.45 CuI 6.04

ZnTe 6.09 GaAs 5.65 AgI 6.47

HgS 5.85 GaSb 6.12 BeS 4.85

HgSe 6.08 InP 5.87 BeSe 5.07

HgTe 6.43 InAs 6.04 BeTe 5.54

SiC 4.35 InSb 6.48

Table 2.6: Binary compounds with the zincblende structure.

Figure 2.13: Cesium chloride structure.

iron atoms and the centers of gravity of sulfur atom pairs, respectively. These
sulfur dumb-bells are oriented along the 〈111〉 axes. Being 2.161 Å their bond
length is still shorter than the Fe-S distance of 2.265 Å. Whereas the sulfur
atoms are tetrahedrally coordinated by one sulfur and three iron atoms the six
nearest neighbour sulfur atoms at each iron site form slightly distorted octa-
hedra. Due to the deformations of the octahedra the local symmetry at these
sites is reduced from cubic (Oh) to trigonal (C3i). The distorted FeS6 octahe-
dra are interlinked by common corners and, due to the formation of the 〈111〉
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Figure 2.14: Sodium chloride structure.

Compound a (Å) Compound a (Å)

CsCl 4.12 TlCl 3.83

CsBr 4.29 TlBr 3.97

CsI 4.57 TlI 4.20

Table 2.7: Binary compounds with the cesium chloride structure.

sulfur pairs, have rotated away from the cartesian axes by about 23◦. For a
two dimensional crystal the situation is sketched in Fig. 2.16. Obviously, the
formation of the 〈111〉 sulfur pairs does not destroy the square planar coordi-
nation of the iron atoms. Instead, the squares built by the sulfur atoms just
shrink and rotate. Since the orientation of the dumb-bells conforms with the
cubic point group the underlying Bravais lattice is no longer face-centered but
simple cubic and the unit cell comprises four formula units.

Again we complement Fig. 2.15 with the corresponding crystal potential as
growing out of a density functional calculation plotted about one of the cube
faces in Fig. 2.7. While the potential well at the middle of each edge arises
from the iron atoms we observe the double potential well coming from a sulfur
atom pair at the face center. In addition, a single sulfur potential well shows
up near the corners in the foreground as well as the background.
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Compound a (Å) Compound a (Å) Compound a (Å)

LiF 4.02 RbF 5.64 CaO 4.81

LiCl 5.13 RbCl 6.58 CaS 5.69

LiBr 5.50 RbBr 6.85 CaSe 5.91

LiI 6.00 RbI 7.34 CaTe 6.34

NaF 4.62 CsF 6.01 SrO 5.16

NaCl 5.64 AgF 4.92 SrS 6.02

NaBr 5.97 AgCl 5.55 SrSe 6.23

NaI 6.47 AgBr 5.77 SrTe 6.47

KF 5.35 MgO 4.21 BaO 5.52

KCl 6.29 MgS 5.20 BaS 6.39

KBr 6.60 MgSe 5.45 BaSe 6.60

KI 7.07 BaTe 6.99

Table 2.8: Binary compounds with the sodium chloride structure.

Figure 2.15: Pyrite structure. Transition metal and sulfur atoms are printed
in red and green, respectively.

2.4 The reciprocal lattice

We complement the basic definition (2.3.1) of the Bravais lattice as a set of
discrete, equally spaced points by an alternative representation in terms of
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Figure 2.16: Twodimensional analogue of the pyrite structure. Big and small
filled circles designate iron and sulfur atoms, respectively. Small open circles
mark the ideal positions conforming with the rocksalt structure.
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Figure 2.17: Single particle potential of fcc FeS2 as growing out of a density
functional calculation.

lattice planes. For a given Bravais lattice a lattice plane is defined by three
noncollinear lattice points. Due to the definition of the Bravais lattice each
plane contains infinitely many points and to each such lattice plane there exist
infinitely many parallel planes. Together these parallel planes form a family of

lattice planes. Eventually, each point of the Bravais lattice may be uniquely
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assigned to one of the planes of a family.
Obviously, each Bravais lattice gives rise to many families of lattice planes.

However, each such family is uniquely determined by the distance dν between
the planes and the unit vector uν perpendicular to the planes. Formally, each
family is then characterized by the Hessian equation, which is a condition for
any vector r lying on the ν’s plane,

uν · r −Ndν = 0 , for N = 0,±1,±2, . . . . (2.4.1)

In particular, this equation holds for all points Rµ of the Bravais lattice, which
lie in the respective plane. Combining now the two characteristics of a family,
dν and uν , into a single vector,

Kν =
2π

dν
uν (2.4.2)

we rewrite the condition (2.4.1) specifically for a lattice vector Rµ as

Kν ·Rµ = 2πN . (2.4.3)

Obviously, the vectors Kν are wave vectors of plane waves eiKνr propagating
along uν with wavelength λ = 2π/|Kν | = dν . As a consequence, by proceeding
by on lattice vector the plane wave reproduces itself. Hence, the vectors of the
reciprocal lattice must fulfil the condition

eiKν(r+Rµ) = eiKνr (2.4.4)

for all vectors r and all lattice vectors Rµ. From this we have

eiKνRµ
!
= 1 , (2.4.5)

which is equivalent to equation (2.4.3).
Still, we want to prove that the wave vectors Kν themselves form a Bravais

lattice. Of course, we may conclude from the symmetry of equations (2.4.3)
and (2.4.5) with respect to exchange of Kν and Rµ that the wave vectors
also form a Bravais lattice. We will call this lattice the reciprocal lattice,
since, according to equation (2.4.2), these vectors have the dimension of an
inverse length. Nevertheless, we prefer to deduce the property of a lattice
more directly. Since, according to the definition (2.3.1), the lattice points Rµ

are linear combinations of the primitive translations, equation (2.4.3) holds
especially for the latter,

Kν · ai = 2πN , for N = 0,±1,±2, . . . and i = 1, d . (2.4.6)

Furthermore, for each ai there exists one particular wave vector with N = 1,
i.e.

bi · ai = 2π , for i = 1, d . (2.4.7)

Being wave vectors the bi must be perpendicular to a family of lattice planes.
In particular, they must be perpendicular to those lattice planes, which are



26 CHAPTER 2. IONIC DEGREES OF FREEDOM

spanned by the respective other two primitive translations, this giving rise to
the general condition

ai · bj = 2π · δij , (2.4.8)

which is fulfilled if the primitive wave vectors bi are defined by

bi = 2π
aj × ak

ai · (aj × ak)
, i, j, k cyclic , (2.4.9)

where
ΩUC = a1 · (a2 × a3) (2.4.10)

is the volume of the unit cell. Finally, in order that any wave vector obeys
equation (2.4.6) it must be given by

Kν =

d∑

i=1

mνibi , (2.4.11)

which, in the same manner as equation (2.3.1) defines a Bravais lattice, the
reciprocal lattice. Combining equations (2.3.1) and (2.4.11) we arrive at

RµKν = 2π ·
d∑

i=1

nµimνi , (2.4.12)

which again is just a different formulation of equation (2.4.3).

In the same manner as for the real space lattice there also exist primitive
unit cells for the reciprocal lattice. In addition, again a fully symmetric prim-
itive unit cell can be constructed. In reciprocal space this Wigner-Seitz cell is
called the first Brillouin zone.

Again, we illustrate the previous definitions with the three cubic as well as
the hexagonal Bravais lattices. In case of the simple cubic lattice the primitive
translations of the reciprocal lattice are just parallel to those of the real space
lattice with the reciprocal vectors scaling as 2π/a. In contrast, the reciprocal
primitive translations of the fcc and bcc lattice are calculated from Eq. (2.4.9)
as translations as

b1 =
2π

a
(−x + y + z), b2 =

2π

a
(z − y + x), b3 =

2π

a
(x + y − z) (2.4.13)

for the fcc lattice and

b1 =
2π

a
(y + z), b2 =

2π

a
(z + x), b3 =

2π

a
(x + y) (2.4.14)

for the bcc lattice. Hence, except for a scale factor the reciprocal of the fcc
lattice is just the bcc lattice and vice versa. As a consequence, the Wigner-
Seitz cell of each of these two lattices is identical to the first Brillouin zone
of the respective other lattice. This is why we did not display the former
ones but now give the Brillouin zones in Figs. 2.18 and 2.19. There we have, in
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Figure 2.18: First Brillouin zone of the fcc lattice.
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Figure 2.19: First Brillouin zone of the bcc lattice.
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Figure 2.20: First Brillouin zone of the hexagonal lattice.

addition, highlighted some special k points, which are labelled according to the
convention first introduced by Bouckaert et al. [21] (see also [22]) and which
will be discussed in more detail below.

In case of the hexagonal lattice the reciprocal space primitive translations
are readily written down as

b1 =
2π

a
(

1√
3
x − y), b2 =

2π

a

2√
3
x, b3 =

2π

c
z (2.4.15)

and the first Brillouin zone of the hexagonal lattice is given in Fig. 2.20.

2.5 Bloch’s theorem

We turn back to the physics underlying crystal symmetry and discuss its con-
sequences on the electronic states. This leads to Bloch’s theorem. As already
pointed out in the previous section crystal symmetry results from a correspond-
ing symmetry of the Hamiltonian

H(r + Rµ) = H(r) . (2.5.1)

In other words, the Hamiltonian is invariant under a translation by an arbitrary
lattice vector and thus it commutes with all the translation operators,

[
H,TRµ

]

− = 0 ∀µ , (2.5.2)

which are defined by the way they act onto a function in space,

TRµ
f(r) := f(r + Rµ) . (2.5.3)

The basic properties of the translation operators are easily derived. Obviously,
successive translations by the lattice vectors Rµ and Rν in either order are
equivalent to the single translation by Rµ + Rν , i.e.

TRµ
TRν

= TRν
TRµ

= TRµ+Rν
. (2.5.4)

Especially for Rν = −Rµ we obtain

TRµ
T−Rµ

= T−Rµ
TRµ

= T0 = I (2.5.5)
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where I is the unity operator. In particular, Eq. (2.5.5) serves as a definition
of the inverse translation operator. We thus arrive at the conclusion that all
translation operators form an Abelian group. Actually, we had assigned this
property already to the Bravais lattice points Rµ. However, we point out that
the translation TRµ

by a lattice vector is equivalent to the lattice point itself,
so the difference is rather artificial.

Since the translation operators commute with the Hamiltonian both have
the same system of eigenfunctions and we are thus able to write

TRµ
ψn(r) = λµψn(r) (2.5.6)

where the ψn(r) are the eigenfunctions of the Hamiltonian,

H(r)ψn(r) = εnψn(r) (2.5.7)

and n labels different eigenfunctions. Still we have to deduce the eigenvalues λµ
of the translation operators. To this end we again employ crystal translational
symmetry, which requires that the results of any measurement are unaffected
by a translation. For this reason, the square of the norm of the wave function
must be invariant and the eigenvalues λµ of the translation operators must be
complex and of modulus 1. Hence

λµ = eiΘµ . (2.5.8)

Combining Eqs. (2.5.4), (2.5.6) and (2.5.8) we obtain the identity

eiΘµeiΘν = ei(Θµ+Θν) , (2.5.9)

which is fulfilled if
Θµ = kRµ (2.5.10)

with the vector k as yet unspecified. Combining this with Eqs. (2.5.3), (2.5.6)
and (2.5.8) we finally arrive at Bloch’s theorem

ψnk(r + Rµ) = eikRµψnk(r) (2.5.11)

where the function ψnk(r) is called a Bloch function [18]. Note that we have
used the k vector as an additional label.

Bloch’s theorem sometimes is written in an altenative form, which arises
from inserting

ψnk(r) = eikrunk(r) (2.5.12)

into Eq. (2.5.11). This results in

unk(r + Rµ) = unk(r) . (2.5.13)

Thus, according to Bloch’s theorem the wave function can be written as the
product of a phase factor and a function unk(r), which has the periodicity of
the lattice.
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Obviously, the vector k has the dimension of an inverse length and we may
thus assign it to reciprocal space. Moreover, it is possible to consider only
those k vectors, which belong to the first Brillouin zone. To see this we start
from two vectors k and k′, which are separated by a lattice vector Kν ,

k′ = k + Kν . (2.5.14)

Due to the identity (2.4.5) wave functions labelled with vectors k and k′ belong
to the same eigenspace, i.e.

TRµ
ψnk′(r) = eikRµψnk′(r) (2.5.15)

and
TRµ

ψnk(r) = eikRµψnk(r) . (2.5.16)

Since the translation operators form an Abelian group giving rise to only
one-dimensional representations, hence, one-dimensional eigenspaces, the wave
functions entering equations (2.5.15) and (2.5.16) must be identical. The same
holds for the eigenvalues of the Hamiltonian and we note the result

ψnk+Kν
(r) = ψnk(r) (2.5.17)

and
εnk+Kν

= εnk . (2.5.18)

In the previous equations we have already labelled the different eigenfunc-
tions of the Hamiltonian as arising from (2.5.7) by n. Due to the use of periodic
boundary conditions the periodic part of the wave function, which is given by
Eq. (2.5.13), needs to be specified only within a single unit cell. For this reason,
Schrödinger’s equation has to be solved only in a finite volume and we expect
a discrete spectrum of eigenvalues, distinguished by the label n.

Of course, crystals can possess more than translational symmetry and in-
deed most crystals realized in nature do. The operations connected with the
additional symmetries are rotations and reflections and like the translations
they form groups. These groups are called point groups since rotations and re-
flections (which can be viewed as rotations followed by inversion) are all taken
about a fixed center. In the same manner as in the case of the translations point
group symmetries arise from an underlying symmetry of the Hamiltonian and
thus the corresponding operators commute with H .

Finally, the point group operations may be combined with fractional trans-
lations, which are translations by non-lattice vectors. This gives rise to screw
axes and glide planes. Altogether the fourteen Bravais lattices and 32 point
groups then lead to the 230 space groups. Each space group is distinguished
by the way the atoms are arranged within the primitive cell. Since a more
detailed discussion of the subject is beyond the scope of this chapter we refer
the interested reader to the literature (see e.g. Refs. [95, 23, 96, 22, 106]).

Obviously, rotations, reflections and fractional translations lead to planes,
lines and points both in real and reciprocal space, which are invariant under all
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these operations. In k space they confine, in particular, the irreducible wedge of
the first Brillouin zone, which, by applying all allowed space group operations,
fills the whole first Brillouin zone without overlap. For the evaluation of k

space integrals it is thus sufficient to calculate the wave functions ψnk(r) and
eigenvalues εnk only in the irreducible wedge. As concerns the representation
and interpretation of results it has become customary to plot all the εnk along
some of the abovementioned symmetry lines connecting the high-symmetry
points (which we have already indicated in Figs. 2.18 to 2.20). This is what is
usually termed the band structure.

2.6 Born-von Kármán boundary conditions

With Bloch’s theorem at hand we have a first glimpse at the solutions of
Schrödinger’s equation for a crystalline solid. However, in order to completely
specify the wave function, we will need boundary conditions. This includes
specifying the shape of the crystal. Nevertheless, as long as we are not inter-
ested in surface properties, the particular choice of the boundary conditions
must not alter the result and, hence, must not be important. First of all, we
thus assume that the crystal has the shape of a parallelepiped with axes paral-
lel to the primitive translation vectors of the Bravais lattice. A simple choice
for the boundary condition would be to require the wave function to vanish at
the surface of the parallelepiped, which leads to standing wave solutions. Yet,
transport properties rather call for propagating waves. For this reason, we fol-
low convention and choose Born-von Kármán or periodic boundary conditions,

ψnk(r +Niai) = ψnk(r) , i = 1, 2, 3 . (2.6.1)

The ai denote the primitive translations and the Ni are integers, where NUC =
N1 · N2 · N3 is the total number of primitive cells in the crystal. Applying
Bloch’s theorem (2.5.11) to the boundary condition (2.6.1) we find that

eiNikai = 1 . (2.6.2)

Since any vector k in reciprocal space can be written as

k =

d∑

i=1

xkibi (2.6.3)

Eqs. (2.4.11) and (2.6.2) imply

xki =
mki

Ni
, (2.6.4)

where mki is an integer, or else

k =

d∑

i=1

mki

Ni
bi . (2.6.5)
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As a consequence, all allowed k vectors lie on an equidistant grid in the re-
ciprocal primitive cell, which becomes infinitesimaly fine for NUC → ∞. It
follows from Eq. (2.6.5) that the volume Ωk per k point is just the volume of
the reciprocal unit cell

ΩBZ := b1 · (b2 × b3) =
(2π)3

a1 · (a2 × a3)
=:

(2π)3

ΩUC
(2.6.6)

divided by the number NUC of micro-parallelepipeds, i.e.

Ωk =
ΩBZ
NUC

=
(2π)3

NUC · ΩUC
=

(2π)3

Ω
, (2.6.7)

where Ω denotes all space.

2.7 Brillouin zone integration

As a matter of fact, a lot of physical quantities arise as integrals over the
Brillouin zone of the general form

IA(E) =
1

ΩBZ

∑

n

∫

ΩBZ

d3k Ankδ(E − εnk) . (2.7.1)

where the weights Ank are associated with the electronic states ψnk(r) and δ(x)
is Dirac’s δ distribution. Quite often the quantities Ank entering the integral
(2.7.1) depend on the band index n and wave vector k only via the eigenvalues
εnk of the Hamiltonian,

Ank = Ãn(εnk) , (2.7.2)

in which case Eq. (2.7.1) reduces to

IA(E) =
1

ΩBZ

∑

n

Ãn(E)

∫

ΩBZ

d3k δ(E − εnk) . (2.7.3)

In particular, for Ank = 1, we arrive at the definition of the density of states
for the nth band by

ρn(E) :=
1

ΩBZ

∫

ΩBZ

d3k δ(E − εnk) , (2.7.4)

which allows to write the integral (2.7.3) as

IA(E) =
∑

n

Ãn(E)ρn(E) . (2.7.5)

According to Eq. (2.7.4) the density of states ρn(E) thus denotes just that
fraction of the Brillouin zone, which comprises the states with energy E.
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In practice, we will replace the integral (2.7.1) by a weighted sum over a
finite number of k points of the reciprocal unit cell,

IA(E) =
1

NUC

∑

nk

Ankδ(E − εnk) , (2.7.6)

Of course, in the limit of infinite NUC this sum turns into an over the first
Brillouin zone according to

Ωk

∑

k

→
∫

ΩBZ

d3k . (2.7.7)

Using Eq. (2.7.6) we thus write for the density of states.

ρn(E) =
1

ΩBZ
Ωk

∑

k

δ(E − εnk) . (2.7.8)

A different formulation of the density of states arises from representing the
volume of integration as a sequence of shells of thickness dE,

ρn(E)dE =
1

ΩBZ

∫

E...E+dE

dk⊥

∫

Sn(E)

dS u δ(E − εnk) , (2.7.9)

where

u =
∇εnk
|∇εnk|

(2.7.10)

is the unity vector perpendicular to the surface element. Since

dE = ∇εnk · dk⊥ (2.7.11)

we obtain

ρn(E)dE :=
1

ΩBZ

∫

E...E+dE

dE

∫

Sn(E)

dS
1

|∇εnk|
δ(E − εnk) , (2.7.12)

hence, the result

ρn(E) :=
1

ΩBZ

∫

Sn(E)

dS
1

|∇εnk|
δ(E − εnk) , (2.7.13)

which establishes an explicit connection between the band structure and the
density of states. A general feature of the density of states can be easily derived.
Since according to Eq. (2.5.18) the electronic states are periodic functions in k

space, bounded above and below for each band n, there must be points within
each cell, where the gradient |∇εnk| vanishes. Although at such points the
integrand in Eq. (2.7.13) diverges, it can be shown that in three dimensions
the integral itself does not. In contrast, these socalled van Hove singularities
are integrable and give rise to kinks in the density of states curves.
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The actual calculation of densities of states is not a trivial task and a lot
of work has been done in order to develop both accurate and efficient schemes.
It includes the selection of socalled special points, which, when used for sum-
mations as in Eq. (2.7.2), approximate the Brillouin zone integral very well
[13, 32, 116], as well as schemes for the efficient evaluation of integrals from the
Ank calculated at a finite set of points. For electronic structure calculations
most often used methods are sampling schemes as well as the linear tetrahedron
method (see for example [115, 19] and references therein).



Chapter 3

The Sommerfeld theory of

metals

3.1 The Sommerfeld model

We illustrate the previous notions with the most simple quantum mechanical
model of the electronic states in a crystal, the Sommerfeld theory of metals. It
is founded on two basic assumptions:

1. In the free electron approximation the potential due to the ions is com-
pletely ignored and replaced by a positively charged constant background.

2. In the independent electron approximation the electron-electron interac-
tion is completely ignored.

While accepting these assumptions for the time being we postpone a more
detailed discussion of their motivations, advantages and drawbacks to Secs. 7.1
and 4.1.

We are then left with only the kinetic energy contribution to the Hamil-
tonian (2.1.1) to (2.1.4) and the single particle states must obey Laplace’s
equation

[

− h̄2

2m
∇2 − ε

]

χ(r) = 0 , (3.1.1)

which is solved by normalized plane waves

χk(r) =
1√

NUCΩUC
eikr =

1√
Ω
eikr (3.1.2)

with momentum
p = h̄k (3.1.3)

and energy

εk =
h̄2k2

2m
. (3.1.4)

35
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According to Eq. (2.5.18) the energy dispersion relation εk is periodic in k

space. We thus have an infinite number of energy parabolas of the form (3.1.4),
each of which is centered in a different cell of reciprocal space. Within each cell
all these parabolas intersect and give rise to a complicated looking pattern of
electronic bands. We show these band structures for the fcc, bcc, and hexagonal
lattice in Figs. 3.1, 3.2, and 3.3, respectively. Note, however, that we are
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Figure 3.1: Free electron dispersion curves for the fcc lattice along selected
symmetry lines of the first Brillouin zone. The points indicated are the same
as in Fig. 2.18.
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Figure 3.2: Free electron dispersion curves for the bcc lattice along selected
symmetry lines of the first Brillouin zone. The points indicated are the same
as in Fig. 2.19.

merely displaying intersecting parabolas along the high symmetry lines of the
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Figure 3.3: Free electron dispersion curves for the hexagonal lattice along se-
lected symmetry lines of the first Brillouin zone. The points indicated are the
same as in Fig. 2.20.

corresponding Brillouin zones.

Quantum mechanics is incorporated into the Sommerfeld theory via the
Pauli exclusion principle, which we will discuss in detail in Sec. 5.2. It states
that in a system of fermions each single particle level can be occupied by at
most one particle. In the present case the single particle states are characterized
by the k vector and the electron spin σ = ± 1

2 . We will thus successively fill
the N/2 lowest lying electron levels εk, each with two electrons. Due to the
isotropic dispersion relation (3.1.4) the resulting volume in k space will be a
sphere for large electron numbers N with the radius of this sphere, which is
called the Fermi wave vector kF , being fixed by

4πk3
F

3
=
N

2
Ωk =

N(2π)3

2NUCΩUC
. (3.1.5)

Here we have used Eq. (2.6.7). Since the (uniform) (valence) electron density
is given by

ρ =
N

NUCΩUC
(3.1.6)

we obtain the relation

ρ =
k3
F

3π2
. (3.1.7)

Of course, the Fermi sphere allows to define several quantities analogous to the
Fermi wave vector as there are

the Fermi momentum pF = h̄kF ,

the Fermi velocity vF =
pF
m

,
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the Fermi energy EF =
h̄2k2

F

2m
,

and the Fermi temperature TF =
EF
kB

.

Finally, the surface of the sphere is called the Fermi surface.
Following common practice we express the density in terms of the density

parameter rS as
4π

3
r3S =

1

ρ
, (3.1.8)

which is just the radius of a sphere containing one valence electron, and may
then write the Fermi wave vector as

kF =

(
9π

4

) 1
3 1

rs
=

1.92

rs
. (3.1.9)

Using the Bohr radius

aB =
4πǫ0h̄

2

me2
= 0.529 · 10−10m (3.1.10)

we obtain for the Fermi energy

EF =
h̄2k2

F

2m
=

h̄2

2m

(
3π2ρ

) 2
3 =

1

2

e2aB
4πǫ0

k2
F =

(
1

4πǫ0

e2

2aB

)

(kF aB)2 , (3.1.11)

where the first factor is the atomic energy unit,

1Ryd =
1

4πǫ0

e2

2aB
= 13.6058eV , (3.1.12)

which is identical to the ground state binding energy of the hydrogen atom.
Combining Eqs. (3.1.9) and (3.1.11) we get

EF =
(9π/4)

2
3

(rs/aB)2
Ryd =

(1.92)2

(rs/aB)2
Ryd =

50.1

(rs/aB)2
eV . (3.1.13)

For most metallic elements, rs/aB is between 2 and 3 and the Fermi energy
thus lies in the range of 5 to 13 eV. It is interesting to evaluate from this the
corresponding Fermi temperatures, which are of the order of 105 K, hence, much
higher than room temperature. From this simple estimate it becomes clear that
in most cases it is a well justified approximation to resort to the ground state
(T = 0 K) in describing the electronic properties of most materials.

As mentioned in Sec. 2.7 the calculation of a lot of physical quantities
requires knowledge of the density of states as defined by Eq. (2.7.6). Combining
it with the isotropic dispersion relation (3.1.4) and taking into account the spin
degeneracy of the electronic states we write

ρ(E) =
2

ΩBZ

∑

n

∫

ΩBZ

d3k δ(E − εnk)

=
8π

ΩBZ

∫

k2dk δ(E − εk) , (3.1.14)
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where in the second line the integration extends over all reciprocal space. How-
ever, while in the first line the δ distribution accounts for all the parabolas
centered at all lattice points Kn of the reciprocal lattice, we consider only the
single parabola centered at k = 0 in the second integration. With the help of
Eq. (3.1.4) as well as of the identity

dεk =
h̄2

m
kdk (3.1.15)

we then get the result

ρ(E) =
8π

ΩBZ

m

h̄2

√
2m

h̄

∫

dεk
√
εk δ(E − εk)

=
4πΩUC
(2π)3

(
2m

h̄2

) 3
2 √

E

=
ΩUC
2π2

k3
F

1

E
3
2

F

√
E

=
3

2
ΩUC

ρ

EF

√

E

EF
. (3.1.16)

Here we have used Eqs. (2.6.7), (3.1.6), (3.1.7), and (3.1.11). Integrating the
density of states to the Fermi energy we obtain

∫ EF

−∞
dE ρ(E) =

3

2
ΩUC

ρ

EF

∫ EF

0

dE

√

E

EF

=
3

2
ΩUCρ

∫ 1

0

dx
√
x where x =

E

EF
, dx =

dE

EF
= ΩUCρ

=
N

NUC
, (3.1.17)

which is just the number of electrons per unit cell. In close analogy we evaluate
the energy per electron as

E(0)

N
=

NUC
N

∫ EF

−∞
dE Eρ(E)

=
3

2

∫ EF

0

dE

(
E

EF

) 3
2

=
3

2
EF

∫ 1

0

dx′ (x′)
3
2

=
3

2
EF

2

5

=
3

5
EF . (3.1.18)
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We complement this expression with that of the (constant) energy density,

1

ΩUC

∫ EF

−∞
dE Eρ(E) =

3

5
ρEF

=
3

5
ρ
h̄2k2

F

2m

=
3

5

h̄2

2m

(
3π2
) 2

3 (ρ)
5
3 , (3.1.19)

which will be needed as the starting point of Thomas-Fermi theory. Finally
combining Eqs. (3.1.18) and (3.1.13) we get

E(0)

N
=

2.21

(rs/aB)2
Ryd . (3.1.20)

3.2 Simple Metals

Of course, in view of the crude approximations underlying the Sommerfeld
theory of metals we may ask how well it is able to describe the properties
of real materials. Initially, the theory was invented by Sommerfeld in order
to describe the electronic properties especially of the simple metals. For this
reason we shall have a closer look at this class of elements. In the schematic
periodic table given in Fig. 3.4 we have highlighted the sp-bonded metals to be

Li

Na

K

Rb

Be

Mg

Ca

Sr

3d

4d

Zn

Cd

Al

Ga

In

2p

3p

4p

5p

Figure 3.4: Section of the periodic table.

discussed in the present section. The band structures as well as the total and
partial, i.e. the angular momentum projected densities of states (DOS) of these
elements are displayed in Figs. 3.5, 3.6, 3.7, and 3.8. They grew out of self-
consistent calculations as based on density functional theory within the local
density approximation, which were performed using the augmented spherical
wave (ASW) method [172, 48] in its relativistic implementation but ignoring
spin-orbit coupling. Although the exact shape of the partial DOS depends on
the particular decomposition of the total DOS they nevertheless give a good
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Figure 3.5: Electronic bands of sp-valent metals.
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Figure 3.6: Electronic bands of sp-valent metals.
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Figure 3.7: Total and partial densities of states (DOS) of sp-valent metals.
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Figure 3.8: Total and partial densities of states (DOS) of sp-valent metals.
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measure for the energy dependent distribution of the electronic states among
the orbitals involved.

In a first step the band structures and the DOS shown in Figs. 3.5, 3.6, 3.7,
and 3.8 should be related to the free electron dispersion curves displayed in Figs.
3.1 to 3.3 as well as to the square root dependence of the free electron density
of states, Eq. (3.1.16). Obviously, Na, Mg, and Al across the second period
and Al, Ga, and In down group III are good nearly free electron (NFE) metals.
In the 3rd and 4th period elements left to Ga and In the NFE behaviour,
although still visible in the lower energy range, is distorted by the presence
of the d-states. A different kind of distortion show the densities of states of
the first period elements Li and Be. In general, due to the different number of
valence electrons the DOS of the alkali metals are NFE-like up to the Fermi
energy whereas the increased electron count of the group II elements leads to
a distinct minimum at EF in particular for the hexagonal metals. The latter
effect becomes visible for Zn and Cd due to our scaling of the DOS curves,
which ignores the high DOS of the filled d-states. Moreover, we point to the
dominating influence of s-states at the bottom of the bands of all the sp-valent
metals (except for Zn and Cd), which is superseded by a growing p-character
as the energy increases.

Going into more detail we turn to aluminum, which band structure deviates
only little from the free electron dispersion, Fig. 3.1. The major change is the
band splitting along the symmetry lines W - L and X - W - K (Note, that
the free electron bands have been calculated for a different lattice constant
and hence show a different scaling). The nearly free electron behaviour of this
metal has been confirmed by comparisons of deHaas-van Alphen data with free
electron Fermi surface calculations the latter also explaining the positive sign of
the Hall coefficient [10]. The full band structure has been determined via angle-
resolved photoemision (ARUPS) experiments by Levinson et al. who compared
their results to electronic structure calculations by Singhal and Callaway [100,
147]. Some of these results are depicted in Fig. 3.9, which reveal a generally
good agreement. Yet, a distinct difference should be noted which consists of
the deviations concerning the position of the highest occupied state at both
Γ and X. Such differences occur in all the simple metals the most striking
example probably being Na and have been the subject of intensive discussion
unitl recently (see [46] for more details).

Having gained some experience from Al we now turn to the abovementioned
deviations from NFE like electronic states visible for Li and Be. They are quite
obvious from both the DOS and the band structure. Comparing, in particular,
Be to Mg we observe the deeper minimum of the DOS at EF . It can be traced
back to the shifts of the highest occupied states at L, Γ, and M of the Mg bands,
which are several eV higher in energy for Be. The resulting gaps amount to 6
and 2 eV, respectively, which is much larger than the 1 eV gap present at the
X point of Al. The changes appearing when going from Mg to Be, however,
are readily explained by the fact that the first row elements have no p-core
electrons and hence the screening of the nuclear Coulomb potential is much
reduced. This effect is less pronounced for the 2p- than for the 2s-electrons,
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Figure 3.9: Experimental band structure of Al as obtained by Levinson et. al.
from ARUPS [100], compared to calculations by Singhal and Callaway [147].
(a) Bands along Γ – X: free electron calculations with an an effective massm∗ =
1.1m (dashed) and electronic structure calculations by Singhal and Callaway
(solid); (b) Bands along X – W : electronic structure calculations by Singhal
and Callaway (dashed). Reproduced by permission of The Americal Physical
Society from H. J. Levinson, F. Greuter, and E. W. Plummer, Experimental

band structure of aluminum, Phys. Rev. B 27, 727 (1983).

which are closer to the nucleus. Since of the three states mentioned before those
at L and Γ contain a higher 2s contribution as compared to the corresponding
state at the M point (note e.g. the relative 2s- and 2p-contributions to the DOS
at -3.2 eV and 1.5–2.0 eV, respectively) the energetic shifts are larger for the
former two points.

In closing this section we complement the band structures of the simple
metals as shown in Figs. 3.5 and 3.6 by that of fcc Ni as given in Fig. 3.10.
On comparing this band structure to that of fcc Al we observe rather good
agreement in the low energy region up to approximately 2.5 eV below the Fermi
energy. In particular, the parabolic behaviour is clearly visible. In contrast,
there are substantial deviations from the free electron behaviour in the vicinity
of the Fermi energy due to the appearence of five rather flat bands in the region
[−2.5 : 0] eV. These are the Ni 3d states, which are much more localized and,
hence, display only a small dispersion. Yet, by hybridizing with the s and
p parabolic bands they distort these bands considerably and only at energies
above the EF the parabolic behaviour of the latter is restored. To conclude,
even in the transition metal series free electron behaviour is still present albeit
with distortion in the energy region of the more localized d states. While this is
generally true for all the transition metals, the position of the d level of course
varies due to the increased occupation of these bands across the series.
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Figure 3.10: Electronic bands of Ni.
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Chapter 4

The electronic ground state

4.1 Independent electron approximation

Having approximately separated the ionic and electronic degrees of freedom we
concentrate from now on on the electronic Hamiltonian (2.2.12), i.e.

H0 = H0({ri,Rµ})
= Hion−ion({Rµ}) +Hel({ri}) +Hion−el({ri,Rµ}) , (4.1.1)

where the ionic positions now enter as parameters rather than dynamic vari-
ables. Using Eqs. (2.1.2) to (2.1.4) we may rewrite this Hamiltonian as

H0 = Hel,kin({ri}) +Hext({ri}) +Hel−el({ri}) , (4.1.2)

where

Hel,kin({ri}) =
∑

i

[

− h̄2

2m
∇2
i

]

, (4.1.3)

Hel−el({ri}) =
1

2

e2

4πǫ0

∑

i,j
j 6=i

1

|ri − rj |
, (4.1.4)

Hext({ri}) = Hion−ion({Rµ}) +Hion−el({ri,Rµ})

=
1

2

∑

µν
µ6=ν

Vion−ion(Rµ − Rν) +
∑

i

[
∑

µ

Vion−el(ri − Rµ)

]

=
1

2

e2

4πǫ0

∑

µν
µ6=ν

Zval,µZval,ν
|Rµ − Rν |

− e2

4πǫ0

∑

i

∑

µ

Zval,µ
|Rµ − ri|

=:
∑

i

vext(ri) . (4.1.5)

Here, we have combined the ion-ion and ion-electron interaction to the socalled
external potential. Note that the term “external” does not indicate that the

49
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ions are outside the solid but that the ions can be distinguished from the
identical electrons as an entity of themselves. Eventually, we are in a position
to write the Hamiltonian as

H0 =
∑

i

[

− h̄2

2m
∇2
i + vext(ri)

]

+
1

2

1

4πǫ0

∑

i,j
j 6=i

e2

|ri − rj |

=: H
{1}
0 +H

{2}
0 , (4.1.6)

i.e. as the sum of a single particle term and an interaction term. While the
former comprises a single sum over terms, which act in the same way onto all

electrons, the last term, H
{2}
0 , represents the electron-electron interaction and

gives rise to an additional potential for each electron.
Since the Hamiltonian (4.1.6) involves all the electrons the wave function

growing out of Schrödingers equation (2.2.2)

ψᾱ = ψᾱ({ri,Rµ}) , (4.1.7)

is a many-particle wave function, which likewise depends on all the electronic
coordinates.

An idealized form of the Hamiltonian (4.1.6) results from the indepen-
dent particle approximation already mentioned in Sec. 3.1, where the electron-
electron interaction is completely neglected. In this case the Hamiltonian falls
into a sum of single particle Hamiltonians

H0 ≈ H
{1}
0 =

∑

i

H
(i)
0 (ri, {Rµ}) , (4.1.8)

where each

H
(i)
0 (ri, {Rµ}) = − h̄2

2m
∇2
i + vext(ri) , (4.1.9)

acts on a single electron only. As a consequence, all these single particle Hamil-
tonians commute [

H
(i)
0 , H

(j)
0

]

= 0 , (4.1.10)

and we are able to specifiy the complete wave function by first solving the much
simpler single particle problems

H
(i)
0 χαi

(ri, {Rµ}) = Eαi
χαi

(ri, {Rµ}) , (4.1.11)

and then building the many-body wave functions as the direct product of the
single particle eigenfunctions,

ψᾱ({ri,Rµ}) =
⊗

i

χαi
(ri, {Rµ}) with ᾱ = {αi} . (4.1.12)

In general, any wave function can then be represented by an expansion in these
direct products as

ψ({ri,Rµ}) =
∑

ᾱ

cᾱψᾱ({ri,Rµ}) . (4.1.13)
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Since each H
(i)
0 acts only on one of the factors, reproducing it with an prefactor

Eαi
, these product wave functions obviously solve Schrödingers equation (2.2.2)

with the eigenvalues given by

Eᾱ =
∑

i

Eαi
. (4.1.14)

Two points deserve special attention:

• Even in case that the Hamiltonian (4.1.6) can be expressed as the sum
(4.1.8) of single particle Hamiltonians (4.1.9), Eq. (4.1.12) is valid only
for distinguishable particles. In contrast, for identical particles the many-
body wave function must obey additional symmetries, which are related
to the exchange of particles. This will be the subject of the following
chapter.

• If the electron-electron interaction cannot be neglected the wave func-
tion turns into a correlated function, which can no longer be written as
a direct product. Nevertheless, since the product wave functions (4.1.12)
of the uncorrelated problem form a complete set, they may still serve as
basis functions in an expansion of the solution to the full problem like
in Eq. (4.1.13). This goes under the term “configuration interaction”. A
different approach arises from approximating the electron-electron inter-
action by an effective single-particle potential. In this case the complete
wave function could still be written as a product of single particle wave
functions with the external potential vext complemented by the so re-
duced pair potential. Hartree-Fock as well as density functional theory
go along this line, which we will discuss in much more detail in later chap-
ters. A simpler approach consists of the Hartree method, which ignores
the previous remark, hence, the identity of the electrons. However, it
still makes clear the main ideas and for this reason will be described in
the present chapter. Thus our qualitative discussion of the independent
particle approximation reaches far beyond the rather pedagogical aspects
emphasized above.

Like Hartree-Fock as well as density functional theory the Hartree method
aims especially at the electronic ground state. Note that concentrating on the
ground state actually is not a restriction in view of the rather high Fermi tem-
peratures discussed in Sec. 3.1. For the ground state the minimum property
of the total energy suggests to employ a variational procedure for the approxi-
mate calculation of the electronic wave function. It is thus worthwhile to take
a closer look at the underlying variational approach before we deal with the
Hartree method.

4.2 The variational principle

The variational methods are based on the rather general variational principle,
which identifies the extremal expectation values of a given operator with its
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eigenvalues. In order to be concrete we consider the eigenvalue problem of an
Hermitian operator A defined in Hilbert space H and write down the following
theorem:

Any state |ψ〉 within the Hilbert space H, which has a finite norm
and for which the expectation value

〈A〉ψ =
〈ψ|A|ψ〉
〈ψ|ψ〉 (4.2.1)

of an Hermitian operator A is stationary, is an eigenvector of the
discrete spectrum of A with eigenvalue 〈A〉ψ , and conversely.

In order to prove this theorem we first note that the expectation value obviously
is stationary when the variation vanishes, i.e.

δ〈A〉ψ !
= 0 . (4.2.2)

Since

δ〈A〉ψ =
1

〈ψ|ψ〉δ〈ψ|A|ψ〉 −
1

〈ψ|ψ〉2 〈ψ|A|ψ〉δ〈ψ|ψ〉

=
1

〈ψ|ψ〉
[

δ〈ψ|A|ψ〉 − 〈A〉ψδ〈ψ|ψ〉
]

=
1

〈ψ|ψ〉
[

〈δψ| (A− 〈A〉ψI) |ψ〉 + 〈ψ| (A− 〈A〉ψI) |δψ〉
]

,

(4.2.3)

this condition is fulfilled if

〈δψ| (A− 〈A〉ψI) |ψ〉 + 〈ψ| (A− 〈A〉ψI) |δψ〉 = 0 . (4.2.4)

Here we have used the positive definiteness of the norm of the wave function.
Still, we may not yet conclude that both terms on the left hand side vanish
for, being the variations of the 〈ψ| and |ψ〉, 〈δψ| and |δψ〉 are not independent
of each other. However, Eq. (4.2.4) will hold for any variation of the wave
function. Taking, in particular, i|ψ〉, we obtain

|δ (iψ)〉 = i|δψ〉 , 〈δ (iψ) | = −i〈δψ| (4.2.5)

and from this

−i〈δψ| (A− 〈A〉ψI) |ψ〉 + i〈ψ| (A− 〈A〉ψI) |δψ〉 = 0 . (4.2.6)

Multiplying Eq. (4.2.6) by i and adding and subtracting, respectively, the result
to and from Eq. (4.2.4) we arrive indeed at two independent equations,

〈δψ| (A− 〈A〉ψI) |ψ〉 = 0 (4.2.7)

〈ψ| (A− 〈A〉ψI) |δψ〉 = 0 . (4.2.8)



4.3. THE RITZ VARIATIONAL METHOD 53

Again, this holds for any variation and we are able to note

(A− 〈A〉ψI) |ψ〉 = 0 (4.2.9)
(
A+ − 〈A〉∗ψI

)
|ψ〉 = 0 . (4.2.10)

Since A is Hermitian and, hence, has real eigenvalues both equations are identi-
cal. As a consequence, each wave function satisfying Eq. (4.2.2) is an eigenstate
of the operator A with eigenvalue 〈A〉ψ .

Conversely, if |ψ〉 is an eigenvector of the operator A with eigenvalue 〈A〉ψ ,

A|ψ〉 = 〈A〉ψ |ψ〉 , (4.2.11)

multiplication with 〈ψ| leads to Eq. (4.2.1). In addition, for an Hermitian
operator A Eq. (4.2.11) results via Eq. (4.2.3) in Eq. (4.2.2), and the theorem
is proven.

Although the above theorem holds for any Hermitian operator its important
application arises forA being the Hamiltonian of a quantum mechanical system.
Denoting the ground state by the subscript 0 we obtain the following lemma:

For any wave vector |ψ〉 the expectation value of the Hamiltonian
H is greater or equal than the energy E0 of the ground state,

〈H〉ψ ≥ E0 . (4.2.12)

In order to prove this inequality we use the spectral representation ofH in terms
of its eigenvalues Ei and projection operators Πi on the respective eigenspaces
and write

〈H〉ψ − E0 =
〈ψ| (H − E0) |ψ〉

〈ψ|ψ〉

=

∞∑

i=0

(Ei − E0)
〈ψ|Πi|ψ〉
〈ψ|ψ〉 . (4.2.13)

Of course, this can be readily extended to a continuous spectrum. Unless |ψ〉
is the (nondegenerate) ground state, the sum comprises only positive contribu-
tions and Eq. (4.2.12) is thus valid.

4.3 The Ritz variational method

A well known application of the variational principle arises in form of the
Rayleigh-Ritz variational method. It seeks for solutions of Schrödingers equa-
tion in a space H′ more restricted than the Hilbert space H. Within this
space the wave function depends on a set of trial functions |χi〉 and variational
parameters αi,

|ψ〉 = f ({|χi〉} , {αi}) . (4.3.1)
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In practice, the trial functions and the function f must be simple enough to
allow for an easy calculation of the energy functional,

〈H〉ψ =
〈ψ|H |ψ〉
〈ψ|ψ〉 , (4.3.2)

and, at the same time, must closely approximate the full Hilbert space H. For
this reason, the choice of trial functions has a decisive influence on the quality
of the final approximate solution.

Combining Eqs. (4.3.1) and (4.3.2) we write the energy as a function of the
variational parameters as

〈H〉ψ = g ({αi}) (4.3.3)

and evaluate the parameters from the variational principle

∂

∂αi
〈H〉ψ !

= 0 ∀i (4.3.4)

as α
(0)
i . Once these extremal values are fixed we are in a position to calculate

the optimal approximation to the ground state wave function

|ψ(0)〉 = f
(

{|χi〉} ,
{

α
(0)
i

})

(4.3.5)

as well as to the energy

〈H〉ψ(0) = g
({

α
(0)
i

})

. (4.3.6)

In practice, this procedure leads to very good results. Obviously, the energy
(4.3.6) is closer to the exact value the closer the approximate wave functions
approaches its exact counterpart. However, due to the stationary property, Eq.
(4.2.2), the difference of the energies is infinitesimal of higher order than the
difference of the wave functions. As a consequence, the method is especially
suited for evaluating the ground state energy.

A particularly appealing and actually much used realization of the Ritz
variational method arises if the wave function |ψ〉 can be represented as a
linear combination of the trial functions,

|ψ〉 =

m∑

i=1

αi|χi〉 . (4.3.7)

In this case the restricted Hilbert space H′ likewise is a linear vector space and,
hence, a subspace of the original Hilbert space H.

Writing Eq. (4.3.4) in analogy to the second line of Eq. (4.2.3) as

∂

∂αi
〈H〉ψ =

1

〈ψ|ψ〉

[
∂

∂αi
〈ψ|H |ψ〉 − 〈H〉ψ

∂

∂αi
〈ψ|ψ〉

]

!
= 0 (4.3.8)
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and inserting into this Eq. (4.3.7), while remembering the positive definiteness
of the norm, we obtain

∂

∂αi

∑

kl

α∗
kαl

[

〈χk|H |χl〉 − 〈H〉ψ〈χk|χl〉
]

!
= 0 , (4.3.9)

and from this the linear equation system

∑

k

α∗
k

[

〈χk|H |χi〉 − 〈H〉ψ〈χk|χi〉
]

!
= 0 , (4.3.10)

which requires that the determinant of the coefficient matrix, the secular de-
terminant, vanishes,

∣
∣
∣〈χk|H |χi〉 − 〈H〉ψ〈χk|χi〉

∣
∣
∣

!
= 0 . (4.3.11)

From this the approximate eigenvalues 〈H〉(0)ψ as well as the corresponding
eigenvectors

|ψ(0)〉 =

m∑

i=1

α
(0)
i |χi〉 (4.3.12)

can be accessed. In passing we note that in case of complex parameters αi both
the real and imaginary part of these parameters must be varied or, equivalently,
both αi and α∗

i .

4.4 The Hartree equations

A yet different realization of the Ritz variational method arises from applying
it to the Hamiltonian (4.1.6) describing the system of ions and electrons and
minimizing the energy functional with respect to the shape of the single-particle
wave functions. This step, first taken by Hartree [72], will allow to go beyond
the independent electron approximation (4.1.8) and to approximately include
the electron-electron interaction covered by the last term of Eq. (4.1.6).

Although this latter contribution hinders representing the many-body wave
function as a direct product of single-particle functions like in Eq. (4.1.12), we
may nevertheless use this form as the starting point for the variational method.
We thus write

ψ({ri,Rµ}) =
⊗

i

χi(ri, {Rµ}) , (4.4.1)

where the single-particle functions are assumed to be normalized,
∫

d3ri χ
∗
i (ri, {Rµ})χi(ri, {Rµ}) = 1 ∀i . (4.4.2)

Combining the approach (4.4.1) with the Hamiltonian (4.1.6) we calculate the
energy functional as

〈H0〉ψ =

∫

d3r1 . . . d
3rN ψ∗H0ψ
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=
∑

i

∫

d3ri χ
∗
i (ri)

[

− h̄2

2m
∇2
i + vext(ri)

]

χi(ri)

+
1

2

1

4πǫ0

∑

i,j
j 6=i

∫

d3ri

∫

d3rj χ
∗
i (ri)χ

∗
j (rj)

e2

|ri − rj |
χj(rj)χi(ri) ,

(4.4.3)

where we have suppressed the dependence of the single-particle functions on
the (fixed) positions of the ions for simplicity in writing. In addition, we have
used the normalization (4.4.2). In order to find the optimal single-particle
functions we vary the expression (4.4.3) with respect to the χ∗

i (ri) and look for
the zero’s of the first variation. As already mentioned at the end of the previous
section this includes variation of both χ∗

i (ri) and χi(ri), which, however, are
not independent. As a consequence, if we want to treat χ∗

i (ri) and χi(ri) as
independent functions, we have to include the normalization conditions (4.4.2)
via Lagrange parameters and obtain the variational expression

δ

(

〈H0〉ψ −
N∑

i=1

λi

∫

d3ri χ
∗
i (ri)χi(ri)

)

!
= 0 . (4.4.4)

Inserting into this Eq. (4.4.3) we arrive at

∑

i

∫

d3ri δχ
∗
i (ri)

[

− h̄2

2m
∇2
i + vext(ri)

+
1

4πǫ0

∑

j
j 6=i

∫

d3rj χ
∗
j (rj)

e2

|ri − rj |
χj(rj) − λi

]

χi(ri)
!
= 0 .

(4.4.5)

The factor 1
2 in the last term has vanished since χ∗

i (ri) appears twice in the
double sum. Eq. (4.4.5) holds for arbitrary variations of the single-particle wave
functions. Furthermore, it must be valid for any dependence of the single-
particle functions on ri. As a consequence, the square bracket term in the
integral entering Eq. (4.4.5) must vanish this leading to the Hartree equations

[

− h̄2

2m
∇2
i + vext(ri)

+
1

4πǫ0

∑

j
j 6=i

∫

d3rj χ
∗
j (rj)

e2

|ri − rj |
χj(rj) − λi

]

χi(ri) = 0 ,

(4.4.6)

which have the character of single-particle equations, where the Lagrange pa-
rameters λi and the functions χi(ri) are the eigenvalues and eigenfunctions,
respectively. In order to make this explicit we write the Hartree equations as

[

− h̄2

2m
∇2
i + v

(i)
eff (ri)

]

χi(ri) = λiχi(ri) , (4.4.7)
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with the effective single-particle potential

v
(i)
eff (ri) = vext(ri) +

e2

4πǫ0

∑

j
j 6=i

∫

d3rj
|χj(rj)|2
|ri − rj |

. (4.4.8)

While the first two contributions, the kinetic energy and the external poten-
tial produced by the ions, are already known from the independent particle
approximation, Eqs. (4.1.8) and (4.1.9), the last term in Eq. (4.4.8) is new.
This socalled Hartree potential represents a repulsive potential arising from
the interaction with the remaining N − 1 electrons. However, note that only
the integral over all other single-particle wave functions enters and, hence, their
particular form is washed out. For this reason, this approach of including only
the Coulomb potential arising from an average charge distribution of the re-
maining electrons has proven very useful for metallic systems but we might
need more refined approximations to the electronic problem once the spatial
structure of their wave functions becomes more pronounced.

As is obvious from Eq. (4.4.8), the Hartree potential contains the square of
the single-particle wave functions and, hence, strictly speaking, can be evalu-
ated only after the single-particle wave functions have been determined via Eq.
(4.4.7), which, however, itself depends on the effective potential. The dilemma
is resolved by starting from a first guess for the effective potential, inserting this
into Eq. (4.4.7) and evaluating a first approximation to the single-particle wave
functions χi(ri). Once this has been done an improved version of the effective
potential can be calculated via Eq. (4.4.8), which again enters Eq. (4.4.7). This
establishes a cycle of successive evaluations of these two equations, which have
to be iterated until the required accuracy is attained. The wave functions is
thus determined self-consistently and for this reason the procedure is called the
self-consistent field method.

As already mentioned at the end of Sec. 4.1 the simple product ansatz
(4.1.12)/(4.4.1) does not reflect the fact that the electrons in a solid are iden-
tical, hence, cannot be distinguished. As a consequence, the Hartree equations
do not provide a correct prescription of a system of identical particles. This is
signalled by the fact that in the effective potential as given by Eq. (4.4.8) the
double sum excludes the term i = j and thus still depends on the particular
electron it is applied to. In other words, the Hartree potential still allows to
distinguish the electrons in a many-body system. In the following chapter we
will learn about means to account for the identity of the electrons, which lay
ground for the more refined Hartree-Fock as well as density functional theo-
ries. Nevertheless, the main route for evaluating the electronic states, i.e. the
variational procedure and the self-consistent field method, will stay the same
and thus its previous outline has a more general character.
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Chapter 5

The electronic many-body

problem

5.1 Identical particles

For a quantum mechanical systems of identical particles the construction of the
Hilbert space as a product of single particle spaces with wave functions arising
as simple direct products

|χᾱ〉 =

N⊗

i

|χ(i)
αi
〉 with ᾱ = {αi} , (5.1.1)

needs some modifications. Here we have omitted the spatial coordinates of the
particles; αi labels the single particle states of particle i and the upper index
labels the individual particles.

In classical mechanics the identity of particles does not have substantial
consequences, since each particle passes through a well defined trajectory and
at the same time can be marked and identified without disturbing the system
considerably. This is completely different in a quantum mechanical system,
where marking a single particle corresponds to a measurement process and
causes a substantial distortion of the particular state. We are thus faced with
the fundamental quantum mechanical principle saying that identical particles
can not be distinguished by any means.

Of course, this has drastic consequences for the form of the Hilbert space,
the many-body wave function as well as the choice of operators. Besides being
self-adjoint, operators for many-body systems must be fully symmetric with
respect to all particles. Since, if any operator would allow to distinguish the
particles they would no longer be identical. Needless to mention that each
operator thus has to depend on all single particle variables in the same way.

Note that the just formulated requirement is, in particular, not fulfilled by
the effective potential (4.4.8), hence, the effective Hamiltonain of the Hartree
method where each particle experiences the potential generated by all other

59
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particles. Since it is, in principle, fully correct to exclude the interaction of a
particle with itself, the just mentioned deficiency of the Hartree potential (4.4.8)
points to a defect in the assumptions underlying the derivation of the effective
equations (4.4.7). While we will learn methods to overcome such defects in the
present chapter, their application will give rise to an improved description of
the electronic structure within Hartree-Fock theory, which we will turn to in
Chap. 6.

For the wave functions the identity of all particles means that any permu-
tation of particles must not change any expectation value. While becoming a
bit more formal we nevertheless start out from the direct products (5.1.1) and
define for each permutation

P : (1, 2, 3, . . . , N) −→ (P (1), P (2), P (3), . . . , P (N)) (5.1.2)

of numbers 1, . . . , N a permutation operator by

PP
N⊗

i

|χ(i)
αi
〉 =

N⊗

i

|χ(P (i))
αi

〉 , (5.1.3)

which we have selected to permute the particles in the single particle states.
Of course, we could have likewise opted for permuting the states while keeping
the particles fixed. We are now able to formulate the above principle as

〈χᾱ|P+
PAPP |χᾱ〉 =

N⊗

i

N⊗

j

〈χ(i)
αi
|P+
PAPP |χ(j)

αj
〉

!
=

N⊗

i

N⊗

j

〈χ(i)
αi
|A|χ(j)

αj
〉 = 〈χᾱ|A|χᾱ〉 , (5.1.4)

valid for any operator A.
For N particles there exist N ! such permutations, which form a non-Abelian

group, the symmetric group SN . As well known, all permutations can be repre-
sented as products of the transpositions Tij , which merely exchange two parti-
cles and thus may be regarded as fundamental permutations. For N particles,
there exist 1

2N(N − 1) such transpositions. Applying a transposition operator
Tij = PTij

twice we obtain

T 2
ij = I ⇐⇒ Tij = T −1

ij , (5.1.5)

where I is the unity operator. The non-Abelian property of SN derives from
the fact that already the Tij in general do not commute,

[Tij , Tkl] 6= 0 , (5.1.6)

unless they have no elements in common. Although the representation of a
specific permutation by transpositions itself is not unique, each permutation
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comprises either even or odd transpositions. The parity of the permutation,
i.e. the quantity

(−)P = (−1)Number of transpositions making P (5.1.7)

is thus fixed. This allows to distinguish even ((−)P = +1) and odd ((−)P =
−1) elements of the group SN .

Since Eq. (5.1.4) holds for any N -particle state it is also valid for arbitrary
matrix elements, which may be written as

〈χ|A|ψ〉

=
1

4

{

〈χ+ ψ|A|χ+ ψ〉 − 〈χ− ψ|A|χ− ψ〉

+i〈χ− iψ|A|χ− iψ〉 − i〈χ+ iψ|A|χ+ iψ〉
}

, (5.1.8)

and, hence, for the operators themselves,

P+
PAPP = A . (5.1.9)

In particular, for A = I we have

P+
P PP = I . (5.1.10)

The permutation operators are thus unitary operators

P+
P = P−1

P , (5.1.11)

and, multiplying Eq. (5.1.9) from the left with PP , we arrive at the important
result

APP = PPA , (5.1.12)

hence,

[PP ,A] ≡ 0 ∀P ∈ SN . (5.1.13)

For the description of a system of identical particles only those operators come
into question, which commute with all permutations of the symmetric group
SN . This is the quantum mechanical formulation of the principle that identical
particles cannot be distinguished.

As a consequence of Eq. (5.1.13), the possible many-body states must be
simultaneous eigenstates of both the operators A and all the permutation op-
erators PP , hence, in particular, of all transposition operators Tij . While, due
to Eq. (5.1.6), PP in general is not self-adjoint, the Tij are both self-adjoint
and unitary operators according to Eqs. (5.1.5) and (5.1.11) and thus have
eigenvalues ±1. This allows to distinguish two different types of many-body
wave functions by their symmetry with respect to transpositions, namely

symmetric functions: Tij |ψ〉 = +|ψ〉 ∀i, j (5.1.14)

and antisymmetric functions: Tij |ψ〉 = −|ψ〉 ∀i, j .(5.1.15)
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For this reason, of the N ! states (5.1.3) only two states come into question
while the remaining N ! − 2 states (for N > 2) violate Eq. (5.1.13) and, hence,
must be ruled out. We thus note

The possible states of a system of identical particles are either sym-
metric or antisymmetric with respect to exchange of two particles!

As yet, it is not at all obvious that simultaneous eigenfunctions of all the
transposition operators exist since in general they do not commute. However,
we may construct such functions by means of the symmetrization and antisym-
metrization operator

S :=
1

N !

∑

P∈SN

PP , (5.1.16)

A :=
1

N !

∑

P∈SN

(−)PPP , (5.1.17)

which fulfil the identities

TijS =
∑

P∈SN

TijPP =
∑

P∈SN

PP = +S (5.1.18)

TijA =
∑

P∈SN

(−)P TijPP = −
∑

P∈SN

(−)TijP TijPP

= −
∑

P∈SN

(−)PPP = −A . (5.1.19)

We may thus construct symmetric and antisymmetric wave functions from the
direct product (5.1.1) as

|ψ+〉 = S|χᾱ〉 = S
N⊗

i

|χ(i)
αi
〉 (5.1.20)

|ψ−〉 = A|χᾱ〉 = A
N⊗

i

|χ(i)
αi
〉 , (5.1.21)

which indeed, according to Eqs. (5.1.18) and (5.1.19), fulfil Eqs. (5.1.14) and
(5.1.15) as well as

PP |ψ+〉 = |ψ+〉 ∀P ∈ SN , (5.1.22)

PP |ψ−〉 = (−)P |ψ−〉 ∀P ∈ SN . (5.1.23)

To summarize, since |ψ+〉 and |ψ−〉 are simultaneous eigenfunctions of all trans-
position operators with different eigenvalues +1 and −1, respectively, they span
one-dimensional orthogonal subspaces. Just to make this explicit we note

〈ψ−|ψ+〉 = 〈ψ−|Tij |ψ+〉 = 〈ψ−|T +
ij |ψ+〉 = −〈ψ−|ψ+〉 !

= 0 . (5.1.24)
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Since the permutation operators commute with the Hamiltonian the symmetry
character of a many-body wave function is preserved for all times. Moreover,
due to Eq. (5.1.13) there exists no measurement or preparation process at all
to transfer a state from one subspace to the other, i.e. to change the sym-
metry character of the wave function. In passing we note that according to
Eqs. (5.1.22) and (5.1.23) the permutation operators are self-adjoint operators
within these two one-dimensional subspaces.

Within the N !-dimensional space spanned by the states (5.1.3) for all per-
mutations P ∈ SN the symmetric and antisymmetric states |ψ+〉 and |ψ−〉 thus
define the only one-dimensional representation spaces of the group SN . The
remaining N ! − 2 states (for N > 2) are of “mixed” symmetry; for each of
these states exist two different transposition operators with different eigenval-
ues. As already mentioned above, these states thus do not fulfil Eqs. (5.1.14)
and (5.1.15), hence, they do not obey the general physical principle (5.1.13)
and can be omitted from further considerations.

So far, all our considerations were for a particular set of single particle states

|χ(i)
αi 〉, where each particle i occupied the state labelled αi. For all the differ-

ent single particle states αi the states |ψ+〉 and |ψ−〉 span the fully symmetric

Hilbert space H(+)
N and the fully antisymmetric Hilbert space H(−)

N , respec-
tively, while the states of mixed symmetry give rise to the higher dimensional

Hilbert space H(M)
N . As a result, the complete Hilbert space falls into three

orthogonal Hilbert subspaces,

HN = H(+)
N ⊕H(−)

N ⊕H(M)
N , (5.1.25)

and the operators (5.1.16) and (5.1.17) act as projection operators onto the
physical Hilbert spaces. As an example we note for the antisymmetrization
operator

A2 =
1

(N !)2

∑

P

∑

P ′

(−)P (−)P
′PPPP ′ =

1

(N !)2

∑

P

∑

P ′

(−)PP
′PPP ′

=
1

(N !)2

∑

P ′

{
∑

P

(−)PPP
}

=
1

(N !)

{
∑

P

(−)PPP
}

= A .

(5.1.26)

5.2 Bosons and Fermions; Pauli principle

As seen in the previous section, the requirement of permutation symmetry of
the possible many-body states led us to divide the complete Hilbert space into
three orthogonal subspaces as noted in Eq. (5.1.25). According to Eq. (5.1.13)
no state can change from one of these subspaces to another, neither by simple
time evolution nor by any preparation process. Finally, states falling into the

Hilbert space H(M)
N were shown to violate Eq. (5.1.13) and we are thus left with

the Hilbert spaces H(+)
N and H(−)

N of the fully symmetric and antisymmetric
states.
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Still, the question remains, which real systems can be assigned to these
two Hilbert spaces. While a formal answer to this question can only be given
within relativistic quantum field theory, experience shows that the socalled
“spin-statistics theorem” [125] holds:

The Hilbert space of a system of identical particles with integer

spin (S = 0, 1, 2, . . .) is the totally symmetric space H(+)
N and the

Hilbert space of a system of identical particles with half-integer spin

(S = 1
2 ,

3
2 ,

5
2 , . . .) is the totally antisymmetric space H(−)

N .

In quantum statistics the symmetry character of the many-body wave function
of identical particles with integer and half-integer spin, respectively, causes
them to obey either Bose-Einstein or Fermi-Dirac statistics and for this reason
these particles are called bosons and fermions.

The many-body state of a system of bosons thus derives from Eq. (5.1.20)
as

|ψ+〉 = C+

∑

P∈SN

PP
N⊗

i

|χ(i)
αi
〉 , (5.2.1)

where we have left the normalization constant as yet unspecified. In particular,
for two particles we write

|ψ+〉 =

{
1√
2

[

|χ(1)
α1 〉 ⊗ |χ(2)

α2 〉 + |χ(2)
α1 〉 ⊗ |χ(1)

α2 〉
]

for α1 6= α2 ,

|χ(1)
α1 〉 ⊗ |χ(2)

α2 〉 for α1 = α2 .
(5.2.2)

In contrast, for fermions we obtain from Eq. (5.1.21) for the totally anti-
symmetric state

|ψ−〉 = C−
∑

P∈SN

(−)PPP
N⊗

i

|χ(i)
αi
〉 , (5.2.3)

which is formally identical to a determinant, the socalled Slater determinant,

|ψ−〉 = C− ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

|χ(1)
α1 〉 |χ(2)

α1 〉 · · · |χ(N)
α1 〉

|χ(1)
α2 〉 |χ(2)

α2 〉 · · · |χ(N)
α2 〉

...
...

...

|χ(1)
αN 〉 |χ(2)

αN 〉 · · · |χ(N)
αN 〉

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (5.2.4)

Again we have left the prefactor unspecified. Note that the products enter-
ing the Slater determinant according to Eq. (5.2.3) are direct products. In
particular, for two particles Eq. (5.2.4) becomes

|ψ−〉 =
1√
2

[

|χ(1)
α1

〉 ⊗ |χ(2)
α2

〉 − |χ(2)
α1

〉 ⊗ |χ(1)
α2

〉
]

. (5.2.5)

As is obvious from Eqs. (5.2.3) to (5.2.5) the antisymmetry with respect to
particle exchange thus has the important consequence, that these states vanish
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whenever two or more particles stay in the same single particle state. This
observation leads to the Pauli principle:

In a system of identical fermions each single particle state can be
occupied by at most one particle. In particular, two particles with
the same spin can not stay at the same position and two particles
at the same position must have opposite spin.

Again the independent particle approximation (4.1.8) gives a first qualita-
tive insight into the nature of the many-body state. Within this approximation
the many-body wave function fulfils Schrödinger’s equation

H0|ψ±〉 = Eᾱ|ψ±〉 (5.2.6)

with the energy Eᾱ given by Eq. (4.1.14). In order to prove this for the par-
ticular case N = 2 (with the two bosons occupying different states) we use Eq.
(4.1.8) and write

H0|ψ±〉 = H0
1√
2

[

|χ(1)
α1

〉 ⊗ |χ(2)
α2

〉 ± |χ(2)
α1

〉 ⊗ |χ(1)
α2

〉
]

= H
(1)
0

1√
2

[

|χ(1)
α1

〉 ⊗ |χ(2)
α2

〉 ± |χ(2)
α1

〉 ⊗ |χ(1)
α2

〉
]

+H
(2)
0

1√
2

[

|χ(1)
α1

〉 ⊗ |χ(2)
α2

〉 ± |χ(2)
α1

〉 ⊗ |χ(1)
α2

〉
]

=
1√
2

[

Eα1 |χ(1)
α1

〉 ⊗ |χ(2)
α2

〉 ± Eα2 |χ(2)
α1

〉 ⊗ |χ(1)
α2

〉

+Eα2 |χ(1)
α1

〉 ⊗ |χ(2)
α2

〉 ± Eα1 |χ(2)
α1

〉 ⊗ |χ(1)
α2

〉
]

= (Eα1 + Eα2)
1√
2

[

|χ(1)
α1

〉 ⊗ |χ(2)
α2

〉 ± |χ(2)
α1

〉 ⊗ |χ(1)
α2

〉
]

= (Eα1 + Eα2) |ψ±〉 (5.2.7)

The corresponding relation for N > 2 is proven in complete analogy.
The differences between bosons and fermions become most obvious for the

ground state. Choosing the eigenstates |χαi
〉 of the single particle Hamiltonian

such that the eigenvalues are ordered according to

E0 ≤ E1 ≤ E2 ≤ E3 ≤ . . . (5.2.8)

we arrive at the ground state wave function

|ψ+〉 = S|χ(1)
0 〉 ⊗ |χ(2)

0 〉 ⊗ . . .⊗ |χ(N)
0 〉 , (5.2.9)

where all particles accumulate in the single particle ground state and the energy
(4.1.13) assumes the value E = NE0.
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In contrast, fermions have to obey the Pauli principle. The ground state
thus must be completely different from the state (5.2.9) and we write

|ψ−〉 = A|χ(1)
0 〉 ⊗ |χ(2)

1 〉 ⊗ . . .⊗ |χ(N)
N−1〉 , (5.2.10)

with the total energy E =
∑N−1

i=0 Ei. This example already explains the well
known arrangement of the electron shells in atoms as well as the systematics
of the periodic table of the elements.

Still, the antisymmetric many-body state as given by Eqs. (5.2.3) to (5.2.5)
seems to be not completely fixed since exchange of two rows or columns in
Eq. (5.2.4) changes the sign of the Slater determinant. However, this ambi-
guity is fictituous and results if the antisymmetrization operator A given in
Eq. (5.1.17) is applied to an improperly specified direct product of single par-
ticle wave functions. In other words, we have to fix the order of single particle
states and particles in the initial direct product (5.1.1), which itself is arbitrary,
and only after that apply the antisymmetrization operator (5.1.17). Actually,
such a fixed starting composition was implied throughout in Sec. 5.1. Just to
be specific we complement the definition (5.1.1) by the standard convention
α1 ≤ α2 ≤ . . . ≤ αN , where now αi labels single particle states, i.e. the index i
labels different eigenstates not particles.

An important step forward now derives from the observation that, as a
consequence of the totally symmetric and antisymmetric construction of the
many-body wave function, it is completely characterized by the occupation
number nαi

of each of the single particle states |χαi
〉. The fundamental dif-

ference between bosons and fermions then translates into the requirement that
the occupation numbers may assume the values

nα = 0, 1, 2, 3, . . . for bosons (5.2.11)

and nα = 0, 1 for fermions . (5.2.12)

We are thus able to write Eqs. (5.2.1) and (5.2.3) in the compact form

|{n}〉 = |n0, n1, n2, . . . , nα, . . .〉 , (5.2.13)

with the only restriction that the total number of particles must be fixed,
∞∑

α=0

nα = N . (5.2.14)

With the occupation numbers at hand the normalization factors C+ and
C− are easily calculated. To this end we assume the eigenstates |χαi

〉 of the
single particle Hamiltonian to form a normalized and complete set within the
single particle Hilbert space,

〈χα|χβ〉 = δαβ (5.2.15)
∑

α

|χα〉〈χα| = I in H1 . (5.2.16)
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We then obtain for the square of the symmetric and antisymmetric wave func-
tion (5.2.1) and (5.2.3), respectively

1
!
= 〈ψǫ|ψǫ〉 = C2

ǫ

∑

P∈SN

∑

P ′∈SN

(ǫ)P (ǫ)P
′
N⊗

i

N⊗

j

〈χαi
|P+
P PP ′ |χαj

〉

= N !C2
ǫ

∑

P ′∈SN

(ǫ)P
′
N⊗

i

N⊗

j

〈χαi
|PP ′ |χαj

〉 , (5.2.17)

where ǫ = ±1. For bosons (ǫ = +1) there exist nα! non-vanishing terms for
each single particle state and we obtain for the normalization factor

C+ = (N !n0!n1! . . . nα! . . .)
− 1

2 . (5.2.18)

In contrast, for fermions (ǫ = −1) the only permutation resulting in a nonvan-
ishing norm is the identity (ǫ0 = 1) and we arrive at the result

C− = (N !)
− 1

2 . (5.2.19)

Eqs. (5.2.2) and (5.2.5) serve as illustrations. With the previous normalization
factors the many-body states (5.2.13) form a normalized and complete set,

〈n0, n1, . . . , nα, . . . |n′
0, n

′
1, . . . , n

′
α, . . .〉 = δn0n′

0
δn1n′

1
δnαn′

α

(5.2.20)
∑

{n}∑
nα=N

|n0, n1, . . . , nα, . . .〉〈n0, n1, . . . , nα, . . . | = I in H(±)
N .

(5.2.21)

Eventually, we omit the restriction Eq. (5.2.14) on the total number of particles
and construct an extended Hilbert space by adding to the N -particle Hilbert

spaces H(±)
N the Hilbert space for 0 particles,

H0 = {|0〉, 〈0|0〉 = 1, N = 0} , (5.2.22)

which consists merely of the vacuum state |0〉. The direct sum of all these
N -particle Hilbert spaces,

H(±) = H0 ⊕H(±)
1 ⊕H(±)

2 ⊕ · · · ⊕ H(±)
N ⊕ · · · , (5.2.23)

with the condition that scalar products of states from different N -particle
spaces vanish, is defined as the Fock space of a bosonic or fermionic system. In
Fock space

∑

{n}
|{n}〉〈{n}| = I in H(±) (5.2.24)

holds without any restriction for bosons and with the condition (5.2.12) for
fermions, i.e.

∑

{n}
. . . =

{ ∑∞
n0=0

∑∞
n1=0

∑∞
n2=0 · · ·

∑∞
nα=0 · · · in H(+) ,

∑1
n0=0

∑1
n1=0

∑1
n2=0 · · ·

∑1
nα=0 · · · in H(−) .

(5.2.25)
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5.3 Creation and annihilation operators

Of course, transition from an N -particle Hilbert space H(±)
N to its “neighbour-

ing” Hilbert spaces H(±)
N±1 can be accomplished only via creation or annihilation

of particles. In the present section we will define the corresponding operators,
which in Fock space play the role of ladder operators.

Concentrating on bosons first we define linear operators b+α (α = 0, 1, 2, . . .)

acting in H(+), which mediate the mapping from the Hilbert space H(+)
N onto

H(+)
N+1 via

b+α |n0, n1, n2, . . . , nα, . . .〉 =
√
nα + 1 · |n0, n1, n2, . . . , nα + 1, . . .〉 . (5.3.1)

Obviously, such “creation operators” create a particle in the single particle
state |χα〉. We note, in particular, for the vacuum state

b+α |0〉 = |0, 0, 0, . . . , nα = 1, . . .〉 = |χα〉 . (5.3.2)

Using Eq. (5.2.21) the adjoint operator of b+α is found as

bα|n0, n1, n2, . . . , nα, . . .〉
=

∑

{n′}
|{n′}〉〈{n′}|bα|n0, n1, n2, . . . , nα, . . .〉

=
∑

{n′}
|{n′}〉

[
〈n0, n1, n2, . . . , nα, . . . |b+α |n′

0, n
′
1, n

′
2, . . . , n

′
α, . . .〉

]∗

=
∑

{n′}
|n′

0, n
′
1, n

′
2, . . . , n

′
α, . . .〉

[

δn0n′
0
δn1n′

1
. . .
(

δnαn′
α−1

√

n′
α + 1

)

. . .
]

.

(5.3.3)

We thus note

bα|n0, n1, n2, . . . , nα, . . .〉 =
√
nα · |n0, n1, n2, . . . , nα − 1, . . .〉 . (5.3.4)

Hence, the adjoint operator acts like an “annihilation operator” of a particle
in the single particle state |χα〉. For the vacuum state we note especially

bα|0〉 = 0 ∀α . (5.3.5)

Combining Eqs. (5.3.1) and (5.3.4) we obtain the result

b+α bα|n0, n1, n2, . . . , nα, . . .〉 = nα · |n0, n1, n2, . . . , nα, . . .〉 , (5.3.6)

which gives rise to the definition of the self-adjoint occupation number operator

n̂α = b+α bα = n̂+
α , (5.3.7)

as well as the operator of the total particle number

N̂ =

∞∑

α=0

n̂α =

∞∑

α=0

b+α bα = N̂+ . (5.3.8)
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Obviously the latter establishes the total particle number as a dynamic vari-
able.

Combining Eqs. (5.3.2) and (5.3.4) in the way

bαb
+
α |n0, n1, n2, . . . , nα, . . .〉 = (nα + 1) · |n0, n1, n2, . . . , nα, . . .〉 (5.3.9)

and comparing to Eq. (5.3.6) we arrive at the commutation relation bαb
+
α −

b+α bα = I. In contrast, operators for different single particle states α 6= β
commute and we note

[

bα, b
+
β

]

= δαβI ,
[

bα, bβ

]

=
[

b+α , b
+
β

]

= 0 . (5.3.10)

By successively applying creation operators to the vacuum state we are able
to generate all the states (5.2.13). This leads to the single particle states |χα〉,
then to two particle states (5.2.2),

b+β b
+
α |0〉 = b+β |0, 0, 0, . . . , nα = 1, . . .〉

=

{

|0, 0, 0, . . . , nα = 1, . . . , nβ = 1, . . .〉 (α < β)√
2|0, 0, 0, . . . , nα = 2, . . .〉 (α = β)

=
√

1 + δαβ |Φαβ〉 , (5.3.11)

and finally to all higher N -particle states

· · · (b+γ )nγ · · · (b+β )nβ (b+α )nα |0〉 |∑
nα

=N

= (n0!n1! . . . nα! . . .)
1
2 |n0, n1, . . . , nα, . . .〉 |∑

nα
=N . (5.3.12)

However, there exist N ! ways of arranging the creation operators of an N -
particle state, which, according to the commutation relation (5.3.10) are all
equivalent and due to the antisymmetrization generate N !

n0!n1!···nα!··· different
states. Thus, in order to avoid such an “overcomplete” set, which would violate
the normalization, we restrict the possible arrangements of creation operators
to only a single one and choose as already proposed in Sec. 5.2 the conventional
set characterized by α1 ≤ α2 ≤ . . . ≤ αN , where groups of equal αi and αj
may be combined.

Turning to the fermion case we proceed in a similar way as for bosons but
have to take care of the antisymmetry of the many-body state. This is achieved
by defining the creation operator as

a+
α |n0, n1, n2, . . . , nα, . . .〉
= ηα

√
nα + 1 · |n0, n1, n2, . . . , nα + 1, . . .〉

= ηαδnα0 |n0, n1, n2, . . . , nα + 1, . . .〉 , (5.3.13)

where the phase factors are given by

ηα = (−1)

(∑
α−1

β=0
nβ

)

. (5.3.14)
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Note that these phase factors again imply a certain, arbitrarily preselected
ordering of the single particle states. As for bosons the adjoint operators,

aα|n0, n1, n2, . . . , nα, . . .〉
= ηα

√
nα · |n0, n1, n2, . . . , nα − 1, . . .〉

= ηαδnα1 |n0, n1, n2, . . . , nα − 1, . . .〉 , (5.3.15)

annihilate particles and we note especially for the vacuum state

aα|0〉 = 0 ∀α . (5.3.16)

In Eqs. (5.3.13) and (5.3.15) we omitted in the respective second lines the
square root factors thus accounting for the fermion condition (5.2.12). Since
η2
α = 1 and δnα1 = nα for nα = 0, 1 we are able to define the self-adjoint

occupation number operators

n̂α = a+
αaα = n̂+

α , (5.3.17)

with

n̂α|n0, n1, n2, . . . , nα, . . .〉 = nα · |n0, n1, n2, . . . , nα, . . .〉 , (5.3.18)

as well as the operator of the total particle number

N̂ =

∞∑

α=0

n̂α =

∞∑

α=0

a+
αaα = N̂− (5.3.19)

in the same manner as for bosons above.

In order to derive commutation relations for the just defined fermion oper-
ators we compare (for α < β)

a+
β a

+
α |n0, n1, n2, . . . , nα, . . . , nβ, . . .〉

= a+
β

(
ηα

√
nα + 1

)
· |n0, n1, n2, . . . , nα + 1, . . . , nβ, . . .〉

=
(
η′β
√

nβ + 1
)
·
(
ηα

√
nα + 1

)
· |n0, n1, n2, . . . , nα + 1, . . . , nβ + 1, . . .〉

(5.3.20)

with

a+
αa

+
β |n0, n1, n2, . . . , nα, . . . , nβ, . . .〉

= a+
α

(
ηβ
√
nβ + 1

)
· |n0, n1, n2, . . . , nα, . . . , nβ + 1, . . .〉

=
(
ηα

√
nα + 1

)
·
(
ηβ
√
nβ + 1

)
· |n0, n1, n2, . . . , nα + 1, . . . , nβ + 1, . . .〉 .

(5.3.21)

According to Eq. (5.3.14) we have η′β = −ηβ since η′β is built with nα + 1. We
thus note the general result

a+
β a

+
α | {n}〉 = −a+

αa
+
β | {n}〉 for α 6= β , (5.3.22)
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which represents the antisymmetry of the many-body wave function with re-
spect to exchange of two particles. Since Eq. (5.3.22) is valid for all many-body
states we note the operator identity

a+
β a

+
α + a+

αa
+
β = 0 , (5.3.23)

which, for α = β, reduces to a different formulation of the Pauli principle,

(
a+
α

)2
= 0 ∀α . (5.3.24)

For a pair of annihilators we note in complete analogy (for α 6= β)

aβaα|n0, n1, n2, . . . , nα, . . . , nβ , . . .〉
= aβ (ηα

√
nα) · |n0, n1, n2, . . . , nα − 1, . . . , nβ, . . .〉

=
(
η′β

√
nβ
)
· (ηα

√
nα) · |n0, n1, n2, . . . , nα − 1, . . . , nβ − 1, . . .〉

(5.3.25)

with

aαaβ |n0, n1, n2, . . . , nα, . . . , nβ , . . .〉
= aα

(
ηβ

√
nβ
)
· |n0, n1, n2, . . . , nα, . . . , nβ − 1, . . .〉

= (ηα
√
nα) ·

(
ηβ

√
nβ
)
· |n0, n1, n2, . . . , nα − 1, . . . , nβ − 1, . . .〉 .

(5.3.26)

Now, η′β is built with nα−1, hence, we have according to Eq. (5.3.14) η′β = −ηβ
and note the operator identity

aβaα + aαaβ = 0 , (5.3.27)

which, for α = β, reduces to

(aα)2 = 0 ∀α . (5.3.28)

Finally, the relation for a pair of a creator and an annihilator (for α 6= β) can
be derived along the same lines and results in

a+
β aα + aαa

+
β = 0 . (5.3.29)

However, for α = β the situation changes completely. Using Eqs. (5.3.13) and
(5.3.15) we write

[
a+
αaα + aαa

+
α

]
|n0, n1, n2, . . . , nα, . . .〉

= η2
α [δnα−1,0δnα,1 + δnα+1,1δnα,0] |n0, n1, n2, . . . , nα − 1, . . .〉

= |n0, n1, n2, . . . , nα − 1, . . .〉 , (5.3.30)

which leads to the operator identity

a+
αaα + aαa

+
α = I . (5.3.31)
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Defining the anticommutator of two operators by

{A,B} := AB +BA (5.3.32)

we may thus combine the previous results to the effect
{

aα, a
+
β

}

= δαβI , {aα, aβ} =
{

a+
α , a

+
β

}

= 0 , (5.3.33)

which is the analogon to Eq. (5.3.10).
As for the boson case we are able to construct any many-body fermion state

by successively applying creation operators to the vacuum state

a+
N · · · a2a

+
1 |0〉 |∑

nα
=N = |n0, n1, . . . , nα, . . .〉 |∑

nα
=N , (5.3.34)

again with the convention to use only those arrangements of operators, which
fulfil α1 ≤ α2 ≤ . . . ≤ αN .

By now, our description of a system of identical particles has started to
change away from a representation in terms of single particle states as well
as their symmetrized and antisymmetrized direct products, Eqs. (5.2.1) and
(5.2.3), towards a new language based on creation and annihilation opera-
tors. The latter usually goes under the terms “second quantization” or, more
correctly, “occupation number representation”. This new and very efficient
formalism avoids the complicated handling of many-body wave functions in-
cluding the counting of single particle occupations. Furthermore, the explicit
symmetrization and antisymmetrization, respectively, of the direct products
(5.1.1) are hidden behind the conceptually much simpler commutator and an-
ticommutator relations (5.3.10) and (5.3.33).

5.4 Representation of operators

In order to extend the very comfortable formalism provided by the definition of
creation and annihilation operators we will next express all physical observables
in terms of these somewhat “fundamental” operators. A first step into this
direction was already done by defining the occupation number operators (5.3.7)
and (5.3.17) as well as the total particle number operators (5.3.8) and (5.3.19)
for bosons and fermions, respectively.

In generalizing the notions of the previous section to other operators we use
the Hamiltonian (4.1.6) as a guideline. As already discussed in Sec. 4.1 this
operator falls into a sum of single particle operators plus a double sum over
operators acting on a pair of particles. Starting with the first term we write
the general single particle operator in analogy to Eq. (4.1.8) as

F (N) =

N∑

i

f (i) with (f (i))+ = f (i) , (5.4.1)

where we have assumed an N -particle system. However, this is no restriction at
all since the operators of interest here conserve the number of particles. Using
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the eigenstates |χαi
〉 of the single particle Hamiltonian, which, according to

Eqs. (5.2.15) and (5.2.16), form a normalized and complete set within the
single particle Hilbert space, we express the operator F in terms of the matrix
elements

〈χ(i)
α |f (i)|χ(i)

β 〉 = 〈χα|f |χβ〉 = fαβ , (5.4.2)

which, of course, are the same for all particles, hence, act in the same way in
all single particle Hilbert spaces Hi, as

F (N) =

N∑

i

∑

αβ

|χ(i)
α 〉〈χ(i)

α | f (i) |χ(i)
β 〉〈χ(i)

β |

=
∑

αβ

〈χα|f |χβ〉 ·
[
N∑

i

|χ(i)
α 〉〈χ(i)

β |
]

. (5.4.3)

Next we apply this operator to the general N -particle boson state (5.2.1). If
j1, j2, . . . , jnβ

are those nβ particles, which occupy the single particle state

|χ(i)
β 〉, we arrive at

N∑

i

|χ(i)
α 〉〈χ(i)

β | · |ψ+〉

=

N∑

i

|χ(i)
α 〉〈χ(i)

β |

·
[

C+({n})
∑

P∈SN

PP
[

. . .⊗ |χ(j1)
β 〉 ⊗ |χ(j2)

β 〉 ⊗ . . .⊗ |χ(jnβ
)

β 〉 ⊗ . . .
]
]

= C+({n})
∑

P∈SN

PP
[

. . .⊗ |χ(j1)
α 〉 ⊗ |χ(j2)

β 〉 ⊗ . . .⊗ |χ(jnβ
)

β 〉 ⊗ . . .

+ . . .⊗ |χ(j1)
β 〉 ⊗ |χ(j2)

α 〉 ⊗ . . .⊗ |χ(jnβ
)

β 〉 ⊗ . . .

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ . . .⊗ |χ(j1)
β 〉 ⊗ |χ(j2)

β 〉 ⊗ . . .⊗ |χ(jnβ
)

α 〉 ⊗ . . .

]

.

(5.4.4)

We thus end up with exactly nβ terms within the square brackets. All other
terms vanish due to the orthonormalization of the single particle states, Eq.
(5.2.15). After symmetrization we obtain, apart from the normalization, the
states | . . . nα+1 . . . nβ−1 . . .〉 and | . . . nβ . . .〉 for α 6= β and α = β, respectively.
Finally, accouting for the boson normalization factor given by Eq. (5.2.18) we
arrive at the result

N∑

i

|χ(i)
α 〉〈χ(i)

β | · |ψ+〉
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= nβ ·
{

C+(...nα...nβ ...)
C+(...nα+1...nβ−1...) | . . . nα + 1 . . . nβ − 1 . . .)〉 for α 6= β

| . . . nβ . . . . . . . . . . . .)〉 for α = β

=

{ √
(nα + 1)nβ · | . . . nα + 1 . . . nβ − 1 . . .)〉 for α 6= β

nβ · | . . . nβ . . . . . . . . . . . .)〉 for α = β
. (5.4.5)

Since the previous derivation holds for any N -particle boson state, we may,
comparing to Eqs. (5.3.1), (5.3.4), (5.3.6), and (5.3.7), summarize it to the
following operator identity

N∑

i

|χ(i)
α 〉〈χ(i)

β | = b+α bβ

∣
∣
∣H(+)

N

. (5.4.6)

For fermions we proceed in much the same manner, remembering, however,
that each single particle state can be either empty or singly occupied. We then
obtain instead of Eq. (5.4.4)

N∑

i

|χ(i)
α 〉〈χ(i)

β | · |ψ−〉

=

N∑

i

|χ(i)
α 〉〈χ(i)

β | ·
[

C−({n})
∑

P∈SN

(−)PPP
[

. . .⊗ |χ(j)
β 〉 ⊗ . . .

]
]

= δnβ1 C−({n})
∑

P∈SN

(−)PPP
[

. . .⊗ |χ(j)
α 〉 ⊗ . . .

]

, (5.4.7)

where the prefactor δnβ1 accounts for the occupation 0 or 1 of the single particle
state |χβ〉. For α = β the state |ψ−〉 has thus simply been reproduced. In
contrast, for α 6= β it may still happen that the single particle state |χα〉 was
already occupied before. In this case we must end up with the zero vector on
the right hand side of Eq. (5.4.7), which can be achieved by multiplying with
δnα0. However, if the single particle state |χα〉 was empty before we obtain
the result | . . . nα + 1 . . . nβ − 1 . . .〉 on the right hand side of Eq. (5.4.7) apart
from additional phase factors taking care of the correct position of the state
within the direct product. In order to bring the single particle state to the
right position we will need

β−1
∑

γ

nγ −
α−1∑

γ

nγ

transpositions, which corresponds to a prefactor ηα ·ηβ . Summarizing we arrive
at

N∑

i

|χ(i)
α 〉〈χ(i)

β | · |ψ−〉

=

{

δnα0δnβ1ηαηβ · | . . . nα + 1 . . . nβ − 1 . . .)〉 for α 6= β

nβ · | . . . nβ . . . . . . . . . . . .)〉 for α = β
, (5.4.8)
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where we have used the identity δnβ1 = nβ for nβ = 0, 1 in the second line.
Since the previous derivation holds for any N -particle fermion state, we obtain,
comparing to Eqs. (5.3.13), (5.3.15), and (5.3.17), the operator identity

N∑

i

|χ(i)
α 〉〈χ(i)

β | = a+
αaβ

∣
∣
∣H(−)

N

. (5.4.9)

Finally, combining Eqs. (5.4.3), (5.4.6), and (5.4.9), we identify the single
particle operator F (N) of Eq. (5.4.1) as the restriction of the more general single
particle operator

F =
∑

αβ

〈χα|f |χβ〉b+α bβ for bosons (5.4.10)

F =
∑

αβ

〈χα|f |χβ〉a+
αaβ for fermions (5.4.11)

to the N -particle Hilbert spaces H(+)
N and H(−)

N . In contrast, the operator F
is independent of the particle number N and acts in Fock space.

As already mentioned, most simple examples of a single particle operator
are the total particle number operators (5.3.8) and (5.3.19) for bosons and
fermions, respectively. Comparing Eqs. (5.4.10) and (5.4.11) to Eqs. (5.3.8)
and (5.3.19) we note

〈χα|n̂|χβ〉 = δαβ ⇐⇒ n̂ = I . (5.4.12)

Another example is the one-particle contribution to the Hamiltonian (4.1.6),
which can now be written as

H
{1}
0 =

∑

αβ

〈χα|
{

− h̄2

2m
∇2 + vext(r)

}

|χβ〉a+
αaβ . (5.4.13)

Within the independent electron approximation, Eqs. (4.1.8)/(4.1.9), this term
approximates the full Hamiltonian, which assumes the form

H0 =
∑

α

Eαa
+
αaα =

∑

α

Eαn̂α . (5.4.14)

Here we have used Schrödingers equation (4.1.11) as well as the orthonormal-
ization of the single particle states according to Eq. (5.2.15).

Next we turn to the two-particle operators, which, for an N -particle system,
assume the general form

G(N) =
1

2

N∑

i,j
j 6=i

g(i,j)

=
1

2

N∑

i,j

(1 − δij) g
(i,j) with (g(i,j))+ = g(i,j)

and (g(j,i)) = g(i,j) , (5.4.15)
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which acts on the two-particle Hilbert space Hi ⊗Hj . An example for such an
operator is the electron-electron interaction as given by the last term of Eq.
(4.1.6). In Eq. (5.4.15) we have in the second line added an alternative writing,
which suggests to first calculate g(i,j) for arbitrary i and j and after that to
subtract the “diagonal” interaction term g(i,i), which comprises the erraneous
interaction of a particle with itself. However, unfortunetely such a stepwise
procedure is not possible for the Coulomb potential

1

4πǫ0

e2

|ri − rj |

due to its divergence for ri = rj . In this case we start from a modified Coulomb
potential

1

4πǫ0

e2

|ri − rj | + a
,

calculate the matrix elements of g(i,j) for arbitrary i and j, and, after having
subtracted g(i,i), perform the limit a→ 0.

We may now follow the same line as for single particle operators above and,
using the general matrix element,

{

〈χ(1)
α | ⊗ 〈χ(2)

γ |
}

g(1,2)
{

|χ(1)
β 〉 ⊗ |χ(2)

δ 〉
}

= gαγ,βδ , (5.4.16)

as well as the closure relation (5.2.16), express the operator g(i,j) as

G(N) =
1

2

N∑

i,j

(1 − δij)
∑

αγ

∑

βδ

{

|χ(i)
α 〉 ⊗ |χ(j)

γ 〉
}{

〈χ(i)
α | ⊗ 〈χ(j)

γ |
}

g(i,j)
{

|χ(i)
β 〉 ⊗ |χ(j)

δ 〉
}{

〈χ(i)
β | ⊗ 〈χ(j)

δ |
}

=
1

2

∑

αγ

∑

βδ

gαγ,βδ

·







[
N∑

j

|χ(j)
γ 〉〈χ(j)

δ |
][

N∑

i

|χ(i)
α 〉〈χ(i)

β |
]

− δδα

[
N∑

i

|χ(i)
γ 〉〈χ(i)

β |
]





,

(5.4.17)

where we have used the identity

δij〈χ(i)
δ |χ(j)

α 〉 = δijδδα . (5.4.18)

With the help of Eqs. (5.4.6) and (5.4.9) this intermediate result can be easily
expressed by creation and annihilation operators and we obtain for bosons

G(N) =
1

2

∑

αγ

∑

βδ

gαγ,βδ ·
{(
b+γ bδ

) (
b+α bβ

)
− δδα

(
b+γ bβ

)}
, (5.4.19)
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Using the commutation relations (5.3.10) we rewrite the term in curly brackets
as

(
b+γ bδ

) (
b+α bβ

)
− δδα

(
b+γ bβ

)
= b+γ

[
bδb

+
α − δδαI

]
bβ

= b+γ b
+
α bδbβ

= b+α b
+
γ bδbβ . (5.4.20)

In contrast, for fermions we obtain
(
a+
γ aδ

) (
a+
αaβ

)
− δδα

(
a+
γ aβ

)
= a+

γ

[
aδa

+
α − δδαI

]
aβ

= a+
γ

(
−a+

αaδ
)
aβ

= a+
αa

+
γ aδaβ . (5.4.21)

Note that the exclusion of the self-interaction of a particle, which led to the sec-
ond term in Eqs. (5.4.17) and (5.4.19), has translated into the order of creation
and annihilation operators in Eqs. (5.4.20) and (5.4.21). While in these two
equations in the first term on the left hand side one of the interacting particles
is annihilated and created and only after that the same is done for the second
particle, the term on the right hand side acts in a completely different way.
Here, both particles are annihilated before they both are created. Thus the
suppression of the self-interaction is completely covered by the formalism and,
most important, needs not be explicitly accounted for by additional Kronecker
δ’s.

Finally, combining these expressions with Eq. (5.4.19) we arrive at the fol-
lowing result for the general two-particle operator in Fock space,

G =
1

2

∑

αγ

∑

βδ

{

〈χ(1)
α | ⊗ 〈χ(2)

γ |
}

g(1,2)
{

|χ(1)
β 〉 ⊗ |χ(2)

δ 〉
}

b+α b
+
γ bδbβ

for bosons (5.4.22)

G =
1

2

∑

αγ

∑

βδ

{

〈χ(1)
α | ⊗ 〈χ(2)

γ |
}

g(1,2)
{

|χ(1)
β 〉 ⊗ |χ(2)

δ 〉
}

a+
αa

+
γ aδaβ

for fermions , (5.4.23)

which goes beyond Eq. (5.4.15) defined within the N -particle Hilbert spaces

H(+)
N and H(−)

N . Note the order of annihilation operators in Eqs. (5.4.22) and
(5.4.23)!

As an example we refer to the electron-electron interaction term entering
the Hamiltonian (4.1.6), which now assumes the form

H
{2}
0 =

1

2

1

4πǫ0

∑

i,j
j 6=i

e2

|ri − rj |
=

1

2

∑

αγ

∑

βδ

v
(el−el)
αγ,βδ a

+
αa

+
γ aδaβ , (5.4.24)

with

v
(el−el)
αγ,βδ =

1

4πǫ0

{

〈χ(i)
α | ⊗ 〈χ(j)

γ |
} e2

|ri − rj |
{

|χ(i)
β 〉 ⊗ |χ(j)

δ 〉
}

. (5.4.25)
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Just for completeness we combine Eqs. (5.4.13), (5.4.24) as well as (5.4.25) and
write the full electronic Hamiltonian (4.1.6) as

H0 =
∑

αβ

〈χα|
{

− h̄2

2m
∇2 + vext(r)

}

|χβ〉a+
αaβ

+
1

2

1

4πǫ0

∑

αγ

∑

βδ

{

〈χ(i)
α | ⊗ 〈χ(j)

γ |
}

e2

|ri − rj |
{

|χ(i)
β 〉 ⊗ |χ(j)

δ 〉
}

a+
αa

+
γ aδaβ .

(5.4.26)

Of course, the just described construction of one- and two-particle operators in
Fock space can be straightforwardly extended to many particle operators.

5.5 Reduced density matrices

As a matter of fact most observables of interest grow out of one or two par-
ticle operators as given by Eqs. (5.4.1) and (5.4.15), which we expressed in
the previous section in terms of creation and annihilation operators in Eqs.
(5.4.10)/(5.4.11) as well as (5.4.22)/(5.4.23). In order to calculate expectation
values of these operators we thus have to calculate

〈F 〉 = Tr(WF )

=
∑

αβ

〈χα|f |χβ〉Tr(Wb+α bβ) , (5.5.1)

〈G〉 = Tr(WG)

=
1

2

∑

αγ

∑

βδ

{

〈χ(1)
α | ⊗ 〈χ(2)

γ |
}

g(1,2)
{

|χ(1)
β 〉 ⊗ |χ(2)

δ 〉
}

·Tr(Wb+α b
+
γ bδbβ) , (5.5.2)

where W is the full density matrix characterizing the many-body state and the
trace Tr denotes the sum of the diagonal elements as usual. As is obvious from
Eqs. (5.5.1) and (5.5.2) this requires to evaluate the socalled reduced density
matrices

ρ1(β;α) = Tr(Wb+α bβ) , (5.5.3)

ρ2(βδ;αγ) = Tr(Wb+α b
+
γ bδbβ) ; (5.5.4)

Eqs. (5.5.1) to (5.5.4) hold for both bosons and fermions. In particular at low
temperatures, when the many-body system occupies the ground state W =
|Ψ0〉〈Ψ0|, we arrive at the reduced ground state density matrices

ρ
(0)
1 (β;α) = 〈Ψ0|b+α bβ |Ψ0〉 , (5.5.5)

ρ
(0)
2 (βδ;αγ) = 〈Ψ0|b+α b+γ bδbβ |Ψ0〉 . (5.5.6)
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Having the reduced density matrices (5.5.3) and (5.5.4) at hand and using Eqs.
(5.4.2) and (5.4.16) we express the expectation values (5.5.1) and (5.5.2) as

Tr(WF ) =
∑

αβ

fαβ · ρ1(β;α) = tr(f · ρ1) , (5.5.7)

Tr(WG) =
1

2

∑

αγ

∑

βδ

gαγ,βδ · ρ2(βδ;αγ) =
1

2
tr(g · ρ2) . (5.5.8)

The normalizations of the reduced density matrices grow out of the previous
relations with f and g replaced by the identity operator,

tr(ρ1) =
∑

α

ρ1(α;α) =
∑

α

Tr(Wb+α bβ) = Tr(WN̂)

= 〈N̂〉 , (5.5.9)

tr(ρ2) =
∑

αγ

ρ2(αγ;αγ) =
∑

αγ

Tr(Wb+α b
+
γ bγbα)

= Tr

{

W
∑

αγ

[
(b+γ bγ)(b

+
α bα) − δαγ(b

+
α bα)

]

}

= Tr
{

W ·
[

N̂2 − N̂
]}

= 〈N̂2 − N̂〉 = 〈N̂(N̂ − I)〉 , (5.5.10)

where we have used Eq. (5.4.20). All previous relations hold likewise for
fermions, in which case we had to use Eq. (5.4.21).

According to Eqs. (5.5.7) and (5.5.8) the reduced one and two-particle den-
sity matrices contain less information and enable for a reduced calculational
effort than the full density matrix W . This is due the fact that the reduced
density matrices result from W by integrating over the degrees of freedom of
all particles except for a single particle or two particles, respectively. At the
same time the symmetry or antisymmetry of the respective many-body state
are fully conserved.

In order to shed some more light onto the previous notions we discuss espe-
cially the reduced density matrices for the symmetrized and antisymmetrized
pure many-body states (5.2.13), which we assume to be built from the orthonor-
malized eigenstates of the single particle Hamiltonian as resulting from the
independent particle approximation. Using Eq. (5.3.15) we note for fermions

ρ
{n}
1 (β;α) = 〈{n}|a+

αaβ |{n}〉
= 〈aα{n}|aβ{n}〉
= ηαηβ

√
nα

√
nβδαβ

= nαδαβ , (5.5.11)

since η2
α = 1. The one particle reduced density matrix thus is a diagonal matrix

with the occupation numbers being its eigenvalues. Summing over all diagonal
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elemente we furthermore note

trρ1 = N . (5.5.12)

Eqs. (5.5.11) and (5.5.12) hold likewise for bosons and fermions.
For the two-particle reduced density matrix we write in close analogy to

Eq. (5.5.11)

ρ
{n}
2 (βδ;αγ)

= 〈{n}|a+
αa

+
γ aδaβ |{n}〉

= 〈aγaα{n}|aδaβ{n}〉
= (1 − δαγ)(1 − δβδ) ηαηβ

√
nα

√
nβ

〈aγ(n0 . . . nα − 1 . . .)|aδ(n0 . . . nβ − 1 . . .)〉
. (5.5.13)

Two points are obvious from this formulation: First, for fermions we must have
α 6= γ and β 6= δ as already expressed by the terms (1− δ...). Second, in order
that the scalar product does not vanish only two possibilities of arranging
the indices of the annihilation operators remain, which lead to two different
contributions. To be concrete, we note

ρ
{n}
2 (βδ;αγ)

= (1 − δαγ)(1 − δβδ) ηαηβ
√
nα

√
nβ

〈aγ(n0 . . . nα − 1 . . .)|aδ(n0 . . . nβ − 1 . . .)〉
[

δαβδγδ + δαδδγβ

]

= (1 − δαγ)(1 − δβδ)
[

δαβδγδ η
2
α nα 〈aγ(n0 . . . nα − 1 . . .)|aγ(n0 . . . nα − 1 . . .)〉

+δαδδγβ ηαηγ
√
nα

√
nγ

〈aγ(n0 . . . nα − 1 . . .)|aα(n0 . . . nγ − 1 . . .)〉
]

= (1 − δαγ)

[

δαβδγδ η
2
α nα

(
η′γ
)2

nγ + δαδδγβ ηαηγ η
′
αη

′
γ nαnγ

]

,

(5.5.14)

where we have used the phase factors

η′γ =

{

ηγ for γ < α

−ηγ for γ > α
, (5.5.15)

η′α =

{

ηα for α < γ

−ηα for α > γ
. (5.5.16)

In addition, we have omitted the term (1− δβδ) in the last step of Eq. (5.5.14),
since in combination with the Kronecker δ’s in the square bracket, β = δ is
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equivalent to α = γ. The values of the phase factors in Eqs. (5.5.15) and
(5.5.16) depend on the arrangement of the single particle states with indices α
and γ within the many-body state |{n}〉. In the first term of Eq. (5.5.14) both

η2
α and

(
η′γ
)2

contribute +1. In contrast, from Eqs. (5.5.15) and (5.5.16) we
have

η′αη
′
γ = −ηαηγ (5.5.17)

due to the exchange of α and γ in the bra and ket state. We thus note

ρ
{n}
2 (βδ;αγ) = (1 − δαγ) nαnγ

[

δαβδγδ − δαδδγβ

]

. (5.5.18)

Finally omitting the (1−δ...) factor, which is accounted for by the arrangement
of Kronecker δ’s in the square bracket, we arrive at the result

ρ
{n}
2 (βδ;αγ) = nαnγ

[

δαβδγδ − δαδδγβ

]

= ρ
{n}
1 (β;α) · ρ{n}1 (δ; γ) − ρ

{n}
1 (β; γ) · ρ{n}1 (δ;α) .

(5.5.19)

Due to the arrangement of the single particle indices the first and second con-
tribution are called the direct and exchange term, respectively. Note that both
terms fall into a product of reduced one particle density matrices, which fact
is characteristic of “uncorrelated” many-body systems. Furthermore, we point
out again that the suppression of the double occupancy for fermion systems,
which we included by adding the (1− δ...) factors above, is now implicit in the
difference in the square brackets both in Eqs. (5.5.18) and (5.5.19), which van-
ishes for α = γ = β = δ. However, as we will see below it is useful to artificially
include this matrix element in both terms within the square brackets.

For bosons the previous derivation can be adopted with two modifications.
First, since all phase factors must be replaced by 1 we obtain a plus sign in
the square bracket of Eqs. (5.5.18) and (5.5.19). Second, for bosons the cases
α = γ and β = δ must be included and lead to an additional contribution.
However, as is obvious from Eq. (5.5.13), for a nonvanishing scalar product
α = γ actually implies not only β = δ, but the equality of all four indices.
With the help of Eq. (5.3.4) the additional term is thus easily calculated as

〈{n}|b+α b+α bαbα|{n}〉
= 〈bαbα{n}|bαbα{n}〉
= nα〈bα(n0 . . . nα − 1 . . .)|bα(n0 . . . nα − 1 . . .)〉
= nα(nα − 1)〈(n0 . . . nα − 2 . . .)|(n0 . . . nα − 2 . . .)〉

. (5.5.20)

Now combining Eqs. (5.5.18) to (5.5.20) and taking into account the aforemen-
tioned modifications for bosons we note the result

ρ
{n}
2 (βδ;αγ)
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= (1 − δαγ) nαnγ

[

δαβδγδ + δαδδγβ

]

+ δαγδαβδγδ nα(nα − 1)

= nαnγ

[

δαβδγδ + δαδδγβ

]

+ δαγδαβδγδ
{
−2n2

α + nα(nα − 1)
}

= nαnγ

[

δαβδγδ + δαδδγβ

]

− δαγδαβδγδ nα(nα + 1)

= ρ
{n}
1 (β;α) · ρ{n}1 (δ; γ) + ρ

{n}
1 (β; γ) · ρ{n}1 (δ;α)

−δαγδαβδγδ
[(

ρ
{n}
1 (α;β)

)2

+ ρ
{n}
1 (α;β)

]

. (5.5.21)

As for fermions we thus have a direct and an exchange term, the latter now
with a plus sign.

Inserting the expressions (5.5.11), (5.5.19), and (5.5.21) for the reduced
density matrices into Eqs. (5.5.7) and (5.5.8) we obtain

〈{n}|F |{n}〉 =
∑

α

nαfαα , (5.5.22)

valid for both bosons and fermions, as well as

〈{n}|G|{n}〉

=
1

2

∑

αγ

nαnγ

[

gαγ,αγ − gαγ,γα

]

for fermions , (5.5.23)

〈{n}|G|{n}〉

=
1

2

∑

αγ

{

nαnγ

[

gαγ,αγ + gαγ,γα

]

− δαγ nα(nα + 1) gαα,αα

}

for bosons , (5.5.24)

In particular for the ground state |Ψ0〉, which for bosons is characterized
by

|{n}〉 = |n0 = N n1 = n2 = . . . = 0〉 i.e. nα = Nδα0 ,

we get

〈Ψ0|F |Ψ0〉 = Nf00 , (5.5.25)

〈Ψ0|G|Ψ0〉 =
1

2
N(N − 1)g00,00 . (5.5.26)

In contrast, for fermions the uncorrelated ground state consists of a Slater
determinant with the lowest N states occupied, while all higher lying single
particle states are empty. Hence,

nα =

{

1 for 0 ≤ α ≤ N

0 for N < α
, (5.5.27)
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and the expectation values (5.5.22) and (5.5.23) turn into

〈Ψ0|F |Ψ0〉 =
N−1∑

α=0

fαα , (5.5.28)

〈Ψ0|G|Ψ0〉 =
1

2

N−1∑

α,γ=0

[

gαγ,αγ − gαγ,γα

]

. (5.5.29)

Once more we point to the case α = γ, which is implicitly excluded, since it
cancels out in the difference in square brackets in Eq. (5.5.29). We could thus
include the corresponding matrix element gαα,αα in both the direct and the
exchange term without changing the result.

5.6 Unitary transformations; field operators

Next we consider unitary transformations in Fock space as generated by an
Hermitian single particle operator of the type (5.4.10) or (5.4.11). The trans-
formation is thus mediated by the unitary operator

U = e−iF , U+U = UU+ = I . (5.6.1)

From the Baker-Campbell-Hausdorff formula we have

{

dγ

cγ

}

= U

{

bγ

aγ

}

U+

=

{

bγ

aγ

}

− i
[
F,

{

bγ

aγ

}

]
+
i2

2!

[
F,
[
F,

{

bγ

aγ

}

]]
− . . . .

(5.6.2)

Turning to bosons first we calculate

[F, bγ ] =
∑

αβ

〈χα|f |χβ〉
[
b+α bβ, bγ

]
. (5.6.3)

Using the commutator identity

[AB,C] = A · [B,C] + [A,C] · B (5.6.4)

we obtain

[F, bγ ] =
∑

αβ

〈χα|f |χβ〉
{

b+α [bβ, bγ ]
︸ ︷︷ ︸

0

+
[
b+α , bγ

]

︸ ︷︷ ︸

−δαγ

bβ

}

= −
∑

β

〈χγ |f |χβ〉bβ . (5.6.5)
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Using the identity

[AB,C] = A · {B,C} + {A,C} · B (5.6.6)

the corresponding step yields for fermions

[F, aγ ] =
∑

αβ

〈χα|f |χβ〉
[
a+
αaβ, aγ

]

=
∑

αβ

〈χα|f |χβ〉
{

a+
α {aβ, aγ}
︸ ︷︷ ︸

0

−
{
a+
α , aγ

}

︸ ︷︷ ︸

δαγ

aβ

}

= −
∑

β

〈χγ |f |χβ〉aβ . (5.6.7)

Hence, commutation with F results in a linear transformation of the annihila-
tion operators. From the previous equations the higher commutators are easily
calculated. We note

[
F,
[
F,

{

bγ

aγ

}

]]
= −

∑

β

〈χγ |f |χβ〉
[
F,

{

bγ

aγ

}

]

= +
∑

βδ

〈χγ |f |χβ〉〈χβ |f |χδ〉
{

bδ

aδ

}

= +
∑

β

〈χγ |f2|χβ〉
{

bβ

aβ

}

. (5.6.8)

Proceeding this way we finally arrive at the result
{

dγ

cγ

}

= e−iF
{

bγ

aγ

}

eiF

=
∑

β

〈χγ |
∞∑

n=0

in

n!
fn|χβ〉

{

bβ

aβ

}

=
∑

β

〈χγ |eif |χβ〉
{

bβ

aβ

}

=
∑

β

〈φγ |χβ〉
{

bβ

aβ

}

, (5.6.9)

where we have defined a set of transformed states by

|φγ〉 = e−if |χγ〉 . (5.6.10)

For the adjoint operators, i.e. the creation operators we obtain from Eq. (5.6.9)
{

d+
γ

c+γ

}

= eiF

{

b+γ
a+
γ

}

e−iF
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=
∑

β

{

b+β
a+
β

}

〈χβ |φγ〉 . (5.6.11)

To summarize, both Eqs. (5.6.9) and (5.6.11) mediate a unitary transformation
from the orthonormal basis spanned by functions |χβ〉 to a likewise orthonormal
basis made of function |φγ〉 and the operators cγ , c

+
γ , dγ , and d+

γ are the
annihilation and creation operators corresponding to the new basis set. This
is seen from the identities
{

d+
γ

c+γ

}

|0〉 =
∑

β

{

b+β
a+
β

}

|0〉〈χβ |φγ〉 =
∑

β

|χβ〉〈χβ |φγ〉 = |φγ〉 . (5.6.12)

We furthermore conclude that the Hermitian single particle operators F in Fock
space generate unitary transformations of the single particle basis, U = e−iF .

A very important application of Eqs. (5.6.9) and (5.6.11) results from choos-
ing the single particle wave functions |φγ〉 as the eigenstates |x〉 of the particle
position operator. For particles with spin we would opt for states |x,ms〉, with
ms = −s, . . .+ s, which are thus δ-functions in space and Kronecker δ’s with
respect to the spin. We note

〈x,ms|χα〉 =
∑

m′
s

∫

d3x′ χα;m′
s
(x′) δ(x − x′)δmsm′

s
= χα;ms

(x) , (5.6.13)

where the first index α includes all quantum numbers characterizing the states
χα and the second index m′

s denotes the projection of these states onto the
corresponding spin channel. In choosing this notation we take implicitly care
of the situation that the states χα might be linear combinations of functions
with different m′

s values, hence, might be mixed spin states. Obviously, the
eigenfunctions |x,ms〉 are orthogonal to each other and they span the single
particle Hilbert space according to

〈x,ms|x′,m′
s〉 = δ(x − x′)δmsm′

s
(5.6.14)

∑

ms

∫

d3x |x,ms〉〈x,ms| = I . (5.6.15)

Furthermore, they allow to define creation and annihilation operators by

ψ+(x,ms) =
∑

β

{

b+β (bosons)

a+
β (fermions)

}

〈χβ |x,ms〉 , (5.6.16)

ψ(x,ms) =
∑

β

〈x,ms|χβ〉
{

bβ (bosons)

aβ (fermions)

}

, (5.6.17)

which are the socalled field operators at position x with spin ms. Since the
unitary transformation conserves the commutation relations the corresponding
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expressions for the field operators are immediately written down as
[
ψ(x′,m′

s), ψ
+(x,ms)

]
= δ3(x′ − x)δm′

s,ms
· I

for bosons , (5.6.18)
{
ψ(x′,m′

s), ψ
+(x,ms)

}
= δ3(x′ − x)δm′

s,ms
· I

for fermions , (5.6.19)

while all other commutators and anticommutators vanish. Furthermore, in
close analogy to the definition of the occupation number operators (5.3.7) and
(5.3.17) we construct the operator of the particle density,

ρ̂(x) = ψ+(x)ψ(x) =
∑

s

ψ+(x,ms)ψ(x,ms) , (5.6.20)

and the operator of the total particle number,

N̂ =

∫

d3x ρ̂(x) =

∫

d3x ψ+(x)ψ(x) . (5.6.21)

From Eq. (5.6.20) we may moreover derive the operators of the mass and charge
density as

ρ̂m(x) = m ψ+(x)ψ(x) , (5.6.22)

ρ̂q(x) = q ψ+(x)ψ(x) . (5.6.23)

Finally, we return to the Hamiltonian (4.1.6) describing the many-body
states of the electrons subject to both the ion-electron and the electron-electron
interaction. In order to derive its representation in terms of field operators we
start from the intermediate expressions (5.4.13) and (5.4.24) specifying the one
and two particle terms. Ignoring, for the time being, the spin degrees of freedom
and assuming local potentials throughout we calculate the matrix elements as

〈r′1|vext(r)|r1〉 =

∫

d3r vext(r)δ
3(r′1 − r1)δ

3(r1 − r1)

= δ3(r′1 − r1)vext(r1) , (5.6.24)

{〈r′1| ⊗ 〈r′2|}
1

4πǫ0

e2

|r − r′| {|r1〉 ⊗ |r2〉}

= δ3(r′1 − r1)δ
3(r′2 − r2)

1

4πǫ0

e2

|r1 − r2|
. (5.6.25)

We thus arrive at the following expression for the Hamiltonian

H0 =

∫

d3r ψ+(r)

{

− h̄2

2m
∇2 + vext(r)

}

ψ(r)

+
1

2

∫

d3r

∫

d3r′
1

4πǫ0

e2

|r − r′| ψ
+(r)ψ+(r′) × ψ(r′)ψ(r)



5.7. ELECTRON DENSITY OPERATORS 87

=

∫

d3r

{
h̄2

2m

[
∇ψ+(r)

]
· [∇ψ(r)] + vext(r)ρ̂(r)

}

+
1

2

∫

d3r

∫

d3r′
1

4πǫ0

e2

|r − r′| ψ
+(r)ψ+(r′) × ψ(r′)ψ(r) ,

(5.6.26)

where we used an integration by parts for the kinetic energy term as well as
Eq. (5.6.20) for the particle density. Note that Eq. (5.6.26) is just a particular
representation of the more general result (5.4.26).

In passing we mention that the form (5.6.26) of the Hamiltonian, besides
being a particular description of the interacting electron system, suggests an
alternative interpretation of Eq. (5.6.26) as the energy integral of a classical
field theory, where the field operators are spatial functions with ψ+ψ = |ψ|2
rather than operators and ψ(r) plays the role of a (2s + 1)-component field
amplitude. As a consequence, the whole formalism derived in this chapter may
be obtained by formally assigning a classical field theory with field amplitude
ψ(r) and the energy integral (5.6.26) to the system of identical particles and
only after this interpreting ψ, ψ∗ as adjoint operators ψ, ψ+ with commutation
relations (5.6.18) and anticommutation relations (5.6.19) for 2s + 1 even and
odd, respectively. The Fock space description presented in this chapter is thus
equivalent to the quantization of a classical field theory. This observation is of
particular value for systems, which classically are described by a field theory
as e.g. the electromagnetic field.

5.7 Electron density operators

In this section we apply the notions learned in the previous sections to the
particular case of the real space representation of the electronic system. Hence,
we are dealing with spin- 1

2 particles, s = 1
2 , ms = ± 1

2 =: σ and Eqs. (5.6.13)
to (5.6.15) read as

〈x, σ|x′, σ′〉 = δ(x − x′)δσσ′ (5.7.1)
∑

σ

∫

d3x |x, σ〉〈x, σ| = I . (5.7.2)

〈x, σ|χα〉 = χα;σ(x) , (5.7.3)

where the index α covers all quantum numbers characterizing the states χα
and the second index denotes the projection onto spin channel σ; note that χα
might be in a mixed spin state. According to Eqs. (5.6.16) and (5.6.17) the
field operators then assume the form

ψ+
σ (x) =

∑

α

a+
α 〈χα|x, σ〉 =

∑

α

χ∗
α;σ(x)a+

α , (5.7.4)

ψσ(x) =
∑

α

aα〈x, σ|χα〉 =
∑

α

χα;σ(x)aα , (5.7.5)
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and fulfil the anticommutation relations (5.6.19). Combining Eqs. (5.7.4) and
(5.7.5) we arrive at the definition of the spin-dependent electron density oper-
ator

ρ̂σ(x) = ψ+
σ (x)ψσ(x) =

∑

αβ

χ∗
α;σ(x)χβ;σ(x)a+

αaβ , (5.7.6)

which gives rise to the definition of the electron density and spin density oper-
ators,

ρ̂(x) =
∑

σ

ρ̂σ(x) , (5.7.7)

m̂z(x) =
∑

σ

zσρ̂σ(x) , (5.7.8)

where

zσ =

{

+1 for σ = + 1
2

−1 for σ = − 1
2

. (5.7.9)

Mass and charge density operators may be easily constructed in analogy to
Eqs. (5.6.22) and (5.6.23) by multiplying the density operator with the electron
mass and charge, respectively, and, finally, we get for the operator of the total
electron number by integrating the density operator over all space,

N̂ =

∫

d3x ρ̂(x) . (5.7.10)

We complement the definition (5.7.6) of the electron density operator with
an alternative form,

ρ̂σ(x) =

N∑

i=1

δ(x − xi)δσσi
, (5.7.11)

where the sum over i includes all electrons. Obviously, the electron density
operator is a single-particle operator of the general form (5.4.1) with f (i) =
δ(x − xi)δσσi

and matrix elements

fαβ = 〈χ(i)
α |δ(x − xi)δσσi

|χ(i)
β 〉 = χ∗

α;σ(x)χβ;σ(x) . (5.7.12)

As a consequence, transferring the density operator to the language of second
quantization we obtain according to Eq. (5.4.11)

ρ̂σ(x) =
∑

αβ

χ∗
α;σ(x)χβ;σ(x)a+

αaβ , (5.7.13)

which is, of course, identical to Eq. (5.7.6). From the latter identity the electron
density is easily calculated as the expectation value of the electron density
operator,

ρσ(x) = 〈Ψ0|ρ̂σ(x)|Ψ0〉



5.7. ELECTRON DENSITY OPERATORS 89

=
∑

αβ

χ∗
α;σ(x)χβ;σ(x)
︸ ︷︷ ︸

fαβ

〈Ψ0|a+
αaβ|Ψ0〉

=
∑

α

χ∗
α;σ(x)χα;σ(x) ρ

(0)
1 (α;α)

=
∑

α

χ∗
α;σ(x)χα;σ(x) nα

=

occ∑

α

|χα;σ(x)|2 , (5.7.14)

i.e. the electron density arises as the square of the single-particle wave functions,
summed over all occupied states.

For the following chapters it will be useful to have an extension of the
density operator at hand,

ρ̂σσ′ (x;x′) = ψ+
σ′(x

′)ψσ(x) . (5.7.15)

Using the definitions (5.7.4) and (5.7.5) of the field operators we thus obtain

ρ̂σσ′ (x;x′) =
∑

αβ

χ∗
α;σ′(x′)χβ;σ(x) a+

αaβ , (5.7.16)

and, with the help of Eq. (5.5.5), we get for the ground state expectation value
the result

ρσσ′ (x;x′) = 〈Ψ0|ρ̂σσ′ (x;x′)|Ψ0〉
=

∑

αβ

χ∗
α;σ′(x′)χβ;σ(x)
︸ ︷︷ ︸

fαβ

〈Ψ0|a+
αaβ |Ψ0〉

=
∑

α

χ∗
α;σ′(x′)χα;σ(x) ρ

(0)
1 (α;α)

=

occ∑

α

χ∗
α;σ′(x′)χα;σ(x)

= (ρσ′σ(x
′;x))

∗
, (5.7.17)

where in the second but last line the summation includes only the occupied
states. The quantity ρσσ′(x;x′) is called the spin-dependent density matrix,
which for x = x′ reduces to the spin density matrix at position x and for σ = σ′

to the density matrix. In order to simplify writing we thus define

ρσσ′(x) = ρσσ′ (x;x)δ(x − x′) , (5.7.18)

ρσ(x) = ρσσ(x)δσσ′ . (5.7.19)

A particular appealing representation arises from the second but last line of
Eq. (5.7.17), where the density matrix is given by the sum over the occupied
single particle orbitals. We will use this form lateron in the discussion of the
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homogeneous electron gas.

Next we turn to a different extension of the density operator (5.7.6), namely
the product of two such operators, in order to measure the probability of finding
an electron with spin σ at position x and a second electron with spin σ′ at
position x′. However, in doing so we want to exclude the case where both
electrons are identical and thus, starting from the alternative definition (5.7.11)
of the electron density operator, define rather than the simple product of the
corresponding density operators the quantity

P̂σσ′ (x;x′) = P̂σ′σ(x
′;x)

=

N∑

i,j
j 6=i

δ(x − xi)δσσi
δ(x′ − xj)δσ′σj

=

N∑

i,j

(1 − δij) δ(x − xi)δσσi
δ(x′ − xj)δσ′σj

=
N∑

i,j

δ(x − xi)δσσi
δ(x′ − xj)δσ′σj

− δ(x′ − x)δσ′σ

N∑

i

δ(x − xi)δσσi

= ρ̂σ(x)ρ̂σ′ (x′) − δ(x′ − x)δσ′σ ρ̂σ(x) . (5.7.20)

Hence, in order to avoid the “self-interaction” we have to subtract the single
density operator from the simple product. As for the density operator above,
we recognize that the operator (5.7.20) has the form of the general two-particle
operator (5.4.15) for an N -particle system with

g(i,j) = 2 · δ(x − xi)δσσi
δ(x′ − xj)δσ′σj

and matrix elements, which, according to Eq. (5.4.16) read as

gαγ,βδ

=
{

〈χ(1)
α | ⊗ 〈χ(2)

γ |
}

g(1,2)
{

|χ(1)
β 〉 ⊗ |χ(2)

δ 〉
}

=
{

〈χ(1)
α | ⊗ 〈χ(2)

γ |
}

2 · δ(x − x1)δσσi
δ(x′ − x2)δσ′σj

{

|χ(1)
β 〉 ⊗ |χ(2)

δ 〉
}

= χ∗
α;σ(x)χ∗

γ;σ′(x′)χβ;σ(x)χδ;σ′ (x′) . (5.7.21)

Following Eq. (5.4.23) we thus arrive at the Fock-space representation

P̂σσ′ (x;x′) = ρ̂σ(x)ρ̂σ′ (x′) − δ(x′ − x)δσ′σ ρ̂σ(x)

=
∑

αγ

∑

βδ

χ∗
α;σ(x)χ∗

γ;σ′(x′)χβ;σ(x)χδ;σ′ (x′)a+
αa

+
γ aδaβ ,

(5.7.22)

and, comparing to Eq. (5.5.29), we obtain for the ground state expectation
value the result

Pσσ′ (x;x′) = 〈Ψ0|P̂σσ′ (x;x′)|Ψ0〉
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=
occ∑

αγ

[

χ∗
α;σ(x)χ∗

γ;σ′(x′)χα;σ(x)χγ;σ′(x′)

−χ∗
α;σ(x)χ∗

γ;σ′(x′)χγ;σ(x)χα;σ′ (x′)

]

= ρσ(x) · ρσ′(x′) − ρσ′σ(x
′;x)ρσσ′ (x;x′)

= ρσ(x) · ρσ′(x′) − |ρσσ′ (x;x′)|2 , (5.7.23)

where we have used the results (5.7.17) to (5.7.19) for the density as well as
the density matrix.

In passing we write down an alternative representation of the operator
P̂σσ′ (x;x′) in terms of field operators as

P̂σσ′ (x;x′) = ψ+
σ (x)ψ+

σ′ (x
′)ψσ′ (x′)ψσ(x) . (5.7.24)

Using the anticommutation relations (5.6.19) we readily transfer the previous
expression into the form

P̂σσ′ (x;x′) = −ψ+
σ (x)ψ+

σ′ (x
′)ψσ(x)ψσ′ (x′)

= ψ+
σ (x)ψσ(x)ψ+

σ′ (x
′)ψσ′(x′) − δ(x′ − x)δσ′σψ

+
σ (x)ψσ′ (x′)

= ρ̂σ(x)ρ̂σ′ (x′) − δ(x′ − x)δσ′σ ρ̂σ(x) , (5.7.25)

which, hence, is identical to the definition (5.7.20). Finally, combining Eqs.
(5.7.23) and (5.7.24) we obtain the result

Pσσ′ (x;x′) = 〈Ψ0|ψ+
σ (x)ψ+

σ′ (x
′)ψσ′(x′)ψσ(x)|Ψ0〉 , (5.7.26)

which will be useful lateron.

Again it is useful to define a non-diagonal generalization of the operator
P̂σσ′ (x;x′) as

P̂σ′′′σ′σσ′′ (x′′′x′;xx′′)

= ρ̂σ′′′σ′′(x′′′;x′′)ρ̂σ′σ(x
′;x) − δ(x − x′′′)δσσ′′′ ρ̂σ′σ′′(x′;x′′)

= ψ+
σ′′ (x

′′)ψσ′′′ (x′′′)ψ+
σ (x)ψσ′ (x′)

−δ(x − x′′′)δσσ′′′ψ+
σ′′ (x

′′)ψσ′ (x′) . (5.7.27)

The last line can be further evaluated using the anticommutation relations
(5.6.19) of the field operators, which, however, have the same algebra as the
creation and annihilation operators (5.3.14) and (5.3.15). The latter fulfil the
equivalent anticommutation relations (5.3.33) and we may thus directly adopt
the identity (5.4.21) for the field operators. Hence, we get the following expres-
sion

P̂σ′′′σ′σσ′′ (x′′′x′;xx′′) = ψ+
σ (x)ψ+

σ′′ (x
′′)ψσ′′′ (x′′′)ψσ′(x′) . (5.7.28)
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Inserting into this the definitions (5.7.4) and (5.7.5) of the field operators we
obtain

P̂σ′′′σ′σσ′′ (x′′′x′;xx′′)

=
∑

αγ

∑

βδ

χ∗
α;σ(x)χ∗

γ;σ′′ (x′′)χβ;σ′(x′)χδ;σ′′′ (x′′′)a+
αa

+
γ aδaβ , (5.7.29)

which, for x = x′, σ = σ′ and x′′ = x′′′, σ′′ = σ′′′ reduces to Eq. (5.7.22).
In close analogy to Eq. (5.7.23) the ground state expectation value is now
calculated as

Pσ′′′σ′σσ′′ (x′′′x′;xx′′)

= 〈Ψ0|P̂σσ′′σ′′′σ′(xx′′;x′′′x′)|Ψ0〉
=

∑

αγ

∑

βδ

χ∗
α;σ(x)χ∗

γ;σ′′ (x′′)χβ;σ′(x′)χδ;σ′′′ (x′′′)〈Ψ0|a+
αa

+
γ aδaβ |Ψ0〉

=
∑

αγ

∑

βδ

χ∗
α;σ(x)χ∗

γ;σ′′ (x′′)χβ;σ′(x′)χδ;σ′′′ (x′′′)ρ(0)
2 (βδ;αγ)

=
∑

αγ

∑

βδ

χ∗
α;σ(x)χ∗

γ;σ′′ (x′′)χβ;σ′(x′)χδ;σ′′′ (x′′′)

[

ρ
(0)
1 (β;α) · ρ(0)

1 (δ; γ) − ρ
(0)
1 (β; γ) · ρ(0)

1 (δ;α)
]

=

occ∑

αγ

[

χ∗
α;σ(x)χ∗

γ;σ′′(x′′)χα;σ′ (x′)χγ;σ′′′(x′′′)

−χ∗
α;σ(x)χ∗

γ;σ′′(x′′)χγ;σ′(x′)χα;σ′′′ (x′′′)

]

= ρσ′σ(x
′;x)ρσ′′′σ′′ (x′′′;x′′) − ρσ′′′σ(x

′′′;x)ρσ′σ′′ (x′;x′′) , (5.7.30)

where we have used the definition (5.5.6) as well as the identities (5.5.11),
(5.5.19), and (5.7.17). The summation in the last two lines of Eq. (5.7.30)
includes only the occupied single particle states. Again, with the help of Eq.
(5.7.18), we come back to the result (5.7.23) for x = x′, σ = σ′ and x′′ = x′′′,
σ′′ = σ′′′.

Investigating the latter, diagonal case in a bit more detail we realize that,
in the same manner as the reduced density matrix (5.5.29), the probability of
finding an electron with spin σ at position x and a second electron with spin
σ′ at position x′ is not just a simple product of the densities but is made of a
direct and an exchange term. Note that the self-interaction (α = β = γ = δ)
is cancelled automatically in the difference of these two terms. While the
direct term is mainly the product of the densities the exchange term results
from the non-classical identity of particles and causes a contribution, which in
the language of probability theory is named correlation. Nevertheless, within
many-body theory one distinguishes two different origins of correlation, namely
that due to the identity of particles and that arising from the interaction of
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the particles. While the first is usually called exchange the name correlation is
reserved for the latter contribution.

We close this section by defining two types of correlation (in the broader
sense of the word) functions, namely the pair-distribution or pair-correlation
function

gσσ′(x;x′) =
Pσσ′ (x;x′)

ρσ(x) · ρσ′(x′)
(5.7.31)

as well as the function

hσσ′(x;x′) = Pσσ′ (x;x′) − ρσ(x) · ρσ′(x′) , (5.7.32)

where the symbols g and h were chosen along convention. The function g is
usually designated as the pair-distribution or pair-correlation function. Com-
bining these definitions with Eq. (5.7.23) we finally note

gσσ′(x;x′) = 1 − |ρσσ′ (x;x′)|2
ρσ(x) · ρσ′(x′)

, (5.7.33)

hσσ′(x;x′) = −|ρσσ′ (x;x′)|2 . (5.7.34)
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Chapter 6

Hartree-Fock theory

6.1 The Hartree-Fock equations

Having learnt about the particularities of systems of identical particles as well
as about the efficient formulation provided by the occupation number repre-
sentation of many-body states we are now in a position to combine these new
means with the variational determination of the electronic wave function. In
section 4.4 the latter procedure led to the Hartree equations, which, however,
included the many-body wave functions as direct products of single particle
functions. Following the work by Fock and Slater [54, 149] we will in the
present section combine the variational method with the correctly antisym-
metrized many-body wave function in order to arrive at a better prescription
of the electronic ground state.

To be concrete, we replace Eq. (4.4.1) by a Slater determinant, Eq. (5.2.4),

|ψ−〉 = (N !)
− 1

2

∑

P∈SN

(−)PPP
N⊗

i

|χ(i)
αi
〉 , (6.1.1)

where we still assume the single particle orbitals to be normalized according
to Eq. (5.2.15). Again, we consider the Hamiltonian (4.1.6) and calculate the
energy functional, now with the Slater determinants (6.1.1),

〈H0〉ψ = 〈ψ−|H0|ψ−〉 = 〈ψ−|H{1}
0 |ψ−〉 + 〈ψ−|H{2}

0 |ψ−〉 . (6.1.2)

Note that the correct normalization of the many-body wave function (6.1.1)
is implied by the normalization of the single particle orbitals, Eq. (5.2.15).
Moreover, note that, in contrast to Eq. (4.4.3), we have not yet fixed a particular
representation of the wave function.

In order to evaluate the functional (6.1.2) we fall back on the results of sec-
tion 5.5, where we expressed the functionals of one- and two-particle operators
in terms of the corresponding reduced density matrices. We recall, in partic-
ular, Eqs. (5.5.28) and (5.5.29) with the matrix elements on the right hand
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side given by Eqs. (5.4.2) and (5.4.16). Since the Hamiltonian (4.1.6) is built
from one- and two-particle operators we may read off the corresponding ma-
trix elements from a comparison of its occupation number representation, Eq.
(5.4.26), to the general identities (5.4.11) and (5.4.23). Inserting these matrix
elements into Eqs. (5.5.28) and (5.5.29) we obtain

〈H0〉ψ

=
∑

α

〈χα|
{

− h̄2

2m
∇2 + vext(r)

}

|χα〉

+
1

2

1

4πǫ0

∑

αγ
α 6=γ

[{

〈χ(1)
α | ⊗ 〈χ(2)

γ |
} e2

|r1 − r2|
{

|χ(1)
α 〉 ⊗ |χ(2)

γ 〉
}

−
{

〈χ(1)
α | ⊗ 〈χ(2)

γ |
} e2

|r1 − r2|
{

|χ(1)
γ 〉 ⊗ |χ(2)

α 〉
}]

,

(6.1.3)

where we identify the direct and exchange contributions to the two-particle
term as in the context of Eq. (5.5.29). In Eq. (6.1.3) we have explicitly excluded
the term α = γ. Yet, as was already discussed at the end of Sec. 5.5, this
exclusion is implicit in the difference in the square brackets in Eq. (6.1.3), since
both terms are identical for α = γ. Nevertheless, care has to be taken, when
the direct and exchange term are treated in a different manner and the exact
cancellation of the self-interaction matrix elements is violated. This happens
to be the case in the local density approximation, where it is the source of
serious errors, which urgently call for corrections. In order to be aware of the
self-interaction terms we will thus keep the extra exclusion of the terms α = γ
in our notation.

In the next step we transform the previous intermediate result to the real
space representation. In doing so we fall back on the prescription presented in
Sec. 5.7 and use the eigenstates |x, σ〉 of the electron position/spin operator, for
which we noted the basic identities in Eqs. (5.7.1) to (5.7.3). Inserting now Eq.
(5.7.2) into Eq. (6.1.3) and using the identity (5.7.3) we get for the one-particle
part of the energy functional

〈H{1}
0 〉ψ

=
∑

α

∑

σσ′

∫

d3x

∫

d3x′ 〈χα|x, σ〉

〈x, σ|
{

− h̄2

2m
∇2 + vext(r)

}

|x′, σ′〉〈x′, σ′|χα〉

=
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

{

− h̄2

2m
∇2 + vext(r)

}

χα;σ(r) .

(6.1.4)

In the last step we have used, in addition, Eq. (5.6.24). The two particle terms
entering Eq. (6.1.3) are treated in complete analogy. Using Eq. (5.6.25) we
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write for the direct term
{

〈χ(1)
α | ⊗ 〈χ(2)

γ |
} e2

|r1 − r2|
{

|χ(1)
α 〉 ⊗ |χ(2)

γ 〉
}

=
∑

σσ′

∑

σ′′σ′′′

∫

d3x

∫

d3x′
∫

d3x′′
∫

d3x′′′ 〈χ(1)
α |x, σ〉〈χ(2)

γ |x′, σ′〉

{〈x, σ| ⊗ 〈x′, σ′|} e2

|r1 − r2|
{|x′′, σ′′〉 ⊗ |x′′′, σ′′′〉}

〈x′′, σ′′|χ{1}
α 〉〈x′′′, σ′′′|χ{2}

γ 〉

=
∑

σσ′

∫

d3r

∫

d3r′ χ∗
α;σ(r)χ

∗
γ;σ′ (r′)

e2

|r − r′|χα;σ(r)χγ;σ′(r′) , (6.1.5)

and for the exchange term

{

〈χ(1)
α | ⊗ 〈χ(2)

γ |
} e2

|r1 − r2|
{

|χ(1)
γ 〉 ⊗ |χ(2)

α 〉
}

=
∑

σσ′

∑

σ′′σ′′′

∫

d3x

∫

d3x′
∫

d3x′′
∫

d3x′′′ 〈χ(1)
α |x, σ〉〈χ(2)

γ |x′, σ′〉

{〈x, σ| ⊗ 〈x′, σ′|} e2

|r1 − r2|
{|x′′, σ′′〉 ⊗ |x′′′, σ′′′〉}

〈x′′, σ′′|χ{1}
γ 〉〈x′′′, σ′′′|χ{2}

α 〉

=
∑

σσ′

∫

d3r

∫

d3r′ χ∗
α;σ(r)χ

∗
γ;σ′ (r′)

e2

|r − r′|χα;σ′(r′)χγ;σ(r) . (6.1.6)

In Eqs. (6.1.5) and (6.1.6) two of the spin sums and real space integrals have
disappeared due to the spin independence as well as the locality of the potential.
Note that the states |χα〉 might be mixed spin states and thus have non-zero
projections onto both spin channels. Summarizing we obtain the result

〈H0〉ψ

=
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

{

− h̄2

2m
∇2 + vext(r)

}

χα;σ(r)

+
1

2

1

4πǫ0

∑

αγ

(1 − δαγ)
∑

σσ′

∫

d3r

∫

d3r′

[

χ∗
α;σ(r)χ

∗
γ;σ′(r′)

e2

|r− r′|χα;σ(r)χγ;σ′(r′)

−χ∗
α;σ(r)χ

∗
γ;σ′(r′)

e2

|r − r′|χα;σ′(r′)χγ;σ(r)

]

,

(6.1.7)

which is the Hartree-Fock counterpart of Eq. (4.4.3). Note that, as mentioned
above, we have kept the factor (1 − δαγ) to explicitly exclude the unphysical
self-interaction.



98 CHAPTER 6. HARTREE-FOCK THEORY

Having calculated the energy functional with the correctly antisymmetrized
many-body states we proceed in much the same way as in section 4.4. We thus
vary the expression (6.1.7) with respect to the single particle state χ∗

α and seek
for the zero’s of the first variation. As before, this involves variation of both
the function χ∗

α and its complex conjugate χα. If we want to vary all single
particle states as well as their complex conjugate states independently, we need
to enforce the normalization condition for χ∗

α and χα and write the variational
expression as

δ

(

〈H0〉ψ −
∑

α

ǫα
∑

σ

∫

d3r χ∗
α;σ(r)χα;σ(r)

)

!
= 0 . (6.1.8)

Combining this with the energy functional (6.1.7) we obtain

0
!
=

∑

α

∑

σ

∫

d3r δχ∗
α;σ(r)

{

− h̄2

2m
∇2 + vext(r)

}

χα;σ(r)

+
1

4πǫ0

∑

αγ

(1 − δαγ)
∑

σσ′

∫

d3r

∫

d3r′

δχ∗
α;σ(r)

[

χ∗
γ;σ′(r′)

e2

|r− r′|χα;σ(r)χγ;σ′(r′)

−χ∗
γ;σ′(r′)

e2

|r − r′|χα;σ′(r′)χγ;σ(r)

]

−
∑

α

ǫα
∑

σ

∫

d3r δχ∗
α;σ(r)χα;σ(r) . (6.1.9)

Again the factor 1
2 in the two-particle contribution has vanished since the single

particle orbitals appear twice in the double sum. As for the derivation of the
Hartree equations we employ the fact that the variational expression (6.1.9)
holds for arbitrary variations as well as for any dependence on the vector r.
This gives rise to the Hartree-Fock equations

0
!
=

[

− h̄2

2m
∇2 + vext(r) − ǫα

+
e2

4πǫ0

∑

γ

(1 − δαγ)
∑

σ′

∫

d3r′

[
χ∗
γ;σ′(r′)χγ;σ′(r′)

|r − r′| −
χ∗
γ;σ′(r′)χγ;σ(r)

|r − r′|
χα;σ′(r′)

χα;σ(r)

]]

χα;σ(r) ,

(6.1.10)

which have the character of single particle equations with eigenvalues ǫα and
eigenfunctions χα;σ(r) as projected onto the spin eigenstates and given at po-
sition r. In the same manner as in Sec. 4.4 we thus write the Hartree-Fock
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equations as
[

− h̄2

2m
∇2 + veff,σ(r)

]

χα;σ(r) = ǫαχα;σ(r) , (6.1.11)

with the effective single particle potential determined by

veff,σ(r) = vext(r) + vH(r) + vx,σ(r) . (6.1.12)

Here the first term designates the potential due to the ions and

vH(r)χα;σ(r) =
e2

4πǫ0

∑

γ

(1 − δαγ)
∑

σ′

∫

d3r′
|χγ;σ′(r′)|2
|r − r′| χα;σ(r)

≈ e2

4πǫ0

∑

γ

∑

σ′

∫

d3r′
|χγ;σ′(r′)|2
|r− r′| χα;σ(r)

=
e2

4πǫ0

∫

d3r′
ρ(r′)

|r − r′|χα;σ(r) , (6.1.13)

vx,σ(r)χα;σ(r) = − e2

4πǫ0

∑

γ

(1 − δαγ)
∑

σ′

∫

d3r′
χ∗
γ;σ′(r′)χγ;σ(r)

|r− r′| χα;σ′(r′)

≈ − e2

4πǫ0

∑

γ

∑

σ′

∫

d3r′
χ∗
γ;σ′(r′)χγ;σ(r)

|r − r′| χα;σ′(r′)

= − e2

4πǫ0

∑

σ′

∫

d3r′
ρσσ′(r; r′)

|r − r′| χα;σ′(r′) (6.1.14)

define the Hartree as well as the spin-dependent exchange potential. The latter
usually is designated by the index x. In the respective second and third lines
of Eqs. (6.1.13) and (6.1.14) we have included the self-interaction terms δαγ ,
which fact allowed to express the Hartree and exchange potential, respectively,
in terms of the density and the density matrix as specified in Eqs. (5.7.17)
to (5.7.19) rather than the single particle orbitals. In this context we made
use of the fact that the summations in the respective second lines include only
the occupied single particle states. Nevertheless, we point out once more that
expressing the Hartree and exchange potential in terms of the density and the
density matrix was possible only because these potentials are combined into the
effective potential, where the diagonal terms cancel out. From this discussion
it becomes, furthermore, obvious that within Hartree-Fock theory the effective
potential (6.1.12) does not depend on the index of that state, to which it is
applied. As a consequence, the potential is the same for all particles, this fact
reflecting our aformentioned condition that no operator acting on a system of
identical particles must label one of them.

The situation is different in the Hartree equations derived in Sec. 4.4, which
deviate from the Hartree-Fock result by the omittance of the exchange contri-
bution. For this reason, the self-interaction term strictly speaking must not
be included in the Hartree potential and the effective potential entering the
Hartree equations thus depends on the state index.
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Being a consequence of the identity of particles, hence, of the antisym-
metrization of the fermionic many-body function, the exchange contribution
is of completely quantum mechanical nature and thus can not be understood
within classical mechanics. In addition, the exchange potential is a non-local
potential since it contains the wave function χα;σ(r

′) at positions r′ 6= r. Ob-
viously, the latter fact complicates the solution of the Hartree-Fock equations
considerably.

It is important to note that the effective potential (6.1.12) represents an
Hermitian operator. This becomes obvious from calculating the matrix ele-
ments

∑

σ

∫

d3r χ∗
α;σ(r)veff,σ(r)χβ;σ(r)

=
∑

σ

∫

d3r χ∗
α;σ(r)vext(r)χβ;σ(r)

+
e2

4πǫ0

∑

σ

∫

d3r χ∗
α;σ(r)

∫

d3r′
ρ(r′)

|r − r′|χβ;σ(r)

− e2

4πǫ0

∑

σ

∫

d3r χ∗
α;σ(r)

∑

σ′

∫

d3r′
ρσσ′(r; r′)

|r − r′| χβ;σ′(r′)

=

[
∑

σ

∫

d3r χ∗
β;σ(r)vext(r)χα;σ(r)

+
e2

4πǫ0

∑

σ

∫

d3r χ∗
β;σ(r)

∫

d3r′
ρ(r′)

|r − r′|χα;σ(r)

− e2

4πǫ0

∑

σ′

∫

d3r′ χ∗
β;σ′(r′)

∑

σ

∫

d3r
ρσ′σ(r

′; r)

|r − r′| χα;σ(r)

]∗

=

[
∑

σ

∫

d3r χ∗
β;σ(r)veff,σ(r)χα;σ(r)

]∗

. (6.1.15)

Here we have used the respective third lines of Eqs. (6.1.13) and (6.1.14) as
well as Eq. (5.7.17). As a consequence of Eq. (6.1.15) the eigenvalues ǫα turn
out to be real and the eigenfunctions χα are indeed pairwise orthogonal.

In the same manner as the effective potential (4.4.8) entering the Hartree
equations (4.4.7) the effective potential (6.1.12) of the Hartree-Fock theory
depends itself on the single particle wave functions or the charge density grow-
ing out of them. For this reason, the potential and the single particle wave
functions again must be determined by iteration. Hence, one starts from an
initial guess for the effective potential, inserts it into the Hartree-Fock equa-
tions (6.1.11) and evaluates a first approximation to the single particle wave
functions χα, which in turn allow to calculate the effective potential via Eq.
(6.1.12). Note, however, that, although the Hartree-Fock equations yield all
single particle states, only the N lowest eigenstates are occupied and, hence,
enter the electron density as well as the effective potential. The just descirbed
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cycle is iterated until self-consistency, when a required accuracy of the results
is achieved.

Having the solutions of the Hartree-Fock equations at hand, we are able
to calculate the eigenvalues from multiplying Eq. (6.1.11) from the left with
χ∗
α;σ(r), summing over spins and integrating over all space. Since the eigen-

functions are orthonormalized we obtain

ǫα =
∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2 + veff,σ(r)

]

χα;σ(r)

=
∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2 + vext(r)

]

χα;σ(r)

+
e2

4πǫ0

∑

σ

∑

γ

(1 − δαγ)
∑

σ′

∫

d3r

∫

d3r′

[ |χα;σ(r
′)|2|χγ;σ′(r′)|2
|r − r′| −

χ∗
α;σ(r)χ

∗
γ;σ′ (r′)χα;σ′(r′)χγ;σ(r)

|r − r′|

]

.

(6.1.16)

Defining

Sα =
∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2 + vext(r)

]

χα;σ(r) (6.1.17)

as well as the Coulomb and exchange integral, respectively,

Cα,γ =
e2

4πǫ0

∑

σ

∑

σ′

∫

d3r

∫

d3r′
|χα;σ(r)|2 |χγ;σ′(r′)|2

|r − r′| , (6.1.18)

Aα,γ =
e2

4πǫ0

∑

σ

∑

σ′

∫

d3r

∫

d3r′
χ∗
α;σ(r)χ

∗
γ;σ′ (r′)χα;σ′(r′)χγ;σ(r)

|r − r′| ,

(6.1.19)

we arrive at the result

ǫα = Sα +
∑

γ

(1 − δαγ)
[

Cα,γ −Aα,γ

]

. (6.1.20)

With the above abbreviations the total energy functional (6.1.7) reads as

〈H0〉ψ =
∑

α

Sα +
1

2

∑

αγ

(1 − δαγ)
[

Cα,γ −Aα,γ

]

. (6.1.21)

Combining Eqs. (6.1.20) and (6.1.21) we get the alternative expression

〈H0〉ψ =
∑

α

ǫα − 1

2

∑

αγ

(1 − δαγ)
[

Cα,γ −Aα,γ

]

, (6.1.22)
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where the sums run over the occupied orbitals. According to Eq. (6.1.22) the
energy functional thus falls into the sum of all single particle energies minus
the socalled double counting terms. Inclusion of the latter is necessary, since
the single sum over particle density times effective potential counts both the
interaction of particle i with particle j as well as of particle j with particle i.
As a consequence, the interaction via the effective potential is double counted
and thus half of it has to be subtracted.

In order to get an impression about the influence of the exchange terms we
insert into Eq. (6.1.22) the explicit formulas (6.1.16), (6.1.18) as well as (6.1.16)
and note

〈H0〉ψ =
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2 + veff,σ(r)

]

χα;σ(r)

−1

2

e2

4πǫ0

∑

αγ

(1 − δαγ)
∑

σσ′

∫

d3r

∫

d3r′

[ |χα;σ′(r′)|2|χγ;σ′(r′)|2
|r − r′| −

χ∗
α;σ(r)χ

∗
γ;σ′(r′)χα;σ′ (r′)χγ;σ(r)

|r − r′|

]

=
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2 + veff,σ(r)

]

χα;σ(r)

−1

2

e2

4πǫ0

∑

αγ

∑

σσ′

∫

d3r

∫

d3r′

[ |χα;σ′(r′)|2|χγ;σ′(r′)|2
|r − r′| −

χ∗
α;σ(r)χ

∗
γ;σ′(r′)χα;σ′ (r′)χγ;σ(r)

|r − r′|

]

=
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2 + veff,σ(r)

]

χα;σ(r)

−1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
[
ρσ(r)ρσ′ (r′)

|r − r′| − |ρσσ′(r; r′)|2
|r− r′|

]

,

(6.1.23)

where we used the exact cancellation of the self-interaction term in the sum
of the direct and exchange integral as well as the spin-dependent density and
density matrix with the latter given by Eq. (5.7.17). From the final expression
it becomes clear that exchange integrals summed over all pairs of single particle
states results in a positive definite contribution. As a consequence, on inclusion
of the exchange integrals the total energy will be lowered. In particular, the
Hartree-Fock total energy is lower than the Hartree energy.

For the following discussions it will be useful to have an expression of the
Hartree-Fock ground state energy in terms of the density as well as the pair-
correlation function at hand. To this end we start out from Eq. (6.1.21) and
combine it the Eqs. (6.1.16), (6.1.18) as well as (6.1.16). In doing so we will
again include the self-interaction term in both the direct and exchange contri-
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bution. Using furthermore the definitions (5.7.23) and (5.7.31) we write

〈H0〉ψ =
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2 + vext(r)

]

χα;σ(r)

+
1

2

e2

4πǫ0

∑

αγ

(1 − δαγ)
∑

σσ′

∫

d3r

∫

d3r′

[ |χα;σ′(r′)|2|χγ;σ′(r′)|2
|r − r′| −

χ∗
α;σ(r)χ

∗
γ;σ′(r′)χα;σ′ (r′)χγ;σ(r)

|r − r′|

]

=
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r)

+
∑

σ

∫

d3r vext(r)ρσ(r)

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
[
ρσ(r)ρσ′ (r′)

|r − r′| − |ρσσ′(r; r′)|2
|r− r′|

]

=
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r) +

∫

d3r vext(r)ρ(r)

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
Pσσ′ (r; r′)

|r − r′|

=
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r) +

∫

d3r vext(r)ρ(r)

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′| gσσ′ (r; r′) . (6.1.24)

6.2 Exact relations

In this section we will derive some exact results, which provide some insight into
Hartree-Fock theory and will be useful for the discussion of density functional
theory lateron. These are, in particular, Brillouin’s theorem and Koopmans’
theorem.

The first of these theorems is based on the variational procedure and a
particular ansatz of the many-body wave function. To be specific we calculate
the variation of the energy functional explicitly as

∂

∂η

〈ψ− + ηχ|H0|ψ−〉
〈ψ− + ηχ|ψ−〉

|η=0
!
= 0 . (6.2.1)

The choice of the wave function in the bra state is subject to the condition that

1. |ψ− + ηχ〉 like |ψ−〉 must be a Slater determinant and

2. |ψ−+ηχ〉 must deviate from |ψ−〉 only with respect to changing one single
particle orbital.
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We are thus able to write the modified many-body state as

|ψ− + ηχ〉 = (N !)−
1
2 ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

|χ(1)
α1 〉 |χ(2)

α1 〉 · · · |χ(N)
α1 〉

|χ(1)
α2 〉 |χ(2)

α2 〉 · · · |χ(N)
α2 〉

...
...

...

|χ(1)
αp + ηχ̄〉 |χ(2)

αp + ηχ̄〉 · · · |χ(N)
αp + ηχ̄〉

...
...

...

|χ(1)
αN 〉 |χ(2)

αN 〉 · · · |χ(N)
αN 〉

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (N !)
− 1

2 ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

|χ(1)
α1 〉 |χ(2)

α1 〉 · · · |χ(N)
α1 〉

|χ(1)
α2 〉 |χ(2)

α2 〉 · · · |χ(N)
α2 〉

...
...

...

|χ(1)
αp 〉 |χ(2)

αp 〉 · · · |χ(N)
αp 〉

...
...

...

|χ(1)
αN 〉 |χ(2)

αN 〉 · · · |χ(N)
αN 〉

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+η · (N !)
− 1

2 ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

|χ(1)
α1 〉 |χ(2)

α1 〉 · · · |χ(N)
α1 〉

|χ(1)
α2 〉 |χ(2)

α2 〉 · · · |χ(N)
α2 〉

...
...

...

|χ̄〉 |χ̄〉 · · · |χ̄〉
...

...
...

|χ(1)
αN 〉 |χ(2)

αN 〉 · · · |χ(N)
αN 〉

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(6.2.2)

Next we use for |χ̄〉 successively all the single particle wave functions. In case
that |χ̄〉 is one of the occupied orbitals, i.e. |χ̄〉 = |χαi

〉 for i = 1, . . . , N , the
variation (6.2.1) vanishes trivially, because the second Slater determinant itself
vanishes (for i 6= p, where p is the orbital indicated in Eq. (6.2.2)) or the sum of
both Slater determinants is proportional to the original one (for i = p) with the
proportionality factor (1 + η) canceling out from Eq. (6.2.1). Hence, |χ̄〉 must
be an unoccupied orbital (i > N) in order that the variation does not vanish.
Replacing |χαp

〉 for p ≤ N by |χαp
+ ηχαq

〉 with q > N , hence, considering an
excited state

|χ〉 = a+
q ap|ψ−〉 =: |ψqp〉 with p ≤ N < q (6.2.3)

we obtain for the variational expression

∂

∂η

〈ψ−|H0|ψ−〉 + η〈ψqp|H0|ψ−〉
〈ψ−|ψ−〉 + η〈ψqp|ψ−〉

|η=0

=
∂

∂η
[〈ψ−|H0|ψ−〉 + η〈ψqp|H0|ψ−〉]η=0 = 〈ψqp|H0|ψ−〉 !

= 0 ,

(6.2.4)
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where we have used the fact that 〈ψqp|ψ−〉 = 0 due to the orthogonality of
the single particle states. According to this result the matrix elements of the
Hamiltonian built with a Slater determinant and a state resulting from excita-
tion of a single particle from this Slater determinant vanish. As a consequence,
there will always be a gap in the excitation spectrum and metallic systems
cannot be correctly described.

Finally, if we require that the Hartree-Fock Hamiltonian has the form of a
single-particle operator, Eq. (6.2.4) implies that

〈χq|H0|χp〉 !
= 0 for p ≤ N < q . (6.2.5)

As a consequence, all matrix elements of the Hartree-Fock Hamiltonian built
with an occupied and an unoccupied single-particle state vanish exactly.

Koopmans’ theorem deals with the ionization energies Iκ of the interacting
electron system as described by Hartree-Fock theory. We thus consider the
difference of the energy functional of an N and an N − 1 particle system.
Assuming that the particle is excited from the single particle state χκ we write,
following Eq. (6.1.21), for the energy functional

〈H0〉(N−1κ)
ψ =

∑

α

(1 − δακ)Sα

+
1

2

∑

α

∑

γ

(1 − δακ)(1 − δκγ)(1 − δαγ)
[

Cα,γ −Aα,γ

]

= 〈H0〉(N)
ψ − Sκ −

1

2

∑

α

(1 − δακ)
[

Cα,κ −Aα,κ

]

−1

2

∑

γ

(1 − δκγ)
[

Cκ,γ −Aκ,γ

]

= 〈H0〉(N)
ψ − Sκ −

∑

α

(1 − δακ)
[

Cα,κ −Aα,κ

]

= 〈H0〉(N)
ψ − ǫκ , (6.2.6)

where we have used the symmetry of the Coulomb and exchange integral with
respect to the single-particle indices. We thus arrive at Koopmans’ theorem

Iκ = 〈H0〉(N−1κ)
ψ − 〈H0〉(N)

ψ = −ǫκ . (6.2.7)

The ionization energy thus arises simply as the negative eigenvalue ǫκ corre-
sponding to the single particle state, from which the electron was removed. This
is an important result in view of the fact that these eigenvalues, growing out of
an approximate treatment of the electron-electron interaction, do not bear an
exact physical meaning. However, our evaluation of ionization energies from
Koopmans’ theorem is based on the assumption that on removing an electron
the states of the remaining electrons do not change drastically. In particular,
the relaxation of the other electrons in response to the excitation of a single
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particle is neglected. For this reason, the validity of the above assumption has
to be questioned in real sitations.

6.3 Hartree-Fock methods

Since the Hamiltonian (4.1.6) describing the system of electrons like the full
Hamiltonian, Eqs. (2.1.1) to (2.1.4), does not explicitly depend on spin, it must
commute with both the operator of the square as well as the z component of
the total spin,

[

H0,S
2
]

=
[

H0, Sz

]
!
= 0 . (6.3.1)

As a consequence, the Slater determinants (6.1.1) solving the Hartree-Fock
Hamiltonian must be simultaneous eigenfunctions of the Hamiltonian and the
above spin operators.

In Sec. 6.1, the eigenstates of the single-particle Hamiltonian were chosen
to be of the form

χα(r) =
∑

σ

ϕ(α̃,σ)(r)χσ =:
∑

σ

χ(α̃,σ)(r) , (6.3.2)

where the χσ denote the Pauli spinors

χ+ =

(

1

0

)

, χ− =

(

0

1

)

. (6.3.3)

In Eq. (6.3.2) we have written the index α labelling the different eigenstates
explicitly as a compose α = (α̃, σ) of the spin index and all other quantum
numbers characterizing these states. Since we allowed for mixed spin states in
Sec. 6.1, the projections of the single-particle eigenstates onto the spinors,

χα;σ′(r) = χσ′χ∗
σ′

∑

σ

χ(α̃,σ)(r) = ϕ(α̃,σ′)(r)χσ′ = χ(α̃,σ′)(r) , (6.3.4)

may yield non-zero results for both spin directions. As a consequence, the
single Slater determinant (6.1.1) built from these eigenstates obviously is not
an eigenstate of Sz with definite total spin and the commutation relations
(6.3.1) are thus violated.

This erraneous situation can be cured by restricting the form of the single-
particle orbitals from the very beginning such that the resulting Slater determi-
nant is a simultaneous eigenstate of the total spin operators, S2 and Sz, as well
as the Hamiltonian. To this end we define a fixed global spin quantization axis,
to which the total spin operators as well as the single-particle spin operators,
s2 and sz, are referred. In addition, we enforce that the projections (6.3.4) of
the single-particle states χα onto one of the spin states (6.3.3) are either one
or zero. With this restriction the single-particle states thus assume the form

χα(r) = ϕ(α̃,σ)(r)χσ =: χ(α̃,σ)(r) (6.3.5)
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and we obtain for the projection onto the spinors the result

χα;σ′(r) = χσ′χ∗
σ′χ(α̃,σ)(r)

= ϕ(α̃,σ′)(r)χσ′δσσ′ = χ(α̃,σ′)(r)δσσ′ , (6.3.6)

which contrasts Eq. (6.3.4). Just for completeness we append the identity
(5.7.3), which now reads as

〈x, σ|χα〉 = 〈x, σ|χ(α̃,σ′)〉 = χ(α̃,σ′)(x)δσσ′ . (6.3.7)

Eqs. (6.3.5) and (6.3.6) mark the starting point for the standard Hartree-
Fock method, which is also termed the “Unrestricted Hartree-Fock” (UHF)
method. Although this name seems to be somewhat misleading in view of the
fact that the single-particle states (6.3.5) actually comprise less degrees of free-
dom than the states (6.3.2) the name “Unrestricted” was chosen in order to
distinguish this method from the “Restricted Hartree-Fock” (RHF) methods,
which impose even stronger conditions onto the single-particle wave functions.

The great conceptual as well as practical importance of the Unrestricted
Hartree-Fock method justifies to take a closer look here. To this end we start
out from the energy functional as given by Eq. (6.1.7) but now combine it with
Eq. (6.3.5) for the single-particle states. Using the projections (6.3.6) we thus
replace Eq. (6.1.7) by

〈H0〉ψ

=
∑

α̃

∑

σ

∫

d3r χ∗
(α̃,σ)(r)

{

− h̄2

2m
∇2 + vext(r)

}

χ(α̃,σ)(r)

+
1

2

e2

4πǫ0

∑

α̃γ̃

∑

σσ′

(1 − δα̃γ̃δσσ′ )

∫

d3r

∫

d3r′

[

χ∗
(α̃,σ)(r)χ

∗
(γ̃,σ′)(r

′)
1

|r − r′|χ(α̃,σ)(r)χ(γ̃,σ′)(r
′)

−δσσ′χ∗
(α̃,σ)(r)χ

∗
(γ̃,σ′)(r

′)
1

|r − r′|χ(α̃,σ′)(r
′)χ(γ̃,σ)(r)

]

.

(6.3.8)

Note that the sums over spins, although still present, now are part of the
summations over all single-particle eigenstates. While Eq. (6.3.8) formally is
almost identical to the general expression (6.1.7) an important difference arises
for the exchange term. Due to the exchange of particles this term comprises
the projections of the single-particle states χα and χγ onto both the spins σ
and σ′ in Eq. (6.1.7). In the present context the restriction (6.3.6) on pure spin
states thus enforces σ = σ′ in the exchange contribution, which we accounted
for by adding an extra Kronecker δ.

Now proceeding along the same lines as in Sec. 6.1 for the general Hartree-
Fock method we enforce the normalization of the single-particle states and
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formulate the variational expression as

δ

(

〈H0〉ψ −
∑

α̃σ

ǫ(α̃,σ)

∫

d3r χ∗
(α̃,σ)(r)χ(α̃,σ)(r)

)

!
= 0 (6.3.9)

and, finally, arrive at the Hartree-Fock equations for the standard method,

0
!
=

[

− h̄2

2m
∇2 + vext(r) − ǫ(α̃,σ)

+
e2

4πǫ0

∑

γ̃σ′

(1 − δα̃γ̃δσσ′ )

∫

d3r′

[
χ∗

(γ̃,σ′)(r
′)χ(γ̃,σ′)(r

′)

|r − r′|

−δσσ′

χ∗
(γ̃,σ′)(r

′)χ(γ̃,σ)(r)

|r − r′|
χ(α̃,σ′)(r

′)

χ(α̃,σ)(r)

]]

χ(α̃,σ)(r) .

(6.3.10)

Again, these are single-particle equations with eigenvalues ǫ(α̃,σ) and eigenfunc-
tions χ(α̃,σ)(r). As in Sec. 6.1 we complement Eq. (6.3.10) by

[

− h̄2

2m
∇2 + veff,σ(r)

]

χ(α̃,σ)(r) = ǫ(α̃,σ)χ(α̃,σ)(r) , (6.3.11)

where the effective single-particle potential is determined by

veff,σ(r) = vext(r) + vH(r) + vx,σ(r) , (6.3.12)

with the last two terms, the Hartree and the exchange potential, explicitly
given by

vH(r)χ(α̃,σ)(r) =
e2

4πǫ0

∑

γ̃σ′

(1 − δα̃γ̃δσσ′)

∫

d3r′
|χ(γ̃,σ′)(r

′)|2
|r − r′| χ(α̃,σ)(r)

≈ e2

4πǫ0

∑

γ̃σ′

∫

d3r′
|χ(γ̃,σ′)(r

′)|2
|r− r′| χ(α̃,σ)(r)

=
e2

4πǫ0

∫

d3r′
ρ(r′)

|r − r′|χ(α̃,σ)(r) , (6.3.13)

vx,σ(r)χ(α̃,σ)(r) = − e2

4πǫ0

∑

γ̃σ′

(1 − δα̃γ̃δσσ′ )δσσ′

∫

d3r′
χ∗

(γ̃,σ′)(r
′)χ(γ̃,σ)(r)

|r − r′| χ(α̃,σ′)(r
′)

≈ − e2

4πǫ0

∑

γ̃σ′

δσσ′

∫

d3r′
χ∗

(γ̃,σ′)(r
′)χ(γ̃,σ)(r)

|r − r′| χ(α̃,σ′)(r
′)
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= − e2

4πǫ0

∑

σ′

δσσ′

∫

d3r′
ρσσ′(r; r′)

|r − r′| χ(α̃,σ′)(r
′) . (6.3.14)

Again we have added in the respective second and third lines of Eqs. (6.3.13)
and (6.3.14) the self-interaction terms δα̃γ̃δσσ′ and expressed both potentials
in terms of the density and the density matrix, Eqs. (5.7.17) to (5.7.19). Still,
we refer to the warning expressed in the context of Eqs. (6.1.13) and (6.1.14).

Continuing our discussion about the interpretation of the exchange poten-
tial we point, in particular, to the fact that, within the restriction to spin
eigenstates, this potential couples only electrons with same spin. This reflects
the Pauli principle, which is likewise a consequence of the antisymmetrization
of the many-body wave function and requires particles of same spin to stay
away from each other. Due to the repulsive Coulomb interaction between the
electrons this mechanism at the same time reduces the total energy and for this
reason the exchange potential comes with a minus sign.

The previous discussion bears an important aspect, which stems from the
spin dependence of the exchange potential acting only between electrons with
like spin. Obviously, the aformentioned energy reduction will be most effective
if all the electrons carry the same spin, say σ = + 1

2 . Such a complete polar-
ization of the electron spins macroscopically gives rise to stable ferromagnetic
order. However, we may ask, why only few materials show this behaviour in
nature. This is again a consequence of the Pauli principle, since with only
σ = + 1

2 states occupied orbitals with higher single particle energies must be
filled, which fact causes increase of the kinetic energy, hence, of the total en-
ergy. We thus realize that the appearence of magnetic order is influenced by
the balance between kinetic and exchange energy contributions. Although this
balance depends on the details of the electronic states (“the electronic struc-
ture”) a rather simple criterion, the Stoner criterion for ferromagnetism, can be
derived already from the following qualitative consideration. Let us start from
the unpolarized (“reference”) state, where equal numbers of spin up (σ = + 1

2 )
and spin down (σ = − 1

2 ) electrons exist. Next suppose that a large amount
of single particle spin up states are available at energies just above the highest
occupied states. In this case electron polarization, i.e. letting the electrons
populate these spin up states rather than the originally occupied spin down
states will keep the kinetic energy price at a minimum while nevertheless re-
ducing the exchange energy. As a consequence, magnetism is likely to occur in
this situation. The Stoner criterion thus states that, if the density of states at
the Fermi energy separating the occupied from the unoccupied states exceeds
a certain value, ferromagnetic order will result.

We illustrate this criterion with the densities of states of nonmagnetic
chromium and iron as calculated using the augmented spherical wave method.
The results are shown in Fig. 6.1. While the total DOS of Cr has a minimum
near the Fermi energy, we witness a rather sharp peak and a high DOS at EF
in the case of iron. According to the Stoner criterion this situation would favor
ferromagnetic order in Fe, which indeed is observed. In contrast, chromium
does not undergo a ferromagnetic phase transition.
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Figure 6.1: Total and partial densities of states (DOS) per atom of Cr and Fe.

As already mentioned the unrestricted Hartree-Fock method is contrasted
with the restricted Hartree-Fock (RHF) method, which enforces additional
symmetries. Examples are angular momentum eigenstates in atoms or the re-
quirement of spin degeneracy in case of materials without magnetic order. As is
obvious from the variational character of Hartree-Fock theory such restrictions
cause an increase of the total energy as compared to the total unrestricted case.
For this reasons we are faced with the fact that the solutions of lowest energy,
while being nearest to the ground state, display the wrong symmetry and those
solutions with the correct symmetry have elevated total energies. This is some-
times called the “symmetry dilemma” of Hartree-Fock theory. One way out
are projection methods, where the solutions of correct symmetry are projected
out after an unrestricted Hartree-Fock calculation has been performed.

A special implementation of great practical importance is the Hartree-Fock-
Roothaan method. In this method the single particle wave functions are ex-
panded in a set of basis functions,

χ(α̃,σ)(r) =
∑

µ

cµ(α̃,σ)ψ(µ,σ)(r) , (6.3.15)

where α comprises a set of quantum numbers as, e.g., the angular momentum, a
q vector characterizing a plane wave or the atomic site, at which the respective
function is centered in case of localized functions. The functions ψ(µ,σ)(r)
themselves are assumed to be analytically known and to depend on only few
parameters. Inserting the expansion (6.3.15) into the general Hartree-Fock
equation (6.3.15) we arrive at

[

− h̄2

2m
∇2 + veff,σ(r)

]
∑

ν

cν(α̃,σ)ψ(ν,σ)(r) = ǫ(α̃,σ)

∑

ν

cν(α̃,σ)ψ(ν,σ)(r) .

(6.3.16)
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Multiplying from the left with a function ψ(µ,σ)(r), defining

F σ =

[

− h̄2

2m
∇2 + veff,σ(r)

]

, (6.3.17)

and using the abbreviation
|µ〉 = ψ(µ,σ)(r) (6.3.18)

we arrive at the following matrix equation

∑

ν

(
〈µ|F σ|ν〉 − ǫ(α̃,σ)〈µ|ν〉

)
cν(α̃,σ) = 0 , (6.3.19)

which poses a generalized eigenvalue problem of the type

∑

ν

(
F σµν − ǫ(α̃,σ)Sµν

)
cν(α̃,σ) = 0 , (6.3.20)

where
Sµν = 〈µ|ν〉 (6.3.21)

is the overlap matrix of the basis functions. Eq. (6.3.20) is called Roothaan’s
matrix equation [141]. We have thus arrived at an algebraic representation
of the Hartree-Fock equations, which is easier to solve numerically than the
integro-differential equation (6.1.14).

Usually, the Hartree-Fock-Roothaan method is based on a linear combina-
tion of atomic orbitals (LCAO) ansatz, where the functions are chosen as Slater
type orbitals (STO’s)

f(r) = Nrn−1eζrYlm(r̂) . (6.3.22)

Here r = |r|, N = ((2n)!)
−1/2

(2ζ)
n+1/2

is the normalization factor, n, l,m
denote the principal, angular momentum, as well as the magnetic quantum
number, respectively, and Ylm(r̂) denotes a spherical harmonics. When only
one ζ is chosen (single ζ basis), its value is selected as

ζ =
Z − s

n∗ , (6.3.23)

where Z is the atomic number. The screening constant s and the effective
principal quantum number n∗ are evaluated from empirical rules formulated by
Slater [150]. While STO’s provide a good representation of the wave function
especially near the nucleus, the calculation of one- and two-center integrals is
quite cumbersome.

A different choice consists of Gaussian type orbitals (GTO’s) of the Carte-
sian form,

f(r) = Nxjxyjyzjzeζr
2

. (6.3.24)

Here N again is a normalization factor. GTO’s have the distinct advantage
that three- and four-center integrals can be reduced to much simpler two-center
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integrals since the product of two GTO’s at different centers can be written as
a single GTO centered between the two centers. Finally, there exist Gaussian
lobe functions, which are Gaussians displaced from the atomic center in order
to simulate orbitals of angular momentum l > 0. A problem with GTO’s results
from the fact that they reflect the atomic wave functions less accurate thant
STO’s and, hence, usually 3-4 more GTO’s are needed than STO’s. The latter
fact, of course, increases the computer time considerably.

6.4 Concluding remarks

Both the Hartree and Hartree-Fock approach approximate the ground state by
a single product and a single Slater determinant, respectively. Although the
variational procedure gives rise to optimal single particle functions within this
approach, the underlying idea is still rather crude if a considerable number
of many-body states exist at slightly elevated energies. Such states are com-
pletely ignored and, obviously, a single Slater determinant does not suffice in
such cases. Another disadvantage of using only a single Slater determinant be-
came clear from the derivation of Brillouin’s theorem, which showed that even
for metallic systems a finite gap between occupied and empty electron states
appears. Next, while neglecting electronic correlations completely, Hartree-
Fock theory takes the exchange between the electron fully into account. As a
consequence, optical band gaps usually come out much too large. Nevertheless,
the exact treatment of exchange may promote new ideas for an improved con-
sideration of this contribution in density functional theory based approaches.
Finally, the restriction of the Hartree-Fock method to single Slater determi-
nants led to severe difficulties with respect to the symmetry properties of the
many-body wave function. For this reason, the correct symmetry had to be
enforced by restricting the single particle wave functions or their combination
in the Slater determinant. Of course, this is unsatisfactory.

The aforementioned deficiency could be cured, in principle, by using instead
of the single Slater determinant a linear combination of them. Such a “config-
uration interaction” (CI) improves the situation a lot and usually leads close
to the exact result. Nevertheless, in practice the enormous computer require-
ments coming along with CI calculations limit the method to systems with only
few electrons. Moreover, the rather complicated nature of the obtained wave
function hinders a simple interpretation of the results.



Chapter 7

The homogeneous electron

gas

7.1 The Jellium model

In Sec. 3.1 we have learned about the Sommerfeld model, which was proposed
to describe properties of elemental metals. In this model electron-electron
interactions are throughout neglected and the presence of the ions is completely
ignored. This latter step was justified by the screening of the nuclei by the
core electrons, which considerably decreases the effective ionic potential. In
addition, the thus reduced electron-ion interaction was thought to be cancelled
by the electron-electron interaction for charge neutrality reasons. As outlined
in Sec. 3.1 the Sommerfeld model is characterized by parabolic band dispersions
as well as the resulting square root behaviour of the density of states. While we
found, in general, surprisingly good agreement of this approach with the band
structures and densities of states of the simple metals as presented in Sec. 3.2,
we observed also considerable deviations as e.g. the lifting of band degeneracies
or distinct minima in the density of states. These were fingerprints of both the
imperfect screening of the nuclei and the electron-electron interactions.

In the present chapter we will go beyond the Sommerfeld model by includ-
ing the electron-electron interaction. However, in doing so we will start on
a Hartree-Fock level and only lateron mention how correlations can be taken
into account. Nevertheless, following the spirit of the Sommerfeld model we
will, throughout in this chapter, still ignore the spatial structure of the poten-
tial created by the nuclei. In order to guarantee overall charge neutrality we
thus have to smear out the ionic potentials and replace them by a constant
positive background. The resulting caricature of the solid is denoted as the
homogeneous electron gas or the Jellium model.

Of course, this model represents a severe approximation to the real situa-
tion. However, as a matter of fact it does account for many properties of the
simple metals. Moreover, within Hartree-Fock theory an analytical solution is

113
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possible, which avoids the iterative evaluation of the single particle wave func-
tions. For this reason and, even more important, the Jellium model provides a
highly valuable and sound basis for the local density approximation, where the
effective potential for the inhomogenous system is constructed from piecewise,
hence, local homogeneous systems. To be more pictorial, in the inhomogeneous
electron gas all space is artificially divided into small boxes. If small enough, in
each box the electron density is well approximated by a constant density, hence,
a homogeneous electron gas, for which the local potential can be constructed
by the means to be discussed in this chapter. Finally, the results for all boxes
are combined to the solution of the inhomogeneous electron gas.

In order to describe the homogeneous electron gas we start out again from
the Hamiltonian (4.1.1), i.e.

H0 = Hion−ion({Rµ}) +Hel({ri}) +Hion−el({ri,Rµ})

=
∑

i

[

− h̄2

2m
∇2
i + vext(ri)

]

+
1

2

e2

4πǫ0

∑

i,j
j 6=i

1

|ri − rj |

=
∑

i

[

− h̄2

2m
∇2
i

]

+
1

2

e2

4πǫ0

∑

ν
µ6=ν

Zval,µZval,ν
|Rµ − Rν |

− e2

4πǫ0

∑

µ

∑

i

Zval,µ
|Rµ − ri|

+
1

2

e2

4πǫ0

∑

i,j
j 6=i

1

|ri − rj |
. (7.1.1)

In the context of the homogeneous electron gas the ion-ion interaction, of
course, reduces to a constant contribution to the Hamiltonian. At the same
time the electron-ion interaction likewise represents just a constant potential
seen by the electrons. However, as a closer inspection will reveal, the interac-
tion of the positive ionic background with itself diverges for an infinite system if
not properly combined with the neutralizing negative electronic charge density.
We will thus have to carefully investigate all contributions to the Hamiltonian.
In doing so we impose periodic Born-von Kármán boundary conditions as in-
troduced in Sec. 2.6 and start from a discrete mesh of k points within the
reciprocal primitive cell as defined by Eq. (2.6.5). Only in the thermodynamic
limit NUC → ∞, Ω = NUCΩUC → ∞, NUC/Ω = const., to be performed at
the end, the k point mesh will become infinitesimaly fine and the respective
sums over k points turn into integrals as was outlined in Sec. 2.7.

In general, the Coulombic ion-ion interaction is given by the second term
in Eq. (7.1.1), i.e.

Hion−ion({Rµ}) =
1

2

e2

4πǫ0

∑

µν
µ6=ν

Zval,µZval,ν
|Rµ − Rν |

, (7.1.2)

where Zval,µ is the number of valence electrons provided by the µ’th ion. For
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a constant ionic background the density assumes the form Eq. (3.1.6), i.e.

ρ =
N

NUCΩUC
=
N

Ω
, (7.1.3)

where N is the total number of valence electrons, NUC and ΩUC denote the
number and volume of the unic cells, respectively, and Ω is the volume of all
space. We thus can rewrite the ion-ion interaction as

Hion−ion =
1

2

e2

4πǫ0

∫

d3r

∫

d3r′
ρ2

|r− r′|e
−α|r−r′|

=
1

2

e2ρ2

4πǫ0
Ω

∫

d3r
e−α|r|

|r| . (7.1.4)

Note the factor e2 in front of the integral, which turns the squared density
ρ2 into a squared charge density (eρ)2. Furthermore, we point out that, by
turning the double sum (7.1.2) into the double integral (7.1.4) we have actually
ignored the condition µ 6= ν coming with the former and, hence, erraneously
included a self-interaction of the ionic system. This error will not be cured
in the subsequent treatment of the homogeneous electron gas and must be
accepted as an artefact of the underlying approximation. However, it causes a
constant shift of the total potential and thus does not alter the final results.

In Eq. (7.1.4) we have introduced an additional damping factor e−αr in
order to suppress the divergence of the integral arising from the long range
behaviour of the Coulomb potential. Of course, we will have to take the limit
α → ∞ at the very end. The integral on the right hand side of Eq. (7.1.4) is
just a special case of the Fourier transform of the screened Coulomb potential,
which is calculated as

vα(q) =

∫

d3r
e−α|r|

|r| e−iqr

=

∫ ∞

0

dr r2
∫ 2π

0

dϕ

∫ π

0

dϑ sinϑ
e−αr

r
e−iqr cosϑ

= 2π

∫ ∞

0

dr re−αr
∫ 1

−1

d cosϑ e−iqr cosϑ

=
2π

−iq

∫ ∞

0

dr e−αr
(
e−iqr − eiqr

)

=
4π

q

∫ ∞

0

dr e−αr sin(qr)

=
4π

q

[
e−αr

q2 + α2
(−α sin(qr) − q cos(qr))

]∞

0

=
4π

q2 + α2
. (7.1.5)

Inserting this result for q = 0 into Eq. (7.1.4) and using Eq. (7.1.3) we obtain

Hion−ion =
1

2

e2

4πǫ0

N2

Ω

4π

α2
, (7.1.6)
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which represents indeed a constant contribution to the Hamiltonian (7.1.1).
However, as already mentioned above this term diverges for α→ 0.

Next we turn to the electron-ion interaction, which is likewise of Coulombic
nature and, hence, reads as

Hion−el = − e2

4πǫ0

N∑

i=1

∫

d3r
ρ

|r − ri|
e−α|r−ri| . (7.1.7)

Again we have introduced the convergence factor e−αr. While the integral
is evaluated in the same way as described in Eq. (7.1.5), the sum over the
electrons turns into a factor N . Again using Eq. (7.1.3) we thus arrive at

Hion−el = − e2

4πǫ0

N2

Ω

4π

α2
, (7.1.8)

which, when combined with the ion-ion interaction, Eq. (7.1.6), leads indeed
to a partial cancellation. Inserting the intermediate results (7.1.6) and (7.1.8)
into the original Hamiltonian (7.1.1) we thus write

H0 = Hel({ri}) −
1

2

e2

4πǫ0

N2

Ω

4π

α2

=
∑

i

[

− h̄2

2m
∇2
i

]

− 1

2

e2

4πǫ0

N2

Ω

4π

α2
+

1

2

1

4πǫ0

∑

i,j
j 6=i

e2

|ri − rj |
.

(7.1.9)

Although the Hamiltonian still contains a divergent term we will soon real-
ize that also this remaining contribution is cancelled by part of the electron-
electron interaction. Physically speaking this results from the required charge
neutrality, which suppresses long range Coulomb interactions. Actually, the
positive ionic background, while causing a constant external potential (the sec-
ond term in Eq. (7.1.9) above) is balanced by a likewise constant negative
electronic charge density, which even leads to a local compensation of charge
and thus cancels the classical Coulomb interaction completely.

We proceed transferring the Hamiltonian (7.1.9) to the occupation number
representation of the general form (5.4.26). Of course, the constant external
potential suggests to opt for the plane waves (3.1.2) as a single-particle basis,
hence,

χkσ(r) =
1√
Ω
eikrχσ = 〈r|kσ〉 (7.1.10)

with the spinors given by Eq. (6.3.3). Here we have in the last step appended
the notation (5.7.3) of the real space representation. The Hamiltonian can thus
be written as

H0 =
∑

k1k2

∑

σ1σ2

〈k1σ1| −
h̄2

2m
∇2|k2σ2〉a+

k1σ1
ak2σ2 −

1

2

e2

4πǫ0

N2

Ω

4π

α2
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+
1

2

∑

k1k2
k3k4

∑

σ1σ2
σ3σ4

v(k1σ1,k2σ2,k3σ3,k4σ4)a
+
k1σ1

a+
k2σ2

ak4σ4ak3σ3 ,

(7.1.11)

with the Coulomb interaction matrix element given by

v(k1σ1,k2σ2,k3σ3,k4σ4)

=
e2

4πǫ0

{

〈(k1σ1)
(1) | ⊗ 〈(k2σ2)

(2) |
} 1

|r1 − r2|
{

| (k3σ3)
(1)〉 ⊗ | (k4σ4)

(2)〉
}

. (7.1.12)

With the plane wave basis the matrix elements arising from the kinetic energy
contribution are easily calculated as

〈k1σ1| −
h̄2

2m
∇2|k2σ2〉

=

∫

d3r

∫

d3r′ 〈k1σ1|r〉〈r| −
h̄2

2m
∇2|r′〉〈r′|k2σ2〉

= − h̄2

2m

1

Ω

∫

d3r e−ik1r∇2eik2rδ(r − r′)δσ1σ2

=
h̄2k2

2

2m

1

Ω
δσ1σ2

∫

d3r e−i(k1−k2)r

= δ(k1 − k2)δσ1σ2

h̄2k2
2

2m
=: δ(k1 − k2)δσ1σ2 ε0(k2) , (7.1.13)

which are, as expected, the single-particle energies of the Sommerfeld model.
In contrast, we obtain for the matrix elements (7.1.12) of the electron-

electron interaction

v(k1σ1,k2σ2,k3σ3,k4σ4)

=
e2

4πǫ0

1

Ω2

∫

d3r1

∫

d3r2

∫

d3r3

∫

d3r4

〈k1σ1|r1〉〈k2σ2|r2〉
{

〈r(1)
1 | ⊗ 〈r(2)

2 |
} 1

|r′1 − r′2|
{

|r(1)
3 〉 ⊗ |r(2)

4 〉
}

〈r3|k3σ3〉〈r4|k4σ4〉

=
e2

4πǫ0

1

Ω2
δσ1σ3δσ2σ4

∫

d3r1

∫

d3r2 e
−i(k1−k3)r1

1

|r1 − r2|
e−i(k2−k4)r2 .

(7.1.14)

In evaluating the integral we express the real space vectors r1 and r2 by

r = r1 − r2 , R =
1

2
(r1 + r2) (7.1.15)
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as

r1 = R +
1

2
r , r2 = R − 1

2
r . (7.1.16)

In addition, we introduce again the damping factor e−αr in order to facilitate
evaluation of the integral and arrive at

vα(k1σ1,k2σ2,k3σ3,k4σ4)

=
e2

4πǫ0

1

Ω2
δσ1σ3δσ2σ4

∫

d3R e−i(k1−k3+k2−k4)R

∫

d3r
e−α|r|

|r| e−(i/2)(k1−k3−k2+k4)r . (7.1.17)

For the integral over R we obtain
∫

d3R e−i(k1−k3+k2−k4)R = Ωδ(k1 − k3 + k2 − k4) , (7.1.18)

which is just the orthonormalization of the plane wave states (7.1.10). Inserting
this into Eq. (7.1.17) and using the identity (7.1.5) we get

vα(k1σ1,k2σ2,k3σ3,k4σ4)

=
e2

4πǫ0

1

Ω
δσ1σ3δσ2σ4δ(k1 − k3 + k2 − k4)

∫

d3r
e−α|r|

|r| e−i(k1−k3)r

=
e2

4πǫ0

1

Ω
δσ1σ3δσ2σ4δ(k1 − k3 + k2 − k4)vα(k1 − k3)

=
e2

4πǫ0

4π

Ω
δσ1σ3δσ2σ4δ(k1 − k3 + k2 − k4)

1

(k1 − k3)2 + α2
.

(7.1.19)

With this result at hand we write the electron-electron interaction part of the
Hamiltonian (7.1.11) as

H
(2)
0 =

1

2Ω

e2

4πǫ0

∑

k1k2
k3k4

∑

σ1σ2
σ3σ4

δσ1σ3δσ2σ4δ(k1 − k3 + k2 − k4)vα(k1 − k3)

a+
k1σ1

a+
k2σ2

ak4σ4ak3σ3

=
1

2Ω

e2

4πǫ0

∑

k1k3k4

∑

σ1σ2

vα(k1 − k3) a
+
k1σ1

a+
k3+k4−k1σ2

ak4σ2ak3σ1

=
1

2Ω

e2

4πǫ0

∑

kpq

σσ′

vα(q)a+
k+qσa

+
p−qσ′apσ′akσ . (7.1.20)

In the last line of Eq. (7.1.20) we have appended a common alternative formu-
lation based on renaming the indices according to

k3 = k , k4 = p
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σ1 = σ3 = σ , σ2 = σ4 = σ′

k1 = k3 + q = k + q , k2 = k4 + k3 − k1 = p − q .

(7.1.21)

Eventually, the previous considerations give rise to the following Hamilto-
nian of the Jellium model

H0 =
∑

kσ

ε0(k)a+
kσakσ −

1

2

e2

4πǫ0

N2

Ω

4π

α2

+
1

2Ω

e2

4πǫ0

∑

k1k3k4

∑

σ1σ2

v0(k1 − k3)a
+
k1σ1

a+
k3+k4−k1σ2

ak4σ2ak3σ1

=
∑

kσ

[

ε0(k) − 1

2

e2

4πǫ0

N

Ω

4π

α2

]

a+
kσakσ

+
1

2Ω

e2

4πǫ0

∑

kpq

σσ′

v0(q)a+
k+qσa

+
p−qσ′apσ′akσ , (7.1.22)

with the matrix elements given by Eqs. (7.1.13) and (7.1.19).
Two points are worth mentioning at the end of this section: First, the

plane wave basis already introduced for the Sommerfeld model obviously pro-
vides eigenstates of the kinetic energy operator, which has only diagonal matrix
elements (7.1.13). Second, due to the dependence of the electron-electron in-
teraction only on the difference between the respective electronic positions the
number of independent k summations in the final representation (7.1.22) re-
duces from four to three.

7.2 Perturbation theory for the Jellium model

In order to get some insight into the physical properties of the Jellium model we
aim in a first step at the ground state energy. In doing so, we apply first order
perturbation theory to the Hamiltonian (7.1.22). According to the variational
principle this will give us an upper bound for the true value of the ground
state energy. As the unperturbed system we choose the first contribution to
the Hamiltonian, i.e. the kinetic energy term, which is just the Sommerfeld
model studied in Sec. 3.1. We may thus fall back on the results derived there,
in particular, the parabolic band dispersion (3.1.4), the square root behaviour
(3.1.16) of the density of states as well as the results (3.1.9) and (3.1.11) given
for the Fermi vector and energy, respectively. Furthermore, we recall the result
(3.1.20) for the ground state energy.

Next we take into consideration the perturbation arising from the second
contribution to the Hamiltonian (7.1.22) and calculate the first order energy
correction as

∆E(1) =
1

2

occ∑

k1k3k4
σ1σ2

v0(k1 − k3)〈Ψ0|a+
k1σ1

a+
k3+k4−k1σ2

ak4σ2ak3σ1 |Ψ0〉
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−1

2

e2

4πǫ0

N2

Ω

4π

α2
. (7.2.1)

Apart from second term this energy correction is identical to the ground state
expectation value of the two-particle contribution to the Hamiltonian H0 as
given by Eq. (7.1.1). We may thus use the general result (5.5.23) and write

∆E(1) =
1

2

occ∑

k1k2k3k4
σ1σ2σ3σ4

v(k1σ1,k2σ2,k3σ3,k4σ4)

[

δ(k1 − k3)δσ1σ3δ(k2 − k4)δσ2σ4

−δ(k1 − k4)δσ1σ4δ(k2 − k3)δσ2σ3

]

−1

2

e2

4πǫ0

N2

Ω

4π

α2
. (7.2.2)

Using Eq. (7.1.19) for the matrix element vα we obtain for the first order energy
correction

∆E(1) = − 1

2Ω

e2

4πǫ0

occ∑

k1k2
σ1σ2

vα(q = 0)

− 1

2Ω

e2

4πǫ0

occ∑

k1k3
σ1σ2σ3σ4

v0(k1 − k3)δσ1σ4δσ2σ3δσ1σ3δσ2σ4

−1

2

e2

4πǫ0

N2

Ω

4π

α2

= −1

2

e2

4πǫ0

N2

Ω

4π

α2
− 1

2Ω

e2

4πǫ0

occ∑

k1k3
σ

v0(k1 − k3) −
1

2

e2

4πǫ0

N2

Ω

4π

α2

= − 1

2Ω

e2

4πǫ0

occ∑

kqσ

v0(q) , (7.2.3)

where in the last lines we have used the alternative formulation in terms of k

and q already used in Eq. (7.1.20) as well as the identity (7.1.5). Note that
again the exchange term is diagonal in the spin indices.

In Eq. (7.2.3) we have used a finite screening factor α for the potential
matrix element entering the direct term in order to allow for its explicit repre-
sentation for q = 0. This lead to the important result that the direct contri-
bution exactly cancels the constant contribution to the Hamiltonian (7.1.22),
which, as outlined in the previous section, grew out of the combined ion-ion
and ion-electron interactions. This result seems quite plausible since, as already
mentioned in Sec. 7.1, within the homogeneous electron gas we end up with
local charge neutrality and, hence, all classical Coulomb interactions (ion-ion,
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ion-electron, and electron-electron) compensate each other. The only remain-
ing contribution is thus the non-classical exchange term. Note that this term,
i.e. the last line of Eq. (7.2.3) contains an unrestricted q summation. Of course,
this facilitates the subsequent calculations a lot.

In the ground state of the Sommerfeld model, only states with wave vectors
within the Fermi sphere are occupied and we are thus able to write Eq. (7.2.3)
as

∆E(1) = − 1

2Ω

e2

4πǫ0

∑

kqσ

v0(q)Θ(kF − |k + q|)Θ(kF − |k|) , (7.2.4)

where Θ denotes the Heaviside step function. In the thermodynamic limit the
sum turns into an integral according to (2.7.2) and we obtain for the first order
energy correction per particle

∆E(1)

N
= − Ω

N(2π)6
e2

4πǫ0

∫

d3k

∫

d3q v0(q)Θ(kF − |k + q|)Θ(kF − |k|)

= − e2

4πǫ0

4πΩ

N(2π)6

∫

d3k

∫

d3q
1

|q|2 Θ(kF − |k + q|)Θ(kF − |k|) ,

(7.2.5)

where we have inserted the Fourier component of the Coulomb potential, Eq.
(7.1.5), and performed the summation over spins. Substituting

k → x = k +
1

2
q

we write the integral as

∆E(1)

N
= − e2

4πǫ0

4πΩ

N(2π)6

∫

d3q
1

q2
S(q) , (7.2.6)

where

S(q) = Θ(kF − q

2
)

∫

d3x Θ(kF − |x +
q

2
|)Θ(kF − |x − q

2
|) (7.2.7)

is just the volume of the overlap region of two interprenetating spheres with
radius kF , which are centered at −q

2 and +q

2 , hence, are separated by a distance
q = |q|. The step function Θ(kF − q

2 ) ensures that the integral is finite only
if the distance between the sphere centers is smaller than twice their radius,
hence, if the spheres do actually overlap. The situation is visualized in Fig. 7.1,
which displays a cut through the plane containing the centers of both spheres.
For positive values of x the function circumscribing the overlap region is defined
as

f(x) = ±
√

k2
F −

(

x+
q

2

)2

. (7.2.8)



122 CHAPTER 7. THE HOMOGENEOUS ELECTRON GAS

-

6

x

y

kF

−q
2 +q

2

kF − |q|
2

@
@@I

Figure 7.1: Cut through two overlapping spheres; the cut contains both sphere
centers.

and the overlap volume is thus calculated in cylinder coordinates as

S(q) = 2 · 2πΘ(kF − q

2
)

∫ kF − q
2

0

dx

∫ f(x)

0

dy y

= 2 · 2πΘ(kF − q

2
)

∫ kF − q
2

0

dx
1

2

[

k2
F −

(

x+
q

2

)2
]

= 2πΘ(kF − q

2
)

∫ kF − q
2

0

dx

[

k2
F − x2 − xq − q2

4

]

= 2πΘ(kF − q

2
)

[(

k2
F − q2

4

)

x− 1

3
x3 − 1

2
qx2

]kF − q
2

0

= 2πΘ(kF − q

2
)

[(

k2
F − q2

4

)(

kF − q

2

)

−1

3

(

kF − q

2

)3

− 1

2
q
(

kF − q

2

)2
]

= 2πΘ(kF − q

2
)

[
2

3
k3
F − q

2
k2
F +

q3

24

]

=
4π

3
Θ(kF − q

2
)

[

k3
F − 3

4
k2
F q +

1

16
q3
]

. (7.2.9)

Inserting this result into Eq. (7.2.6) we get for the energy correction per particle

∆E(1)

N
= − e2

4πǫ0

4πΩ

N(2π)6
(4π)2

3

∫ 2kF

0

dq

[

k3
F − 3

4
k2
F q +

1

16
q3
]
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= − e2

4πǫ0

4πΩ

N(2π)6
(4π)2

3

[

2k4
F − 3

2
k4
F +

1

4
k4
F

]

= − e2

4πǫ0

1

2

Ω

N

1

2π3
k4
F

= − 3

2π

(
9π

4

) 1
3 1

rs/aB
Ryd

= − 0.916

rs/aB
Ryd . (7.2.10)

Finally, combining this expression with the ground state energy of the Som-
merfeld model, Eq. (3.1.20), we arrive at the first order ground state energy
per particle

E(1)

N
=
E(0) + ∆E(1)

N
=

[
2.21

(rs/aB)2
− 0.916

rs/aB

]

Ryd . (7.2.11)

The result is shown in Fig. 7.2, which clearly reveals an energy minimum at fi-
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Figure 7.2: First order ground state energy per particle of the Jellium model;
the dotted curve shows the zeroth order result arising from the Sommerfeld
model.

nite values of rs, hence at finite densities. This is contrasted by the Sommerfeld
model, for which we have included the corresponding curve. Here a binding at
finite values of rs, hence, for finite electron densities does not occur. In general,
while for small values of rs the positive kinetic energy provides the major con-
tribution to the ground state energy, for larger values of rs the exchange term
dominates and allows for metallic bonding. The minimum of the first order
ground state energy is found at rs = 4.83aB with an energy of −0.095 Ryd.
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These values are close to the experimental values for Na, rs = 3.96aB with an
energy of −0.083 Ryd. To summarize, while the Sommerfeld model is unable
to describe metallic bonding at all the inclusion of the exchange contribution to
the total energy leads to a minimum ground state energy at finite values of rs.
Nevertheless, the calculated binding energies are still too small as compared to
experiment due to the neglect of electron correlations.

7.3 Hartree-Fock approach to the Jellium model

It is instructive to complement the results for the Jellium model gained from
first order perturbation theory by the corresponding solution as arising from
Hartree-Fock theory as described in Chap. 6. To this end we assume that
a fixed global spin quantization axis does exist and are thus able to apply
the Hartree-Fock equations (6.3.11) coming with the unrestricted Hartree-Fock
method.

To be concrete, we have to solve the Hartree-Fock equations (6.3.11) with
the effective potential given by Eqs. (6.3.12) to (6.3.14) but without the ionic
potential entering Eq. (6.3.12). Luckily, as we will soon realize, the Hartree-
Fock equations are trivially solved by the plane wave states (7.1.10) opted for
in Sec. 7.1, hence,

[

− h̄2

2m
∇2 + veff,σ(r)

]

χkσ(r) = ǫkσχkσ(r) (7.3.1)

holds to be true. Here the effective potential comprises besides the Hartree
and the exchange potential the constant contribution arising from the ion-ion
and ion-electron interaction, i.e. the second term in Eq. (7.1.22). In order to
prove Eq. (7.3.1) we apply to the plane wave states the Hartree-Fock Hamil-
tonian comprising besides the kinetic energy the effective potential (6.3.12).
Obviously, these states are eigenstates of the Laplacian,

− h̄2

2m
∇2χkσ(r) =

1√
Ω

h̄2

2m
χσ∇2eikr

=
h̄2

k2

2m
χkσ(r) . (7.3.2)

For the direct as well as the exchange term we apply the approximate forms
given in the respective last lines of Eqs. (6.3.13) and (6.3.14), which are identical
to the exact formulations if both operators are used in conjunction without
any further approximation. We thus note for the direct term, i.e. the Hartree
potential specified by Eq. (6.3.13),

vH(r)χkσ(r) =
e2

4πǫ0

∫

d3r′
ρ

|r − r′|
1√
Ω
χσe

ikr

=
e2

4πǫ0
ρχkσ(r)

∫

d3r′
1

|r − r′|

=
N

Ω

e2

4πǫ0
v0(q = 0)χkσ(r) , (7.3.3)
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where we have used the identity (7.1.5). According to Eq. (6.1.21) the Hartree
potential gives rise to an total energy contribution of

EH =
1

2

∫

d3r ρvH(r)

=
1

2

N

Ω

e2

4πǫ0
v0(q = 0)

∫

d3r ρ

=
1

2

e2

4πǫ0

N2

Ω

4π

α2
. (7.3.4)

As expected from our perturbation theoretical treatment adopted in Sec. 7.2
the direct term cancels exactly the constant external potential contribution
arising from the combined ion-ion and ion-electron interactions. We are thus
again left with only the exchange term, for which we write using Eq. (6.3.14)

vx,σ(r)χkσ(r) = − e2

4πǫ0

∑

σ′

δσσ′

∫

d3r′
ρσσ′ (r; r′)

|r− r′| χkσ′(r′)

= − e2

4πǫ0

occ∑

k′σ′

δσσ′

∫

d3r′
χ∗

k′σ′(r′)χk′σ(r)

|r − r′| χkσ′(r′)

= − e2

4πǫ0

1

(Ω)3/2

occ∑

k′σ′

δσσ′χ∗
σ′χσχσ′

∫

d3r′
eik

′(r−r′)

|r − r′| e
ikr′

= − e2

4πǫ0

1

(Ω)3/2

occ∑

k′σ′

δσσ′χσ

∫

d3r′
e−i(k−k′)·(r−r′)

|r − r′| eikr

= − 1

Ω

e2

4πǫ0

occ∑

k′σ′

δσσ′v0(k − k′)χkσ(r) , (7.3.5)

where again we employed Eq. (7.1.5). As a result, the plane wave basis states
(7.1.10) do indeed trivially solve the Hartree-Fock equations (7.3.1) with the
eigenenergies specified by

ǫkσ =
h̄2k2

2m
− 1

Ω

e2

4πǫ0

occ∑

k′σ′

δσσ′v0(k − k′) . (7.3.6)

In this context the term “trivial” refers to the gratifying fact that solving the
Hartree-Fock equations could be achieved without the need for the iterative
or self-consistent field procedure, which fact is actually a consequence of the
simplifications coming with the Jellium model. The resulting exact treatment
within the Hartree-Fock method underlines the importance of the homogeneous
electron gas for other more general schemes as e.g. the local density approxi-
mation.

At this point it also important to note that the plane waves always fulfil
the Hartree-Fock equations irrespective of the actual filling of these states. In
other words, from solving the Hartree-Fock equations alone we can not yet
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decide, if a plane wave state with a particular wave vector k and spin σ is
filled or empty. Eventually, the actual occupation of the single particle states
follows solely from the minimization of the total energy functional. A possible
distribution arises for fixed numbersNσ of electrons with spin σ from filling two
Fermi spheres with Fermi vector kFσ for each spin. Since the Fourer transform
v0(q) of the electron-electron interaction is a monotonically decreasing function
of |q| this distribution does indeed minimize the total energy functional, since
it i) minimizes the positive total kinetic energy and ii) maximizes the absolute
value of the negative exchange energy.

According to our considerations for the Sommerfeld model in Sec. 3.1 the
spin dependent Fermi wave vector is related to the spin dependent particle
number by

4πk3
Fσ

3
= NσΩk =

Nσ(2π)3

Ω
, (7.3.7)

which is the analogue of Eq. (3.1.5). In accordance with Eq. (3.1.6) we then
note for the spin dependent electron densities

ρσ =
Nσ
Ω

=
k3
Fσ

6π2
. (7.3.8)

Of course, in the case of spin degeneracy, N↑ = N↓ = N
2 , the spin dependent

quantities are related by
kF↑ = kF↓ = kF (7.3.9)

and

ρ↑ = ρ↓ =
k3
F

6π2
. (7.3.10)

An alternative representation arises from expressing the spin dependent quan-
tities in terms of the total density

ρ =
∑

σ

ρσ (7.3.11)

and the spin polarization

ξ =
ρ↑ − ρ↓

ρ
. (7.3.12)

While ξ = 0 corresponds to the spin degenerate case, ξ = 1 refers to a to-
tally polarized, ferromagnetic system. Writing the spin dependent densities as
functions of the density and spin polarization,

ρσ =
ρ

2
(1 + zσξ) , (7.3.13)

with zσ given by Eq. (5.7.9), we are able to note for the spin dependent Fermi
wave vector

kFσ =
(
3π2ρ

) 1
3 · (1 + zσξ)

1
3 = kF · (1 + zσξ)

1
3 . (7.3.14)
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Given the spin dependent Fermi wave vectors kFσ we may now further
evaluate Eq. (7.3.6) for the eigenenergies by turning the sum over the occupied
states into an integral over the spin dependent Fermi sphere. However, we will
use from the very beginning instead of the bare Coulomb potential the screened
Coulomb potential with a finite screening parameter α. Following Eq. (2.7.2)
and inserting the identity (2.6.7) we thus note

occ∑

k′σ′

δσσ′vα(k − k′) =
4π

Ωk

∫

ΩF σ

d3k′ 1

(k − k′)2 + α2

=
Ω

2π2

∫

ΩF σ

d3k′ 1

(k − k′)2 + α2
, (7.3.15)

where ΩFσ denotes the region of the spin dependent Fermi sphere. Using
spherical coordinates with the z axis parallel to the vector k, the abbreviations
k = |k| and k′ = |k′| as well as the identity

(k − k′)2 = k2 + (k′)2 − 2kk′ cosϑ , (7.3.16)

where ϑ is the angle between k and k′, we calculate

occ∑

k′σ′

δσσ′vα(k − k′)

=
Ω

2π2

∫ kF σ

0

dk′ (k′)2
∫ 2π

0

dϕ

∫ π

0

dϑ
sinϑ

k2 + (k′)2 − 2kk′ cosϑ+ α2

=
Ω

π

∫ kF σ

0

dk′ (k′)2
∫ 1

−1

d cosϑ
1

k2 + (k′)2 − 2kk′ cosϑ+ α2

=
Ω

π

∫ kF σ

0

dk′ (k′)2
[

1

2kk′
ln(k2 + (k′)2 − 2kk′x+ α2)

]−1

1

=
Ω

2π
k

∫ yF σ

0

dy y

[

ln
(
(1 + y)2 + y2

α

)
− ln

(
(1 − y)2 + y2

α

)
]

, (7.3.17)

where we have defined

y =
k′

k
, dy =

dk′

k
, yFσ =

kFσ
k

, and yα =
α

k
. (7.3.18)

Integrating by parts we get for the integral

∫ yF σ

0

dy y

[

ln
(
(1 + y)2 + y2

α

)
− ln

(
(1 − y)2 + y2

α

)
]

=
1

2

[

y2 ln

(
(1 + y)2 + y2

α

(1 − y)2 + y2
α

)]yF σ

0

−
∫ yF σ

0

dy y2

[
1 + y

(1 + y)2 + y2
α

+
1 − y

(1 − y)2 + y2
α

]

. (7.3.19)
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Next we split the last integral into two and substitute

x = 1 + y , dx = dy , x− 1 = y , and

x = 1 − y , dx = −dy , x− 1 = −y , (7.3.20)

in the first and second integral, respectively. This leads to the result

∫ yF σ

0

dy y

[

ln
(
(1 + y)2 + y2

α

)
− ln

(
(1 − y)2 + y2

α

)
]

=
1

2
y2
Fσ ln

(
(1 + yFσ)

2 + y2
α

(1 − yFσ)2 + y2
α

)

−
∫ 1+yF σ

1

dx (x− 1)2
x

x2 + y2
α

+

∫ 1−yF σ

1

dx (x− 1)2
x

x2 + y2
α

=
1

2
y2
Fσ ln

(
(1 + yFσ)

2 + y2
α

(1 − yFσ)2 + y2
α

)

−
∫ 1+yF σ

1−yF σ

dx
x3 − 2x2 + x

x2 + y2
α

=
1

2
y2
Fσ ln

(
(1 + yFσ)

2 + y2
α

(1 − yFσ)2 + y2
α

)

−
[
x2

2
− y2

α

2
ln(x2 + y2

α) − 2x− 2yα arctan
x

yα
+

1

2
ln(x2 + y2

α)

]1+yF σ

1−yF σ

=
1

2
y2
Fσ ln

(
(1 + yFσ)

2 + y2
α

(1 − yFσ)2 + y2
α

)

− (1 + yFσ)
2 − (1 − yFσ)

2

2

+4yFσ −
1

2

(
1 − y2

α

)
ln

(
(1 + yFσ)

2 + y2
α

(1 − yFσ)2 + y2
α

)

−2yα

[

arctan
1 + yFσ
yα

− arctan
1 − yFσ
yα

]

= 2yFσ +
1

2

(
y2
Fσ − 1 + y2

α

)
ln

(
(1 + yFσ)

2 + y2
α

(1 − yFσ)2 + y2
α

)

−2yα

[

arctan
1 + yFσ
yα

− arctan
1 − yFσ
yα

]

, (7.3.21)

which for α→ 0 reduces to
∫ yF σ

0

dy y

[

ln
(
(1 + y)2

)
− ln

(
(1 − y)2

)
]

= 2yFσ +
1

2

(
y2
Fσ − 1

)
ln

(
(1 + yFσ)

2

(1 − yFσ)2

)

= 2yFσ +
(
y2
Fσ − 1

)
ln

∣
∣
∣
∣

1 + yFσ
1 − yFσ

∣
∣
∣
∣

. (7.3.22)

Inserting Eq. (7.3.21) into Eq. (7.3.17) we arrive at

occ∑

k′σ′

δσσ′vα(k − k′)
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=
Ω

2π

[

2kFσ +
1

2k

(
k2
Fσ − k2 + α2

)
ln

(
(k + kFσ)

2 + α2

(k − kFσ)2 + α2

)

−2α

[

arctan
k + kFσ

α
− arctan

k − kFσ
α

] ]

,

(7.3.23)

and, finally combining this with the relation (7.3.6) for the eigenenergies as
generalized for arbitrary values of α, we obtain the result

ǫkσ =
h̄2k2

2m

−kFσ
2π

e2

4πǫ0

[

2 +
k2
Fσ − k2 + α2

2kkFσ
ln

(
(k + kFσ)

2 + α2

(k − kFσ)2 + α2

)

−2
α

kFσ

[

arctan
k + kFσ

α
− arctan

k − kFσ
α

]]

=
h̄2k2

2m
− kFσ

2π

e2

4πǫ0
G

(
k

kFσ
,
α

kFσ

)

, (7.3.24)

where, in the last step, we have defined the function

G(x, z) = 2 +
1 − x2 + z2

2x
ln

(
(x+ 1)2 + z2

(x− 1)2 + z2

)

−2z

[

arctan
x+ 1

z
− arctan

x− 1

z

]

. (7.3.25)

Again we note explicitly the results for the case α→ 0,

ǫkσ =
h̄2k2

2m
− kFσ

2π

e2

4πǫ0

[

2 +
k2
Fσ − k2

kkFσ
ln

∣
∣
∣
∣

k + kFσ
k − kFσ

∣
∣
∣
∣

]

=
h̄2

k2

2m
− kFσ

2π

e2

4πǫ0
F

(
k

kFσ

)

, (7.3.26)

where we have introduced the function

F (x) = G(x, z = 0) = 2 +
1 − x2

x
ln

∣
∣
∣
∣

1 + x

1 − x

∣
∣
∣
∣

, (7.3.27)

shown in Fig. 7.3. Note, in particular, the logarithmic divergence of its deriva-
tive at x = 1, hence, at k = kFσ, which is transferred to our result for the single
particle energies. It appears for k = k′ and, hence, can be traced back to the
divergence of the Fourier transform (7.1.5) of the Coulombic electron-electron
interaction at q = 0. This becomes obvious from a plot of the function G(x, z)
given in Fig. 7.4. While for α = 0 (foremost curve) we recognize the function
F (k/kFσ), the logarithmic divergence of the derivative vanishes as soon as α
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Figure 7.4: Function G(k/kFσ, α/kFσ) as defined by Eq. (7.3.25).

deviates from zero. To conclude, the divergence of dF (x)/dx is just an artefact
of the neglect of screening in the Hartree-Fock treatment of the homogeneous
electron gas. It causes, in addition, a vanishing density of states at the Fermi
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energy since the gradient of the single particle energies diverges logarithmically
at the Fermi energy,

∇kǫkσ |ǫkσ=EF σ
→ ∞ , (7.3.28)

and, according to Eq. (2.7.13), the density of states at EF goes to zero.
In order to visualize the eigenenergies it is useful to scale them by the spin

dependent Fermi energy,

EFσ =
h̄2k2

Fσ

2m
. (7.3.29)

With the help of the definition (3.1.10) of the Bohr radius and the relation
(3.1.9) of the Fermi wave vector to a likewise spin dependent density parameter
rsσ we thus write

ǫkσ
EFσ

=
k2

k2
Fσ

− 2m

2πh̄2kFσ

e2

4πǫ0
G

(
k

kFσ
,
α

kFσ

)

=
k2

k2
Fσ

−
(

9π

4

) 1
3 1

π

rsσ
aB

G

(
k

kFσ
,
α

kFσ

)

=
k2

k2
Fσ

− 0.166
rsσ
aB

G

(
k

kFσ
,
α

kFσ

)

. (7.3.30)

For α = 0 as well as α = 0.02kFσ and a typical value of the density parameter,
rsσ/aB = 4, these scaled eigenenergies are displayed in Fig. 7.5, where we
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Figure 7.5: Spin dependent eigenenergies ǫkσ of the homogeneous electron gas
scaled to the spin dependent Fermi energy EFσ.

have added the free electron dispersion curve (3.1.4). Obviously, in addition
to substantially lowering the electronic single particle energies the exchange



132 CHAPTER 7. THE HOMOGENEOUS ELECTRON GAS

term causes a considerable increase of the occupied band width by a factor of
1 + 0.332rsσ/aB, hence, in our case by 2.327. This effect, however, has not
been observed in photoelectron spectroscopy experiments. Introducing a finite
but small value of α has the effect of removing the logarithmic divergence of
the derivative of the single particle energies with respect to |k|, as was already
observed in the discussion of the functions F (x) and G(x, z) above. Yet, it does
not cure the afore mentioned discrepancy between theory and experiment as
long as α is kept at reasonable, hence, small values.

Finally, we point to the important fact that, on inclusion of the exchange
term, only the single particle energies change from the free electron dispersion
to the expression (7.3.24)/(7.3.26) while the single particle states remain to be
plane waves.

With the single particle energies ǫkσ at hand we may now calculate the total
ground state energy, which, within Hartree-Fock theory, reads according to Eq.
(6.1.22) as the sum of all single particle energies minus the double counting term

〈H0〉 =
occ∑

kσ

ǫkσ +
1

2

occ∑

kσ

occ∑

k′σ′

Akσ,k′σ′ , (7.3.31)

where we still relied on the approximate forms of the direct and exchange term
and thus allowed for formal inclusion of the self-interaction term. For the plane
wave basis set the exchange integral assumes the form

Akσ,k′σ′ =
e2

4πǫ0
δσσ′

∫

d3r

∫

d3r′
χ∗

kσ(r)χ
∗
k′σ′(r′)χkσ′(r′)χk′σ(r)

|r− r′|

=
e2

4πǫ0

1

Ω2
δσσ′ χ∗

σχ
∗
σ′χσ′χσ

∫

d3r

∫

d3r′
e−i(k−k′)·(r−r′)

|r− r′|

=
e2

4πǫ0

1

Ω
δσσ′v0(k − k′) , (7.3.32)

Inserting this into the ground state energy (7.3.31) and using Eq. (7.3.6) for
the single particle energies we obtain the result

〈H0〉 =

occ∑

kσ

ǫkσ +
1

2Ω

e2

4πǫ0

occ∑

kσ

occ∑

k′σ′

δσσ′vα(k − k′)

=
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kσ

h̄2k2

2m
− 1

2Ω

e2

4πǫ0

occ∑

kσ

occ∑

k′σ′

δσσ′vα(k − k′) . (7.3.33)

Two points need to be mentioned in this context: First, we have replaced in Eq.
(7.3.33) the bare Coulomb potential v0(q) by its screened counterpart vα(q)
in order to account for the loarithmic divergence of the derivative of the single
particle energies at k = kFσ. Second, on comparing the expression (7.3.33)
to the perturbation theoretical treatment followed in Sec. 7.2, specifically, to
the first order energy correction (7.2.3), we realize that both approaches yield
completely identical results. We may thus, in general, identify Hartree-Fock
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theory with first order perturbation theory and, as a consequence, adopt the
final expression (7.2.11) as well as discussion following Fig. 7.1.

Nevertheless, it is instructive to proceed in a slightly different way here and
to include the effect of a finite spin polarization. To this end we calculate the
first contribution to Eq. (7.3.27) as

E0

N
=

1

N
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kσ

h̄2k2

2m

=
Ω

(2π)3N

h̄2
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=
Ω
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=
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=
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F 3π3ρ

∑
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5
3

=
3

5
EF · 1

2

∑

σ

(1 + zσξ)
5
3 . (7.3.34)

Here we have used the identities (2.7.2), (2.6.7), (3.1.6), (3.1.7), (3.1.11), and
(7.3.14). Obviously, for zero spin polarization Eq. (7.3.34) reduces to the result
(3.1.18) for the Sommerfeld model.

For the exchange contribution to the ground state energy we combine Eqs.
(7.3.14) and (7.3.32) and note

∆E(1)

N
= − 1

2NΩ
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)
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0

dy y2G(y, yα) . (7.3.35)

In order to facilitate interpretation of the final results it is instructive to treat
the case α = 0 separately. We thus replace in Eq. (7.3.35) the function G(y, yα)
by F (y),

∆E(1)

N
= − Ω

2N

1

(2π)3
1

2π

e2

4πǫ0

∑

σ

4πk4
Fσ

∫ 1

0

dy y2F (y) , (7.3.36)
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and calculate the integral as

∫ 1

0

dy y2F (y)

=

∫ 1

0

dy y2

[

2 +
1 − y2

y
ln

∣
∣
∣
∣
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∣
∣
∣
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∣
∣
∣
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∣
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∣
∣
∣
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∣
∣
∣
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+

1
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]

=
2
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1

2
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0

dy (1 − y2)

= 1 , (7.3.37)

which leads to the intermediate result
∫

ΩF σ

d3k F

(
k

kFσ′

)

= 4πk3
Fσ . (7.3.38)

In contrast, for α 6= 0 the integral entering Eq. (7.3.35) is evaluated as

∫ 1

0

dy y2G(y, yα)

=

∫ 1

0

dy y2

[

2 +
1 − y2 + y2

α

2y
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(
(1 + y)2 + y2

α
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)
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[
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+

(
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(
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+
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∫ 1

0

dy y2
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1 + y
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+ arctan
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]

. (7.3.39)

As before, we apply the substitutions (7.3.20) in the first and second integral,
respectively, of the second but last line and note

∫ 1

0

dy y2G(y, yα)
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=
2

3
− 1

8
y4
α ln

(
4 + y2

α

y2
α

)

+
1

4

∫ 2
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dx
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α

)2 x

x2 + y2
α

−2yα

∫ 2

0

dx (x − 1)2 arctan
x
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. (7.3.40)

In order to evaluate the second integral we note the identities

x(2 − x) + y2
α = −(x2 + y2

α) + 2(x+ y2
α) , (7.3.41)

x(2 − x) + y2
α

x2 + y2
α

x = −x+ 2
x2 + xy2

α

x2 + y2
α

= 2 − x+ 2y2
α

x− 1

x2 + y2
α

, (7.3.42)

and
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x
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α
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α
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α

. (7.3.43)

Inserting this into Eq. (7.3.40) we get
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+
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+
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. (7.3.44)
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Defining a screening function

H(z) = 1 − 4

3
z arctan

2

z
− z2

6

[

1 −
(
z2

4
+ 3

)

ln

(

1 +
4

z2

)]

, (7.3.45)

which is displayed in Fig. 7.6, we are able to write the previous expression as
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Figure 7.6: Screening function H(α/kF ) entering Eq. (7.3.45).

∫
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(
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kFσ
,
α

kFσ

)

= 4πk3
Fσ ·H

(
α

kFσ

)

. (7.3.46)

Finally, inserting this into Eq. (7.3.35) we write the first order energy correction
per particle as

∆E(1)
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k4
Fσ
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)
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. (7.3.47)

Summarizing we thus obtain for the total ground state energy per particle

〈H0〉
N

=
3

5
EF · 1

2
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(1 + zσξ)
5
3

− e2

4πǫ0
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4π
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4
3 ·H

(
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)
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=
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· 1
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5
3

− 0.916
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· 1

2

∑
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(1 + zσξ)
4
3 ·H

(
α

kFσ

)]

Ryd ,

(7.3.48)

which, as expected reduces to the ground state energy (7.2.11) of the spin
degenerate case for ξ = 0. The present result for arbitrary values of density
parameter rs and spin polarization ξ as well as for α = 0 is displayed in Fig.
7.7, which generalizes Fig. 7.2 and where again we have included the energy
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Figure 7.7: Hartree-Fock ground state energy per particle of the Jellium model
as a function of density parameter rs and spin polarization ξ; the dotted curves
(upper sheet) show the zeroth order result arising from the Sommerfeld model.

surface obtained from the Sommerfeld model. While the latter obviously leads
neither to metallic binding at finite values of rs nor to a finite spin polarization,
the homogeneous electron gas does allow for both. As already outlined at the
end of Sec. 7.2 the ground state has a minimum for ξ = 0 at rs = 4.83aB we
observe a change in curvature as a function of ξ on going from rs ≈ 5aB to
higher values. As an explicit caluclation reveals, the fully polarized ξ = 1 case
becomes more stable than the spin degenerate system for rs > 5.45aB. We thus
expect a phase transition to a ferromagnetic ground state for small electronic
densities. However, metals with such low densities do not seem to exist and for
this reason such a ferromagnetic ground state has not been observed.
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7.4 The exchange hole

In Sec. 5.7 we have defined several types of electron density operators arising
as combinations of electronic field operators. In particular, we had discussed
the operator P̂σσ′ (x;x′), which gave the probability of finding an electron with
spin σ at position x and a second electron with spin σ′ at position x′. In Eq.
(5.7.23) we expressed the expectation value of this operator in terms of the spin
dependent electron densities as well as the corresponding density matrices as

Pσσ′ (x;x′) = ρσ(x) · ρσ′ (x′) − |ρσσ′ (x;x′)|2 . (7.4.1)

It is very instructive to study this quantity for the homogeneous electron gas.
In this case the single particle orbitals are plane waves according to Eq. (7.1.10)
and the spin dependent electronic density is given by Eq. (7.3.8). In contrast,
the spin dependent density matrix can be expressed via Eq. (5.7.17) in terms
of the spin dependent single particle orbitals as

ρσσ′ (x;x′) =
occ∑

α

χ∗
α;σ′(x′)χα;σ(x)

=
occ∑

k

1

Ω
e−ikx′

eikxχ∗
σ′χσ

=
1

Ω

Ω

(2π)3

∫

d3k Θ(kF − |k|)eik(x−x
′)χ∗

σ′χσ

=
1

(2π)3
δσσ′

∫

d3k Θ(kF − |k|)eik(x−x′) , (7.4.2)

where in the last step we have used the identity (2.7.2) as well as the fact that
in the ground state the occupied single particle states are found within the
Fermi sphere. Furthermore, the Kronecker δ with respect to the spins reflects
the fact that the eigenstates are pure spin states. The integral entering Eq.
(7.4.2) is readily calculated as

∫

ΩF

d3q eiqr =

∫ kF

0

dq q2
∫ 2π

0

dϕ

∫ π

0

dϑ sinϑeiqr cosϑ

= 2π

∫ kF

0

dq q2
∫ 1

−1

d cosϑ eiqr cosϑ

=
2π

ir

∫ kF

0

dq q
(
eiqr − e−iqr

)

=
4π

r

∫ kF

0

dq q sin(qr)

=
4π

r

[
sin(qr)

r2
− q cos(qr)

r

]kF

0

= 4πk3
F

[
sin(kF r) − kF r cos(kF r)

(kF r)3

]
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= 4πk3
F

j1(kF r)

kF r
. (7.4.3)

In the last step we have used the definition of the spherical Bessel function.
Inserting Eq. (7.4.3) into Eq. (7.4.2) we obtain for the spin dependent electron
density matrix the result

ρσσ′ (x;x′) =
1

2π2
δσσ′k3

F

sin(kF |x − x′|) − kF |x − x′| cos(kF |x − x′|)
(kF |x − x′|)3 .

(7.4.4)
Combining the identities (7.4.1), (7.3.8), and (7.4.4) we finally arrive at

Pσσ′ (x;x′)

= ρσ · ρσ′ − |ρσσ′(x;x′)|2

=

(
k3
F

6π2

)2

− δσσ′

(
k3
F

2π2

)2(
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(kF |x − x′|)3
)2
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[

1 − 9 · δσσ′

(
sin(kF |x − x′|) − kF |x − x′| cos(kF |x − x′|)

(kF |x − x′|)3
)2
]

(7.4.5)

and, summing over spins, we obtain

∑

σσ′

Pσσ′ (x;x′)

= ρ2

[

1 − 9

2

(
sin(kF |x − x′|) − kF |x − x′| cos(kF |x − x′|)

(kF |x − x′|)3
)2
]

.

(7.4.6)

Inserting this expression into the definition (5.7.31) of the spin dependent pair
correlation functions and again summing over spins we thus arrive at

g(x− x′) = g(x;x′)

=
1

4

∑

σσ′

gσσ′(x;x′)

=
1

4

∑

σσ′

Pσσ′ (x;x′)

ρσ(x) · ρσ′(x′)

=

[

1 − 9

2

(
sin(kF |x − x′|) − kF |x − x′| cos(kF |x − x′|)

(kF |x − x′|)3
)2
]

.

(7.4.7)

For x = x′ the pair correlation function assumes the value g(0) = 1
2 . This

is visible from Fig. 7.8, where we display the spin summed pair correlation
function as a function of r = |x − x′|. In addition, Fig. 7.9 shows the same
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Figure 7.8: Pair correlation function g(r) of the homogeneous non-interacting
electron gas for small values of kF r.
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Figure 7.9: Pair correlation function g(r) of the homogeneous non-interacting
electron gas for large values of kF r on an expanded scale.

function for larger values of kF r on an expanded energy scale around g(x−x′) =
1. The oscillations of g(x−x′) for large values of kF r, which have a wavelength
π
kF

, result from the discontinuity in the k space occupation at the Fermi surface.

According to Fig. 7.8 the probability of finding a particle at x and another



7.4. THE EXCHANGE HOLE 141

particle at x′ is considerably reduced if the particles approach each other.
For zero distance r between both particles this probability drops to 1

2 . This
particular limiting value can be traced back to the Kronecker δ with respect
to spins growing out of the spin dependent density matrix (7.4.4) for pure
spin states. Since the spin dependent density matrix comprises the exchange
contribution to the quantity Pσσ′ (x;x′) the reduction of the pair correlation
functions for small values of kF r, which is denoted as the exchange hole, can
eventually be attributed to the Pauli principle, which requires two electrons
with like spin to keep at a distance. However, while electrons with equal spins
are forbidden to stay at the same position, the motion of electrons with different
spins is not restricted at all. In particular, in the latter case the two electrons
may come arbitrarily close. This explains why the pair correlation function
does not fall below the value of 1

2 . From a physical point of view, we may
interprete the exchange hole as being attached to each electron. In other words,
while moving through the crystal, each electron carries such an exchange hole
arround it. The combination of both the electron and it exchange hole thus
constitutes the simplest example of a quasiparticle.

In closing this section we calculate the integral of the pair correlation func-
tion over all space. If scaled by the constant density this integral is identical
to the number of electrons pushed away from the original particle due to the
Pauli principle. We note

∫

d3x′ ρ [g(x − x′) − 1] = −9

2
ρ

∫

d3x′
(
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)2
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∫ ∞

0

dxx2

(
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kFx

)2

= − 6

π

∫ ∞

0

dz (j1(z))
2

. (7.4.8)

Here we have in the last step changed the integration variable from x to z =
kFx. In addition, we have used Eq. (3.1.7) to express the density in terms of
the Fermi wave vector. The integral over the square of the l = 1 spherical
Bessel function is calculated as
∫ ∞

0

dz (j1(z))
2

=

∫ ∞

0

dz
z4 (j1(z))

2

z4

= −1

3
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2
∣
∣
∣

∞
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+
1

3

∫ ∞
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2
+ z4 (2j1(z))

(
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z j1(z)
)

z3

=
2

3
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0

dz zj0(z)j1(z)

= −2

3

∫ ∞

0

dz sin(z)
d

dz
j0(z)

= −2

3
sin(z)j0(z)|∞0 +

2

3

∫ ∞

0

dz
sin(z) cos(z)

z
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=
π

6
, (7.4.9)

where we have repeatedly used the regularity of the spherical Bessel functions
at the origin and the 1/z behaviour at infinity. Finally, inserting the integral
(7.4.9) into Eq. (7.4.8) we obtain the important result

∫

d3x′ ρ [g(x − x′) − 1] = −1 . (7.4.10)

Hence, the exchange hole corresponds exactly to the charge of a single electron
and for this reason the aforementioned combination of the electron and the
exchange hole arising from the depletion of charge due to the Pauli principle
has no charge.

7.5 Local correlation potential — parametriza-

tions

So far we have derived and discussed the solution of the Jellium model as
arising from first order perturbation theory. Still, we may well ask how these
results change, if we include the electron-electron interaction to higher order.
The corresponding correction to the ground state energy is named correlation
energy, which is defined just as the difference between the exact and the first
order or, equivalently, the Hartree-Fock result. As such the correlation energy
actually has no physical significance but is rather a measure of the error due
to the Hartree-Fock treatment.

Nevertheless, taking into account higher order perturbations is complicated
by the fact that each higher order contribution diverges. Only in the limit of
high densities (rs → 0) the complete perturbation series can be summed up,
yielding the exact result first given by Gell-Mann and Brückner [58]

E

N
=
E(1)

N
+
Ecorr
N

, (7.5.1)

with the correlation energy per particle given by

Ecorr
N

=

[
2

π
(1 − ln 2) ln rs − 0.094 + O(rs ln rs)

]

Ryd

=
[

0.0622 ln rs − 0.094 + O(rs ln rs)
]

Ryd . (7.5.2)

The total ground energy per particle is shown in Fig. 7.10, where we have still
included the zeroth and first order result growing out of the Sommerfeld model
and the Hartree-Fock treatment of the Jellium model, resepctively. Obviously,
on inclusion of the correlation energy in the high density limit, the ground
state energy stays to have a distinct minimum, which has shifted from the
Hartree-Fock position of rs = 4.83aB to the value rs = 3.83aB with an energy
of −0.099 Ryd rather than −0.095 Ryd. While the value for rs is much closer to
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Figure 7.10: Ground state energy per particle of the Jellium model; while the
curves labelled E(2) correspond to Eq. (7.5.2) and (7.5.3), respectively, the
dotted and solid curves show the zeroth and first order result, respectively.

the experimental value for Na of rs = 3.96aB, the energy has hardly improved.
Furthermore, we point to the strong increase of the ground state energy (7.5.2)
for larger values of rs, which, however, may be an artefact of the fact that the
correlation energy (7.5.2) has been evaluated in the high density limit. That
this is true becomes clear from the second curve labelled E(2) in Fig. 7.10,
which grew out of an perturbation expansion in powers of 1/

√
rs by Carr and

coworkers, valid in the limit of small densities, hence, rs >> 1 [28, 29]. It
resulted in an energy per particle given by

E

N
= −1.792

rs
+

2.65

r
3/2
s

− 0.73

r2s
+

(
21

rs
− 4.8

r
3/4
s

− 1.16

r
5/4
s

)

e−2.06
√
rs

−
(

2.06

r
5/4
s

− 0.66

r
7/4
s

)

e−1.55
√
rs . (7.5.3)

As is obvious from in Fig. 7.10 this leads to a considerable lowering of the
energy per particle for low densities as compared to the result by Gell-Mann
and Brückner and, hence, to a stabilization of the diluted homogeneous electron
gas. Carr and coworkers complemented their result by an interpolation formula
in order to make a connection between the high and low density results, which,
however, we will not present here.

The calculation of the local correlation energy of the homogeneous electron
gas has found much interest lateron when it was used as part of the local density
approximation usually employed in conjunction with density functional theory.
This has motivated a great deal of work to find optimal parametrizations of
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the correlation energy. We will postpone discussion of these approaches but
will outline them in some detail in Sec. 10.1.

7.6 Local exchange potential — the Xα method

As already mentioned at the beginning of the present chapter the importance of
the homogeneous electron gas stems from the fact that it allows for approximate
treatments, which are exact in the limit of a constant ionic potential, hence, a
constant electronic density, but still may remain in force for, at least slightly,
inhomogeneous systems. Of course, simplifications are most desired for the
exchange potential, which, according to Eq. (6.3.14) is a non-local potential.
As a consequence, its calculation depends on the electronic wave function in
all space, which fact hinders to consider larger systems.

For this reason it was a great step forward, when Slater proposed to replace
the general non-local exchange potential (6.3.14) by a local one as growing out
of the Jellium model [152]. Its derivation is rather straightforward, starting
from the observation, that the single particle energies (7.3.26) can be inter-
preted as resulting from an exchange potential

vx,σ(kσ) = −kFσ
2π

e2

4πǫ0
F

( |k|
kFσ

)

. (7.6.1)

The dependence of this potential on the particular plane wave state can be
integrated out by averaging over all occupied states, i.e. over the Fermi sphere.
We thus arrive at

vx,σ = −kFσ
2π

e2

4πǫ0

3

4πk3
Fσ

∫

ΩF σ

d3k F

( |k|
kFσ

)

= − 3

2π

e2

4πǫ0
kFσ

= − 3

2π

e2

4πǫ0

(
6π2ρσ

) 1
3 , (7.6.2)

where we have used the identities (7.3.38) and (7.3.14). Finally, we reintroduce
the dependence on the position and note for the local exchange potential the
result

vx,σ(r) = − 3

2π

e2

4πǫ0

(
6π2ρσ(r)

) 1
3

= − 3

2π

e2

4πǫ0

(
3π2ρ(r)

) 1
3 (1 + zσξ)

1
3

= −2.954
(
a3
Bρ(r)

) 1
3 (1 + zσξ)

1
3 Ryd . (7.6.3)

Obviously, this local exchange potential favours regions of high electronic den-
sity and, hence, reflects the density dependence of the correct non-local poten-
tial (6.3.14).
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Still, there has been some controversy over whether it is better to do the
averaging in Eq. (7.6.2) over the whole Fermi sphere or over the Fermi surface
only [152, 56, 91]. In the latter case, put forward by Kohn and Sham, the
expression (7.6.2) has to be replaced by

V ′
x = −kFσ

2π

e2

4πǫ0

1

4πk2
Fσ

∫

ΩF σ

d3k δ(|k| − kFσ)F

( |k|
kFσ

)

= − 1

π

e2

4πǫ0
kFσ

= − 1

π

e2

4πǫ0

(
6π2ρσ

) 1
3 , (7.6.4)

which deviates from Eq. (7.6.2) by a factor of 2
3 . Nevertheless, realizing the

approximate nature of the procedure, Slater suggested to introduce an ad-
justable parameter α (not to be mixed up with the parameter α used for the
screened Coulomb potential in the preceding sections), which has to be fixed
from observable quantities. Within the resulting, socalled Xα method the local
exchange potential is then specified as

vx,σ (ρσ(r)) = − 3

2π
α
e2

4πǫ0

(
6π2ρσ(r)

) 1
3 . (7.6.5)

As has been demonstrated by a large number of calculations the dependence
of the results on the parameter α is rather weak for values near 2

3 . Neverthe-
less, fixing its value from experimental data had the effect that this parameter
was used to mimic electronic correlations in addition to mediating the correct
exchange potential. A systematic study in this direction has been performed
by Schwarz, who evaluated optimal α values for a large number of elemental
systems [142].
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Chapter 8

Thomas-Fermi theory

8.1 Electron density approach

A route completely different from Hartree-Fock theory was taken by Thomas
and Fermi [163, 50, 51, 52], who abandoned direct use of the many-body wave
function from their considerations but established the electron density as the
central variable. Apart from the Sommerfeld model discussed in Sec. 3.1,
Thomas-Fermi theory may thus be regarded as the first density functional the-
ory, a fact, which justifies a deeper discussion. This is true despite the severe
defects of Thomas-Fermi theory as e.g. the missing shell structure of atoms
or the non-binding property pointed out in a landmark paper by Teller [161].
Eventually, these erraneous results motivated further research to go beyond
Thomas-Fermi theory and thus paved the way for the development of density
functional theory as it is known today.

In the present chapter we will outline the essentials of Thomas-Fermi theory,
which will be necessary for the understanding of density functional theory. In
doing so we will in the present section start with the basic formalism while
postponing extensions to the following sections. We follow the representations
by Parr and Yang, Jones and Gunnarsson as well as Eschrig [124, 84, 42].
A more formal description of Thomas-Fermi and related theories was given by
Lieb [103]. Finally, the reader is referred to the elder review articles by Gombás
and by March [61, 109, 110].

The basic idea underlying Thomas-Fermi theory is easily stated: Let us
start out from the energy functional (6.1.24), which contains the kinetic energy,
the external potential arising from the ions as well as the direct and exchange
contributions to the electron-electron interaction,

〈H0〉 =
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r)

+
∑

σ

∫

d3r vext(r)ρσ(r)
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+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
[
ρσ(r)ρσ′ (r′)

|r − r′| − |ρσσ′(r; r′)|2
|r − r′|

]

.

(8.1.1)

In using this Hartree-Fock expression we have accepted to exclude electron
correlations from our considerations. In addition we will, for the time being,
ignore the exchange term in order to keep the introduction of Thomas-Fermi
theory as simple as possible. We will come back to the exchange term in Sec.
8.2.

Were it not for the kinetic energy term, the energy functional comprising,
in addition, the external potential term and the classical Hartree contribution,
could be expressed in terms of the electron density without need for the single
particle wave functions. The crucial step towards further simplification was
inspired by the success of the Sommerfeld theory discussed in Sec. 3.1, where
we gave the kinetic energy of the homogeneous electron gas likewise in terms
of the electron density. In particular, we derived the result (3.1.19) for the
kinetic energy density. Using the notions outlined in Sec. 7.3, especially Eqs.
(7.3.7) to (7.3.14), we easily extend the expression of the Sommerfeld model to
spin-polarized systems and obtain

tσ[ρσ] = CFσ (ρσ)
5
3 , (8.1.2)

where

CFσ =
3

5

h̄2

2m

(
6π2
) 2

3 . (8.1.3)

Generalizing this to arbitrary inhomogeneous electron densities we get for the
kinetic energy functional

T [ρ] =
∑

σ

CFσ

∫

d3r (ρσ(r))
5
3 , (8.1.4)

which, when inserted into Eq. (8.1.1), gives rise to the Thomas-Fermi energy
functional

〈H0〉TF =
∑

σ

CFσ

∫

d3r (ρσ(r))
5
3 +

∑

σ

∫

d3r vext(r)ρσ(r)

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′| . (8.1.5)

In contrast to the Hartree and Hartree-Fock functionals it is written solely
in terms of the spin-dependent electronic densities. However, these densities
themself have not yet been determined. In the same manner as in the derivation
of the Hartree or Hartree-Fock equations this is accomplished by combining
the result (8.1.5) with the variational principle. Again, variation of the total
energy functional is not completely free but subject to the condition of charge
conservation,

∑

σ

∫

d3r ρσ(r) = N , (8.1.6)
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where N is the total electron number. The variational equation thus assumes
the form

δ

(

〈H0〉TF −
∑

σ

µσ

∫

d3r ρσ(r)

)

!
= 0 , (8.1.7)

where µσ are Lagrange multipliers guaranteeing that Eq. (8.1.6) is fulfilled.
Inserting Eq. (8.1.5) into Eq. (8.1.7) we arrive at

0
!
=

∑

σ

CFσ

∫

d3r δ (ρσ(r))
5
3 +

∑

σ

∫

d3r vext(r)δρσ(r)

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′ δ
ρσ(r)ρσ′ (r′)

|r − r′| −
∑

σ

µσ

∫

d3r δρσ(r) .

(8.1.8)

This variational equation must hold for any spatial dependence of the spin-
dependent densities. As a consequence, we obtain the Thomas-Fermi equations

5

3
CFσ (ρσ(r))

2
3 + vext(r) +

e2

4πǫ0

∫

d3r′
ρ(r′)

|r− r′| − µσ = 0 . (8.1.9)

Finally, using the definition of the Hartree potential,

vH(r) =
e2

4πǫ0

∫

d3r′
ρ(r′)

|r − r′| , (8.1.10)

we cast the Thomas-Fermi equations into the form

5

3
CFσ (ρσ(r))

2
3 + vext(r) + vH(r) − µσ = 0 . (8.1.11)

As they stand the Thomas-Fermi equations (8.1.9)/(8.1.11) provide a set
of coupled integral equations (one for each spin), since the Hartree potential
(8.1.10) still comprises the electron density in all space. For this reason, its
solution must, in general, be achieved by iteration just in the same manner as
in the Hartree and Hartree-Fock methods. However, we may still simplify the
Thomas-Fermi approach, if we are dealing with a spin-degenerate system, in
which case both spin-dependent densities reduce to half the electron density
and we are able to replace Eq. (8.1.11) by

5

3
CF (ρ(r))

2
3 + vext(r) + vH(r) − µ = 0 , (8.1.12)

where

CF =
3

5

h̄2

2m

(
3π2
) 2

3 (8.1.13)

and

µ = µ↑ = µ↓ . (8.1.14)
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The spin-degenerate form (8.1.12) of the Thomas-Fermi equation may be sub-
stantially simplified by employing, in addition, Poisson’s equation,

−∇2vH(r) =
e2

ǫ0
ρ(r) . (8.1.15)

Combining this with Eq. (8.1.12) and using Eq. (8.1.13) we arrive at the final
result

−∇2vH(r) =
e2

3π2ǫ0

(

[µ− vext(r) − vH(r)]
2m

h̄2

) 3
2

, (8.1.16)

which is a differential equation for the Hartree potential.
Compared to the Hartree or Hartree-Fock equations the Thomas-Fermi

equations (8.1.11) or, in case of spin-degeneracy, Eqs. (8.1.13) and (8.1.16),
represent indeed a considerable simplification: Instead of having to solve an
eigenvalue problem with 3N coordinates we are left with only two integral
equations for the three-dimensional electron densities. However, the price for
this advantage is high. As a matter of fact, Thomas-Fermi theory fails to
predict the shell structure of atoms and, hence, cannot describe the similar
properties of atoms falling into the same row of the periodic table. Moreover,
it is unable to account for the binding of atoms into molecules or solids [161],
and it produces an infinite charge density at the nucleus. To overcome these se-
rious deficiencies was the aim of several improvements of Thomas-Fermi theory,
which proceeded mainly into two different directions.

8.2 Thomas-Fermi-Dirac theory

In their original work, Thomas and Fermi modelled the electron-electron in-
teraction by only the classical electrostatic contribution and excluded both the
exchange term as well as electronic correlations. We have followed this line in
the previous section in order to keep the presentation of Thomas-Fermi theory
as simple as possible. However, the aforementioned shortcomings of the theory
called for extensions. In the present section we will concentrate on the exchange
contribution, which was included into Thomas-Fermi theory by Dirac [36], this
resulting in what is now called Thomas-Fermi-Dirac theory.

To be specific, we start out from the exchange contribution to the total
energy functional, which we already included as the last term in Eq. (8.1.1)
and which reads as

〈H0〉(x) = −1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
|ρσσ′ (r; r′)|2

|r − r′| . (8.2.1)

Here we have used the representation in terms of the spin-dependent density
matrix. Of course, the spirit of Thomas-Fermi theory requires rather a rep-
resentation in terms of the electron density. A solution to this problem was
proposed by Dirac, who approximated the spin-dependent density matrix by
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the expression (7.4.4) arising from the homogeneous electron gas and only at
the very end reintroduced the spatial dependence of the electron density. In-
serting the identity (7.4.4) into Eq. (8.2.1) and repeatedly using Eq. (7.3.8) we
obtain

〈H0〉(x) = −1

2

e2

4πǫ0

∑

σσ′

δσσ′

∫

d3r

∫

d3r′
k6
Fσ

4π4

(j1(kF |r − r′|))2
k2
Fσ(|r − r′|)3

= −9

2

e2

4πǫ0

∑

σσ′

δσσ′

∫

d3r (ρσ(r))
2 1

k2
Fσ

∫

d3z
(j1(|z|))2

|z|

= −9

2

4π

(6π2)
2
3

e2

4πǫ0

∑

σσ′

δσσ′

∫

d3r (ρσ(r))
4
3

∫ ∞

0

dz
(j1(z))

2

z
,

(8.2.2)

where we have used z = kFσ(r − r′). In order to solve the integral containing
the spherical Bessel function we fall back on a wealth of identities for these
functions, in particular, [1, Eq. 10.1.22]

fl+1(z) =

(

− ∂

∂z
+
l

z

)

fl(z) (8.2.3)

as well as [1, Eq. 10.1.21]

fl−1(z) =

(
∂

∂z
+
l + 1

z

)

fl(z) , (8.2.4)

which are valid for any linear combination of a spherical Bessel function jl and
a spherical Neumann function nl. From these identities we obtain

∂j0(z)

∂z
= −j1(z) (8.2.5)

and

∂2j0(z)

∂z2
= −∂j1(z)

∂z
=

2

z
j1(z) − j0(z) = −2

z

∂j0(z)

∂z
− j0(z) . (8.2.6)

Inserting these formulas into the integral entering Eq. (8.2.2) we arrive at

∫ ∞

0

dz
(j1(z))

2

z
=

∫ ∞

0

dz
∂j0(z)

∂z

1

z

∂j0(z)

∂z

=

∫ ∞

0
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∂j0(z)

∂z

(

−1

2
j0(z) −

1

2

∂2j0(z)

∂z2

)

= −1

4

∫ ∞

0

dz
∂

∂z

[

(j0(z))
2
+

(
∂j0(z)

∂z

)2
]

= −1

4

[

(j0(z))
2 +

(
∂j0(z)

∂z

)2
]∞

0

=
1

4
. (8.2.7)



152 CHAPTER 8. THOMAS-FERMI THEORY

Here we have employed the 1
z behaviour of the spherical Bessel functions for

large arguments as well as the fact that the functions vanish at the origin for
l ≥ 1. In contrast, j0 approaches unity for z → 0.

Finally, inserting the integral (8.2.7) into the exchange energy functional
(8.2.2), we arrive at the result

〈H0〉(x) = −9π

2

1

(6π2)
2
3

e2

4πǫ0

∑

σ

∫

d3r (ρσ(r))
4
3 . (8.2.8)

For spin-degenerate systems it reduces to

〈H0〉(x) = −3

4

(
3

π

) 1
3 e2

4πǫ0

∫

d3r (ρ(r))
4
3 , (8.2.9)

which is identical to the formula given by Dirac [36].

Combining the result (8.2.8) with the total energy functional (8.1.5) we
obtain the Thomas-Fermi-Dirac energy functional

〈H0〉TFD =
∑

σ

CFσ

∫

d3r (ρσ(r))
5
3 +

∑

σ

∫

d3r vext(r)ρσ(r)

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′|

− e2

4πǫ0
Cxσ

∑

σ

∫

d3r (ρσ(r))
4
3 , (8.2.10)

where we have abbreviated

Cxσ = −9π

2

1

(6π2)
2
3

. (8.2.11)

As in Thomas-Fermi theory this functional, when combined with the charge
conservation condition (8.1.7) and used with a variational principle, gives rise
to Euler-Lagrange equations, the Thomas-Fermi-Dirac equations

5

3
CFσ (ρσ(r))

2
3 + vext(r) + vH(r) − e2

4πǫ0
Cxσ

4

3
(ρσ(r))

1
3 − µσ = 0 . (8.2.12)

Here, we have already used the definition (8.1.10) of the Hartree potential. In
contrast to the situation in Thomas-Fermi theory the exchange contribution
hinders a simple solution of this equation for spin-degenerate systems as that
sketched at the end of the previous section. For this reason, Eq. (8.2.12) must be
solved self-consistently. We will not go into the details in the present context
but rather summarize the many calculations using the Thomas-Fermi-Dirac
functional to the fact that inclusion of the exchange term did not lead to a
substantial improvement of the theory.
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8.3 Gradient correction

The rather limited success of Thomas-Fermi-Dirac theory lead von Weizsäcker
to propose a yet different improvement. Instead of including additional po-
tential contributions, von Weizsäcker aimed at the homogeneous electron gas
expression of the kinetic energy. In order to improve on this term he included
a new term, which contained the gradient of the density, this resulting in the
socalled Thomas-Fermi-Dirac-Weizsacker functional

〈H0〉TFDW =
∑

σ

CFσ

∫

d3r (ρσ(r))
5
3 + λ

h̄2

16m

∑

σ

∫

d3r
|∇ρσ(r)|2
ρσ(r)

+
∑

σ

∫

d3r vext(r)ρσ(r)

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′|

− e2

4πǫ0
Cxσ

∑

σ

∫

d3r (ρσ(r))
4
3 . (8.3.1)

While von Weizsäcker used a value of 1 for the parameter λ, later work sug-
gested that a smaller value of 1/9 or 1/5 might be a better choice. As before the
functional (8.3.1) gives rise to Euler-Lagrange equations, the Thomas-Fermi-
Dirac-Weizsacker equations

5

3
CFσ (ρσ(r))

2
3 + λ

h̄2

16m

[

|∇ρσ(r)|2

(ρσ(r))
2 − 2

∆ρσ(r)

ρσ(r)

]

+vext(r) + vH(r) − e2

4πǫ0
Cxσ

4

3
(ρσ(r))

1
3 − µσ = 0 . (8.3.2)

Here, we have again used the definition (8.1.10) of the Hartree potential.

As it turned out in many subsequent investigations inclusion of the gradient
term improved the situation a lot. Instead of diverging the electron density at
the nucleus assumes a finite value and it decays exponentially far away from it.
Furthermore, Teller’s non-binding theorem is invalidated by the von Weizsäcker
correction and stable molecular binding became possible. Yet, due to numerical
difficulties, there still remain doubts about this latter issue.

Nevertheless, the substantial improvements of Thomas-Fermi theory on in-
clusion of the von Weizsäcker gradient correction point to the fact that the
most severe errors coming with its original version arise from the treatment of
the kinetic energy functional. Obviously, representing this functional in terms
of the expression arising from the homogeneous electron gas brings us too far
off from the truth once we are dealing with inhomogeneous systems. It was
this finding, which, eventually inspired Hohenberg, Kohn, and Sham to aim, in
particular, at a more careful handling of the kinetic energy.
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8.4 Thomas-Fermi screening

In its original form presented in Sec. 8.1 Thomas-Fermi theory is particularly
suited to discuss the effect of screening. To this end we start out from the
homogeneous electron gas, where the ionic charge density is smeared out to give
a positive background neutralizing the electronic charge density and where, by
construction, Thomas-Fermi theory is exact. We note

ρ(r)
!
= ρ . (8.4.1)

In addition, the total potential seen by the electrons likewise is constant,

veff (r) = vext(r) + vH(r)
!
= veff . (8.4.2)

Note that the ionic and the Hartree potential themselves are not constant, since
they must obey the respective Poisson equation and thus have a constant Lapla-
cian derivative. Combining Eqs. (8.1.12) and (8.1.13) for the homogeneous gas
and using Eq. (3.1.11) we write

e2

ǫ0
ρ = −∇2vH(r) =

e2

3π2ǫ0

(

[µ− veff ]
2m

h̄2

) 3
2

=
e2

3π2ǫ0

(

EF
2m

h̄2

) 3
2

. (8.4.3)

Next we place into this ensemble a small test charge δZ at r = 0. It will
generate an external potential

δvext(r) = −δ Z|r| , (8.4.4)

which adds to the ionic potential. For r 6= 0 the Laplacian ∇2δvext(r) of this
potential vanishes and we thus have

∇2δvH(r) = ∇2δveff (r) for r 6= 0 . (8.4.5)

Inserting these identities into the formulation (8.1.13) of the Thomas-Fermi
equation we arrive at

−∇2 (vH(r) + δvH(r)) = −∇2 (vH(r) + δveff (r))

=
e2

3π2ǫ0

(

[µ− veff − δveff (r)]
2m

h̄2

) 3
2

=
e2

3π2ǫ0

(

[EF − δveff (r)]
2m

h̄2

) 3
2

≈ e2

3π2ǫ0

(

EF
2m

h̄2

) 3
2
(

1 − 3

2

δveff (r)

EF

)

,

(8.4.6)
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where the last step grew out of the first order Taylor expansion. Comparison
to the corresponding equation (8.4.3) for the homogeneous system yields an
equation for the additional potential

∇2δveff (r) =
e2

2π2ǫ0

(
2m

h̄2

) 3
2 √

EF δveff (r)

=: k2
TF δveff (r) . (8.4.7)

Here we have in the last step defined the Thomas-Fermi screening wave vector.
We point out that the disturbance due to the test charge at r = 0 leads
to a spherical symmetric additional potential δveff (|r|). As well known, the
solutions of Eq. (8.4.7) are spherical Hankel functions times spherical harmonics
for angular momentum l = 0 and the radial part of the spherical symmetric
potential is thus given by

δveff (r) =
e−kTF r

r
, (8.4.8)

which is a Yukawa-type potential. Note that strictly speaking this result holds
only for large distances r from the test charge, where the potential δveff (r)
and the above Taylor expansion justified.

With the help of Eq. (3.1.11) the Thomas-Fermi screening wave vector may
be written as

k2
TF =

e2

2π2ǫ0

2m

h̄2 kF , (8.4.9)

which leads to

k2
TF

k2
F

=
e2

4π2ǫ0

m

h̄2

4

π

1

kF
=

4

π

(
4

9π

) 1
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aB

. (8.4.10)

It is instructive to define the Thomas-Fermi screening length

λ2
TF =

1

k2
TF

=
2π2ǫ0
e2

h̄2

2m

1

kF
. (8.4.11)

Using Eqs. (3.1.9) and (3.1.10) we get

λTF
aB

=
( π

12

) 1
3

√
rs
aB

. (8.4.12)

In ordinary metals, rs/aB varies between 2 and 6 and the Thomas-Fermi screen-
ing length turns out to be similar to the Bohr radius. Thus the screening of
the test charge by the surrounding electronic density is highly effective.
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Chapter 9

Density functional theory

9.1 The Hohenberg-Kohn theorems

Since its introduction in 1964-1965 by Hohenberg, Kohn, and Sham density
functional theory (DFT) [80, 91] has become one of the major tools for under-
standing materials properties. As such, it has had a decisive impact not only
on the field of electronic structure calculations in particular but has strongly
influenced condensed matter physics in general. This is, of course, due to the
incredible success in accurately predicting especially ground state properties
of numerous systems. Nevertheless, to a similar extent it traces back to the
conceptual simplicity underlying DFT, which allows for a very efficient use of
computational resources even for large systems comprising of the order of 1000
electrons. Although most applications have been for solids the theory has been
likewise successfully used for atoms and molecules, where it competes with
standard quantum chemical methods.

As the name suggests, the electronic density is the central variable of DFT,
which therefore avoids the problem of calculating the ground-state many-body
wave function. The general approach of DFT is thus identical to its predecessor,
Thomas-Fermi theory, which, however, failed in correctly describing the kinetic
energy and in properly including exchange and correlation. At the same time,
in using the electronic density, DFT goes beyond Hartree-Fock theory, which
takes only a single Slater determinant, hence, only one particular electronic
configuration into consideration. While being an exact approach to the ground
state density functional theory replaces computation of the many-body wave
function by that of single-particle wave functions, a much easier task. In other
words, DFT formally casts the full problem posed by the system of interaction
electrons into an effective single-particle problem. Yet, we have to be aware
that this step might hinder gaining deeper insight into the effect of electron-
electron interactions and so far lead to an unsatisfactory description of strongly
interacting electron systems.

While the original formulation by Hohenberg and Kohn was for non-degen-
erate electronic ground states, DFT has since then been extended to degenerate

157
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ground states, spin-polarized and relativistic systems or to finite temperatures.
At the same time, it has been tightly connected to a firm mathematical basis.
In the present chapter we will outline the most important aspects of DFT. In
doing so we start out with the basic formalism. Application of the theory leads
directly to the local density approximation (LDA) but we will also include more
recent approaches to the interacting electron system as e.g. the generalized gra-
dient approximation (GGA) or the exact treatment of the exchange interaction
(EXX) in the following chapter.

While an excellent overview over density functional theory and related ap-
proaches may be found in Fulde’s book [55], more detailed accounts with special
emphasis on DFT were given by Kohn and Vashishta [92], Williams and von
Barth [171], von Barth [14, 15, 16], Jones and Gunnarsson [84], Dreizler and
Gross [38, 37, 64], Kryachko and Ludeña [97], Parr and Yang [124], Eschrig
[42], as well as March [111], just to mention a few. Finally, a compilation of
review articles on density functional theory is given in Appendix G of the book
by Parr and Yang [124].

Before going into the details we prepare the field and restate the basic iden-
tities needed throughout in this chapter. To be specific, we start out again from
the Hamiltonian (7.1.1) as arising from the Born-Oppenheimer approximation,
which we now write as

H0 = Hion−ion({Rµ}) +Hel({ri}) +Hion−el({ri,Rµ})
= Hel,kin({ri}) +Hext({ri,Rµ}) +Hel−el({ri}) , (9.1.1)

where

Hel,kin({ri}) =
∑

i

[

− h̄2

2m
∇2
i

]

, (9.1.2)

Hel−el({ri}) =
1

2

e2

4πǫ0

∑

i,j
j 6=i

1

|ri − rj |
, (9.1.3)

Hext({ri}) = Hion−ion({Rµ}) +Hion−el({ri,Rµ})

=
1

2

∑

µν
µ6=ν

Vion−ion(Rµ − Rν) +
∑

i

[
∑

µ

Vion−el(ri − Rµ)

]

=
1

2

e2

4πǫ0

∑

µν
µ6=ν

Zval,µZval,ν
|Rµ − Rν |

− e2

4πǫ0

∑

µ

∑

i

Zval,µ
|Rµ − ri|

=:
∑

i

vext(ri) . (9.1.4)

Rµ and ri denote, as usual, the positions of the ions and electrons, respec-
tively. In the last step we have specified the Coulombic nature of the ion-ion
interaction, Zval,µ being the number of valence electrons provided by the µ’th
ion. Since this latter interaction, as discussed in Sec. 7.1, adds only a constant
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to the potential seen by the electrons we have absorbed it into the ion-electron
interaction, which acts like an external potential. As already mentioned in Sec.
4.1 the term “external” refers to the fact that this potential is generated by
(ionic) charges, which are independent of the electronic charge density. Note
that, in the same manner as in Sec. 7.1 for the homogeneous electron gas, we
have correctly included the ion-ion interaction in the Hamiltonian, where it
counterbalances the long-range Coulombic electron-electron interaction. We
point, however, to our discussion in Sec. 7.1 on the correct cancellation of these
terms, which qualitatively applies also to the inhomogeneous electron gas.

In the form (9.1.1) to (9.1.4) the Hamiltonian consists of three main con-
tributions, namely the kinetic energy of the electrons, their mutual Coulomb
interaction and an external potential acting onto the electrons. The actual
shape of the latter will not be crucial for all that follows. Finally, we still
identify one- and two-particle contributions to the Hamiltonian,

H
{1}
0 = Hel,kin({ri}) +Hext({ri}) , (9.1.5)

H
{2}
0 = Hel−el({ri}) (9.1.6)

as in Eq. (4.1.6).
In addition to the Hamiltonian we need the electron density operator as

growing out of the definitions (5.7.6) and (5.7.11) as

ρ̂(r) =
∑

σ

ρ̂σ(r)

=
∑

σ

ψ+
σ (r)ψσ(r)

=
∑

σ

∑

αβ

χ∗
α;σ(r)χβ;σ(r)a

+
αaβ

=
∑

σ

N∑

i=1

δ(r − ri)δσσi
, (9.1.7)

from which the ground state electron density is calculated according to Eq.
(5.7.14) as

ρ0(r) =
∑

σ

ρ0,σ(r) =
∑

σ

〈Ψ0|ρ̂σ(r)|Ψ0〉

=
∑

σ

∑

α

|χα;σ(r)|2nα , (9.1.8)

where |Ψ0〉 and nα denote the ground-state wave function and the occupation
number of the single-particle state χα. Only for non-interacting particles, when
the many-body state reduces to a single Slater determinant, the occupation
numbers nα are one and zero, respectively and Eq. (9.1.8) reduces to

ρ0(r) =
∑

σ

occ∑

α

|χα;σ(r)|2 . (9.1.9)
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Finally, the electronic density should be normalized according to the condition

N [ρ] =

∫

d3r ρ(r) = N . (9.1.10)

Following Eq. (5.6.26) we complement Eqs. (9.1.2) to (9.1.4) by the cor-
responding expressions in terms of electron field operators as defined by Eqs.
(5.7.4) and (5.7.5),

Hel,kin =
∑

σ

∫

d3r ψ+
σ (r)

{

− h̄2

2m
∇2

}

ψσ(r)

=
∑

σ

∫

d3r

{
h̄2

2m

[
∇ψ+

σ (r)
]
· [∇ψσ(r)]

}

, (9.1.11)

Hel−el =
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′ ψ+
σ (r)ψ+

σ′ (r
′)

1

|r − r′| ψσ′(r′)ψσ(r) ,

(9.1.12)

Hext =
1

2

e2

4πǫ0

∑

µν
µ6=ν

Zval,µZval,ν
|Rµ − Rν |

+
∑

σ

∫

d3r ψ+
σ (r)

{
∑

µ

Vion−el(r − Rµ)

}

ψσ(r)

=
1

2N

e2

4πǫ0

∑

µν
µ6=ν

Zval,µZval,ν
|Rµ − Rν |

∫

d3r ρ̂(r)

− e2

4πǫ0

∑

µ

∫

d3r
Zval,µ

|Rµ − r| ρ̂(r)

=:

∫

d3r vext(r)ρ̂(r) . (9.1.13)

After these preparations we are in a position to turn to the basic ideas of
density functional theory as presented by Hohenberg and Kohn, who concen-
trated on a local, spin-independent potential and assumed the ground state to
be non-degenerate. While establishing the electronic ground state density as
the central variable they then formulated the following two theorems:

1. The external potential vext(r) is determined, apart from a trivial constant,
by the electronic ground state density ρ0(r).

2. The total energy functional E[ρ] has a minimum equal to the ground
state energy at the ground state density.

While the first theorem stresses the more fundamental aspects the second one
is of great practical importance as it allows to formulate a variational principle
in terms of the density and thus will open the way to single-particle equations.
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Before we prove the aforementioned theorems we point out that the kinetic
energy (9.1.2) of the electrons as well as their mutual interaction (9.1.3) are
universal in as far as these operators are the same for all systems of interacting
electrons. For the same reason the functional

F [ρ] = 〈Ψ|Hel,kin({ri}) +Hel−el({ri})|Ψ〉 , (9.1.14)

which does not explicitly depend on the external potential, is a universal func-
tional of the electronic density. The only non-universal contribution to the
Hamiltonian stems from the external potential (9.1.4), which, hence, alone
invokes changes of the electronic wave function on going from one electronic
system to another. In other words, once the external potential has been spec-
ified the Hamiltonian is completely determined. Actually, this result is not
surprising since the external potential arises from the Coulomb potential of the
nuclei, to which the electrons respond by balancing their kinetic and mutual
interaction energy both contained in the functional F [ρ]. In passing, we com-
plement Eq. (9.1.14) by the following expression for the functional due to the
external potential,

〈Ψ|Hext({ri})|Ψ〉 =

∫

d3r vext(r)ρ(r) , (9.1.15)

which follows directly from combining Eqs. (9.1.8) and (9.1.13) and will be used
below.

Next we recall that the ground state |Ψ0〉 arises from the variational princi-
ple by minimizing the total energy 〈Ψ0|H0|Ψ0〉 (note the normalization (9.1.10)
above). Assuming for the time being that the electronic ground state is non-
degenerate, we are thus able to uniquely determine the ground state wave
function and, according to Eq. (9.1.8), the electronic ground state density from
knowledge of the external potential and, of course, of the total electron number
N . We cast this fact into the relation

vext(r)
(1)
=⇒ |Ψ0〉

(2)
=⇒ ρ0(r) . (9.1.16)

Thus the variational principle as well as Eq. (9.1.8) establish surjective maps
from the set of local single-particle potentials vext(r) to the set of ground state
wave functions |Ψ0〉 and from the latter set to the set of ground state densities
ρ0(r), respectively.

The first theorem of Hohenberg and Kohn reverts the previous relationship
and adds to Eq. (9.1.16) the injective map of the quantities involved. The
original proof, again for non-degenerate ground states, proceeds by reductio

ad absurdum. Assume two external potentials vext(r) and v′ext(r) differing by
more than a trivial constant to exist, which give rise to the same electronic
ground state density ρ0(r). Since the external potentials define two different
Hamiltonians H0 and H ′

0, the calculated ground state wave functions |Ψ0〉 and
|Ψ′

0〉 as growing out of different Schrödinger equations must differ. We thus get
from the variational principle for the ground state

E′ = 〈Ψ′
0|H ′

0|Ψ′
0〉
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< 〈Ψ0|(H ′
0|Ψ0〉

= 〈Ψ0|H0 +H ′
ext −Hext|Ψ0〉 , (9.1.17)

hence,

E′ < E +

∫

d3r [v′ext(r) − vext(r)] ρ(r) . (9.1.18)

Interchanging primed and unprimed quantities we arrive at

E < E′ +

∫

d3r [vext(r) − v′ext(r)] ρ
′(r) , (9.1.19)

and, on adding the previous two inequalities under the condition ρ(r) = ρ′(r)
we obtain the inconsistency

E + E′ < E + E′ . (9.1.20)

To conclude, apart from a trivial constant the external potential vext(r) is a
unique functional of the electronic density ρ(r). Since, as mentioned above,
the external potential fixes the Hamiltonian (9.1.1) to (9.1.7) all ground state
properties are unique functionals of the electronic density.

While performing the previous proof we have actually implied that the map
from the external potential onto the ground state wave functions is injective.
This assumption went into the arguments preceding Eq. (9.1.17). In contrast,
Eqs. (9.1.17) to (9.1.20) relate the electronic density to the ground state wave
function rather than to the external potential, which cancels out on adding
Eqs. (9.1.18) and (9.1.19) due to the required identity of the densities. In other
words, from the above proof we have only that the map (2) of Eq. (9.1.16) is
injective.

In order to show that injectivity holds true also for the map (1) of Eq.
(9.1.16) we again proceed by reductio ad absurdum and assume two external
potentials vext(r) and v′ext(r) to exist, which differ by more than a trivial con-
stant. These give rise to the Schrödinger equations

H0|Ψ0〉 = [Hel,kin +Hext +Hel−el] |Ψ0〉
= E|Ψ0〉 , (9.1.21)

H ′
0|Ψ′

0〉 = [Hel,kin +H ′
ext +Hel−el] |Ψ′

0〉
= E′|Ψ′

0〉 . (9.1.22)

Requiring that |Ψ0〉 = |Ψ′
0〉 and subtracting the previous identities we get

[Hext −H ′
ext] |Ψ0〉 = [E − E′] |Ψ0〉 . (9.1.23)

Since the external potentials are multiplicative operators we obtain

Hext −H ′
ext = E − E′ , (9.1.24)

unless the ground state wave function vanishes in a region of finite measure.
This, however, will not happen for well-behaved potentials without e.g. infinite
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potential barriers. As a consequence of Eq. (9.1.24) the potentials differ only
by a constant in contradiction to the above assumption. To sum up, also the
map (1) of Eq. (9.1.16) is injective and, taking all previous results together,
both maps are bijective,

vext(r)
(1)⇐⇒ |Ψ0〉

(2)⇐⇒ ρ0(r) . (9.1.25)

It was one of the main goals of Hohenberg and Kohn to make these relationships
explicit. Finally, since, by virtue of Eq. (9.1.25), both the external potential and
the ground state wave function are unique functionals of the electron density,
we may cast the first theorem of Hohenberg and Kohn into a form, which
stresses the decisive role of the electron density,

1. The ground state expectation value of any observable Â is a unique func-
tional of the ground state density,

A0[ρ] = 〈Ψ0[ρ0]|Â|Ψ0[ρ0]〉 . (9.1.26)

This formulation applies, in particular, to the universal functional F [ρ] as given
by Eq. (9.1.14) and thus the total energy functional is completely determined.
Of course, this is quite plausible, since the density fixes the external potential,
hence, the entire Hamiltonian.

Turning to the second theorem we employ the fact that, by virtue of the
variational principle, the energy functional written in terms of a trial wave
function |Ψ〉 assumes its minimum at the correct ground state wave function
|Ψ0〉, hence

E[ρ] = 〈Ψ|H0|Ψ〉

= F [ρ] +

∫

d3r vext(r)ρ(r)

≥ F [ρ0] +

∫

d3r vext(r)ρ0(r)

= 〈Ψ0|H0|Ψ0〉
= E[ρ0] , (9.1.27)

where the equality holds only if the wave function |Ψ〉 is identical to the ground
state wave function |Ψ0〉. Again, we mention the important implications this
theorem has for implementing density functional theory as a practical tool.

Together, both theorems represent a great achievement by taking the bur-
den away from evaluating the ground state wave function and using the electron
density instead, while the wave function enters only as a vehicle for calculating
functionals of the type (9.1.26). The idea underlying DFT thus is the same as
in Thomas-Fermi theory, which usually is regarded as the first realization of
density functional theory. However, in making the density dependence of the
energy functional explicit Thomas-Fermi theory applied to crude an approxi-
mation especially to the kinetic energy, which fact caused various deficiencies as
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the missing shell structure of atoms or the non-binding property of molecules.
It is the merit of Kohn and Sham to resolve the problem in a very elegant
manner. In Sec. 9.4 we will see how they succeeded.

9.2 Degenerate ground states

As already pointed out in the preceding section DFT as originally formulated
by Hohenberg, Kohn, and Sham was limited to non-degenerate ground states.
However, extension to degenerate ground states is readily accomplished as was
demonstrated by Kohn [88]. Let us have a closer look at the maps contained in
the relation (9.1.25). Now, given an external potential vext(r), we obtain a set
D(vext) of q degenerate ground states all growing out of Schrödinger’s equation

H0|Ψ0i〉 = (Hel,kin +Hel−el +Hext) |Ψ0i〉
= E0|Ψ0i〉 ,

∀i = 1, . . . , q , |Ψ0i〉 ∈ D(vext) . (9.2.1)

Note that, in contrast to the situation considered in the previous section, the
relation between external potentials and ground state wave functions is no
longer a map for degenerate ground states, since the external potential may
give rise to more than one wave function. Yet, proceeding along the same lines
as in the proofs given in Sec. 9.1, Eqs. (9.1.21) to (9.1.24), we realize that two
sets D(vext) and D(v′ext) are disjoint unless the two external potentials vext and
v′ext differ only by a trivial constant. As a consequence, the relation between
(degenerate) ground state wave functions and the external potential is a proper
map and we are able to note

vext(r)
(1)⇐= |Ψ0i〉 , ∀i = 1, . . . , q . (9.2.2)

Next, each of the degenerate ground state wave functions gives rise to an elec-
tron density

|Ψ0i〉
(2)
=⇒ ρ0i(r) , ∀i = 1, . . . , q . (9.2.3)

Again employing the same arguments as in Sec. 9.1, Eqs. (9.1.17) to (9.1.20),
we can show that two ground states |Ψ0i〉 and |Ψ′

0i〉 belonging to different sets
D(vext) and D(v′ext) lead to different densities ρ0i(r) and ρ′0j(r) and, hence, the
corresponding subsets grouping the densities are likewise disjoint. Combining
this result with Eqs. (9.2.2) and (9.2.3) we may thus write

vext(r)
(1)⇐= |Ψ0i〉

(2)⇐⇒ ρ0i(r) , ∀i = 1, . . . , q . (9.2.4)

This relation is the counterpart of Eq. (9.1.25) for degenerate ground states. To
conclude, again we obtain a map from ground state densities to wave functions
and external potentials and the first theorem of Hohenberg and Kohn remains
in force.
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Still we have to take special care of the particular situation, where two
different degenerate ground state wave functions lead to identical electronic
densities, i.e.

vext(r)
ր
ց

|Ψ0i〉

|Ψ0j〉

ց
ր ρ0i(r) = ρ0j(r) . (9.2.5)

In this case the relation (2) of Eq. (9.2.4) is not a unique map and the ground
state expectation value (9.1.26) may no longer be a unique functional of the
density. As a consequence, we might thus face problems in setting up the
variational principle. However, the energy functional is exceptional in this
respect since it is indeed uniquely defined by Schrödinger’s equation (9.2.1) or
equivalently by

〈Ψ0i|H0|Ψ0i〉 = E0 , ∀i = 1, . . . , q . (9.2.6)

irrespective of the particular choice of the wave function |Ψ0i〉 ∈ D(vext). In
summary, we are again able to formulate the variational principle with respect
to the electronic density.

To conclude, also for a degenerate ground state the external potential is
completely determined by the electronic ground state density and so is the
Hamiltonian. As before, we are thus able to state that the expectation value
of any variable can be equally well expressed in terms of the ground state
density instead of the ground state wave function(s). However, this is exactly
the content of the theorems by Hohenberg and Kohn.

9.3 Constrained search formulation

Apart from the limitation to non-degenerate ground states the basic theorems
given by Hohenberg and Kohn still suffer from a more subtle and at the same
time more serious restriction. As outlined in detail in the preceding section
the main issue of Hohenberg and Kohn was to revert the relationship between
external potential and electron density in order to allow for a complete descrip-
tion of the ground state in terms of the latter. However, by construction, the
theorems are valid only for so-called v-representable electronic densities, where

an electronic density is called v-representable if it grows out of the
ground state wave function arising from a Hamiltonian (9.1.1) –
(9.1.4) with some external potential vext(r).

In other words, a v-representable density fulfils both relations (1) and (2) of
Eq. (9.1.16). From this definition several questions arise immediately, which
together constitute what goes under the name v-representability problem.

1. Given the electronic density ρ(r) of an N-electron system, can we always
find a local external potential vext(r), which via a possibly degenerate
ground state wave function creates this density?



166 CHAPTER 9. DENSITY FUNCTIONAL THEORY

2. If not, can we extend the validity of the theorems by Hohenberg and
Kohn to non v-representable densities?

3. Can we formulate criteria for v-representability?

Of course, we might argue that the possible occurence of non-v-representable
electron densities is outside the realm of the theorems by Hohenberg and Kohn,
which were formulated for ground state, hence, physically reasonable, electronic
densities, and thus represents a rather academic issue. Nevertheless, in exploit-
ing the variational principle for the energy functional we successively scan the
space of all trial densities and, provided non-v-representable densities exist,
might easily come across such densities. In such cases we need a way out in
order to proceed towards the ground state.

Although Hohenberg and Kohn pointed out that nearly uniform densities
are indeed v-representable they were not able to prove this property for arbi-
trary densities. Lateron, Levy and Lieb demonstrated that the density

ρ0(r) = tr(D̂ρ̂(r)) =

q
∑

i=1

diρ0i(r) (9.3.1)

arising from the density matrix

D̂ =

q
∑

i=1

di|ψ0i〉〈ψ0i| (9.3.2)

of a set of q degenerate ground states |ψ0i〉 with

di = d∗i > 0 ,

q
∑

i=1

di = 1 , (9.3.3)

hence,
ρ0i(r) = 〈ψ0i|ρ̂(r))|ψ0i〉 (9.3.4)

can in general not be derived from a single ground state [102, 104]. However,
since the density ρ0(r) still can be associated with the same external potential
as the densities ρ0i(r), the above definition of v-representability was generalized
to so-called ensemble v-representability covering densities of the type given by
Eq. (9.3.1) and the universal functional F [ρ] extended to mixed states (9.3.2),
this laying ground for the so-called ensemble state density functional theory.
In contrast, densities, which grow out of a single wave function, were termed
pure-state v-representable.

Nevertheless, even this generalization of DFT does not guarantee that an
arbitrary “well behaved” density is v-representable. Several examples of non-
v-representable densities were given by Englisch and Englisch, who proved that
already for a single particle in one dimension densities, which for x→ 0 behave
like

ρ(x) =
(

a+ b|x|α+1/2
)2

with a, b > 0 , 0 ≤ α <
1

2
(9.3.5)
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can not be obtained from an external potential [40].

Having denied the first of the above questions we are left with the hope
that the remaining two questions find a positive answer. This is indeed the
case. Let us start out from defining a different set of so-called N -representable
densities by noting that

an electronic density is called N -representable if it can be obtained
from some antisymmetric N -particle wave function.

In contrast to v-representable densities an N -representable density thus has to
fulfil only the relation (2) of Eq. (9.1.16). In other words, N -representability
is a necessary prerequisite for v-representability and for this reason the set of
all N -representable densities comprises that of the v-representable densities.

Fortunetely, rigorous conditions for a density to be N -representable exist.
To be specific, a density ρ(r) is N -representable if

ρ(r) ≥ 0 , (9.3.6)
∫

d3r ρ(r) = N , (9.3.7)

∫

d3r |∇
√

ρ(r)|2 < ∞ , (9.3.8)

as was shown by Gilbert and subsequently by Lieb [59, 104].
Still, in order to give a positive answer to the last two questions above, it

remains to be proven that N -representability constitutes a proper extension
of v-representability if used with the theorems by Hohenberg and Kohn. Sub-
stantial progress in this respect is due to the constrained search formulation
of the variational principle as proposed by Levy and lateron further investi-
gated by Levy and Lieb [101, 102, 104]. Levy started out defining for a given
N -representable density ρ(r) a set S(ρ) comprising all those wave functions Ψ,
which lead to exactly this density ρ(r). Furthermore he replaced the definition
Eq. (9.1.14) of the universal functional by

FLL[ρ] = inf
|Ψ〉∈S(ρ)

〈Ψ|Hel,kin({ri}) +Hel−el({ri})|Ψ〉 . (9.3.9)

As was demonstrated by Lieb the infimum is actually a minimum [104]. Hence,
while for non-degenerate states the set S(ρ) comprises only a single wave func-
tion, in case of degeneracies we select that particular wave function in the set
S(ρ), which minimizes the expectation value of Hel,kin +Hel−el, the result be-
ing FLL[ρ] as given by Eq. (9.3.9). The construction by Levy thus implicitly
solves the problem of finding the wave function given an electronic density.
Note that the definition (9.3.9) of the Levy functional is not at all restricted
to ground state densities but holds for any N -representable density.

Nevertheless, in case ρ(r) denotes a v-representable ground state density,
Eq. (9.3.9) via the variational principle leads immediately to the identity

FLL[ρ] = FHK [ρ] , (9.3.10)
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where FHK [ρ] is the functional defined by Hohenberg and Kohn, Eq. (9.1.14).
As a consequence FLL[ρ] generalizes the functional FHK [ρ]. In order to study
the variational properties of the Levy functional FLL[ρ] we minimize the total
energy functional

E[ρ] = FLL[ρ] +

∫

d3r vext(r)ρ(r) . (9.3.11)

Employing the variational principle in terms of the wave function and using
the definition (9.3.9) we note

E0[ρ] = inf
|Ψ〉

〈Ψ|H0|Ψ〉

= inf
|Ψ〉

〈Ψ|Hel,kin +Hel−el +Hext|Ψ〉

= inf
ρ(r)

[

inf
|Ψ〉∈S(ρ)

〈Ψ|Hel,kin +Hel−el|Ψ〉 +

∫

d3r vext(r)ρ(r)

]

= inf
ρ(r)

[

FLL[ρ] +

∫

d3r vext(r)ρ(r)

]

. (9.3.12)

This is the constrained search formulation of the energy functional. Starting
from the variational principle for the total energy in terms of the wave func-
tions we perform an unconstrained minimization including all possible wave
functions. Splitting this minimization process into two, namely a minimization
with respect to the electronic densities and, in addition, for each ρ a constrained
minimization within the space S(ρ) containing only those wave functions, which
lead to ρ, and finally using the fact that the functional (9.1.15) deriving from
the external potential comprises the density instead of the wave function, we
arrived at the most natural definition of the universal functional FLL[ρ].

To conclude, the Levy functional (9.3.9) trivially leads to the ground state
as well as to the ground state energy. It establishes a variational principle in
terms of the density (2nd theorem of Hohenberg and Kohn) and it lets one de-
termine also the external potential solely in terms of the density (1st theorem).

Although density functional theory as outlined so far constitutes a profound
basis we are still at a very early stage and have not even exploited the vari-
ational principle grounded on the second theorem above. Of course, this step
requires some knowledge about the universal functional FLL[ρ]. If we knew this
functional exactly the Euler-Lagrange equation resulting from the variational
principle could be solved and all ground state quantities calculated. However,
knowledge about FLL[ρ] is poor and actually most of todays work on density
functional theory centers about the issue of improving the approximations used
so far for this functional.

In order to define the problems more clearly we start out from Eq. (9.3.9)
and, following the original work by Hohenberg and Kohn, write the functional
explicitly as

FLL[ρ]
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= 〈Ψ0|Hel,kin({ri}) +Hel−el({ri})|Ψ0〉

=
∑

σ

∫

d3r

{
h̄2

2m
〈Ψ0|

[
∇ψ+

σ (r)
]
· [∇ψσ(r)] |Ψ0〉

}

+Wc[ρ]

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′ 〈Ψ0|ψ+
σ (r)ψ+

σ′ (r
′)

1

|r − r′| ψσ′ (r′)ψσ(r)|Ψ0〉

=
h̄2

2m

∑

σ

∫

d3r ∇r∇r′ρσσ′ (r; r′) |r=r′,σ=σ′

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
Pσσ′ (r; r′)

|r − r′| +Wc[ρ]

=
h̄2

2m

∑

σ

∫

d3r ∇r∇r′ρσσ′ (r; r′) |r=r′,σ=σ′

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′|

−1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
|ρσσ′ (r; r′)|2

|r − r′| +Wc[ρ] , (9.3.13)

where |Ψ0〉 denotes that particular wave function, which minimizes the Levy-
Lieb functional (9.3.9). In addition, we have used the identities (5.7.15) and
(5.7.17) for the spin dependent density matrix as well as Eqs. (5.7.23) and
(5.7.26). Finally, we have added a so far unknown functional Wc[ρ]. It accounts
for all those contributions from the electron-electron interaction, which are not
covered by the Hartree or exchange term.

As a result we have thus separated out from the universal functional FLL[ρ]
the energy due to the classical Coulomb interaction between the electrons.
Usually, this step is made explicit by writing the functional as

FLL[ρ] = G[ρ] +
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′| , (9.3.14)

where

G[ρ] =
h̄2

2m

∑

σ

∫

d3r ∇r∇r′ρσσ′ (r; r′) |r=r′,σ=σ′

−1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
|ρσσ′ (r; r′)|2

|r − r′|
=: T [ρ] +Wxc[ρ] (9.3.15)

comprises the kinetic as well as the so-called exchange-correlation energy. Here
we have implicitly absorbed the function Wc[ρ] used above into the functional
Wxc[ρ]. Note that in the general case of an interacting electron system both

the energy contributions T [ρ] and Wxc[ρ] are not known at all. In contrast, the
energy functional (9.1.15) due to the external potential and the Hartree energy,
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i.e. the second term on the right hand side of Eq. (9.3.14) can be calculated
exactly. To conclude, further work has to concentrate on the functionals T [ρ]
and Wxc[ρ], which await an explicit evaluation. However, as we shall see in the
following sections this goal can be achieved only in an approximate manner.

9.4 The Kohn-Sham equations

Although the basic theorems of density functional theory are stated now, we
still need a key to its implementation. Such a key was given shortly after the
pioneering work by Hohenberg and Kohn by Kohn and Sham, who exploited
the variational principle for the energy functional as implied by the second
theorem to derive a set of effective single-particle equations [91].

In order to employ the variational principle we start out again from the
representation (9.3.13) to (9.3.15) of the universal functional and insert it into
the energy functional (9.3.12), this resulting in

E[ρ] = FLL[ρ] +

∫

d3r vext(r)ρ(r)

= G[ρ] +
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′|

+

∫

d3r vext(r)ρ(r)

= T [ρ] +Wxc[ρ] +
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′|

+

∫

d3r vext(r)ρ(r) . (9.4.1)

Taking into account particle conservation as formulated in Eq. (9.1.10) we write
down the variational principle as

δ

(

E[ρ] − µ

∫

d3r ρ(r)

)

!
= 0 , (9.4.2)

where the Lagrange multiplier µ is identical to the chemical potential, and,
combining Eqs. (9.4.1) and (9.4.2), we thus arrive at the Euler-Lagrange equa-
tion

δE[ρ]

δρ
− µ =

δFLL[ρ]

δρ
+ vext(r) − µ

=
δG[ρ]

δρ
+ vH(r) + vext(r) − µ

=
δT [ρ]

δρ
+
δWxc[ρ]

δρ
+ vH(r) + vext(r) − µ

!
= 0 , (9.4.3)
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with the Hartree potential given by

vH(r) =
e2

4πǫ0

∫

d3r′
ρ(r′)

|r − r′| . (9.4.4)

So far, all the steps taken are quite similar to the treatment within Thomas-
Fermi-Dirac theory. Nevertheless, as in Chap. 8 we are faced with the problem
that the functional G[ρ] comprising the kinetic and exchange-correlation func-
tional is not known at all. As we have learned in Secs. 8.1 and 8.2, Thomas-
Fermi-Dirac theory, while neglecting the correlations, approximated the kinetic
and exchange energy by the respective expressions derived for the homogeneous
electron gas. These were then generalized to arbitrary, varying densities, this
leading to the Eqs. (8.1.4) and (8.2.9). As a consequence, a theory evolved,
which, despite its remarkable simplicity, allowed to deal with complex atomic
aggregates. Yet, as we have learned in Chap. 8, especially the representation
of the kinetic energy functional in terms of the electronic density led to severe
deficiencies of Thomas-Fermi theory and, hence, undermined its acceptance.

This is where the work by Kohn and Sham sets in, which consists mainly
of two important steps,

1. the single-particle wave functions were reintroduced into the formalism,

2. the splitting of the functional G[ρ] into two contributions was performed
in a different way as before.

Since, according to the experience with Thomas-Fermi theory, the serious prob-
lems in determining the total energy functional center about the kinetic energy
contribution let us for a moment reconsider the homogeneous electron gas but
ignore the electron-electron interactions. This brings us back to the Sommer-
feld model. The important point to notice now is that there exist two different
ways to solve the Sommerfeld model exactly. The first one, which we have con-
sidered in Sec. 3.1, is built on the (constant) electron density. This approach
was lateron adopted by Thomas-Fermi theory with the well-know problems.
To the contrary, the second way of solving the Sommerfeld model starts from
single-particle states, which obviously are plane waves. We have used this ap-
proach for treating the homogeneous electron gas in Secs. 7.2 and 7.3. To
summarize, the Sommerfeld model could be equally well treated in terms of
the density or in terms of single-particle orbitals. Both approaches allow for
an exact treatment of this simple model but lead to consderable differences,
when applied to inhomogeneous, interacting electron systems. While Thomas
and Fermi aimed at an explicit use of the electron density alone, Kohn and
Sham opted for the solution in terms of the single-particle orbitals. It was this
different strategy, which laid the basis for their success.

In order to make the previous remarks more explicit as well as for pedagogi-
cal reasons we concentrate for the time being on the interaction-free N -particle
system, where the full Hamiltonian consists only of the single-particle term
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(9.1.5). In this case the functionals FLL[ρ] and G[ρ] both reduce to the kinetic
energy,

FLL[ρ] = G[ρ] = Ts[ρ] . (9.4.5)

From this we obtain the total energy functional simply by adding the con-
tribution arising from the external potential according to Eq. (9.4.1). Note
that, following convention, we appended the subscript s to the kinetic energy
functional in Eq. (9.4.5) indicating the independent-electron case.

In addition, as was already outlined in Sec. 4.1, neglect of the electron-
electron interaction allows to write the Hamiltonian as a sum of single-particle
Hamiltonians of the form (5.4.13)

H
{1}
0 =

∑

αβ

〈χα|
{

− h̄2

2m
∇2 + vsext(r)

}

|χβ〉a+
αaβ , (9.4.6)

with the single-particle states |χα〉 growing out of Schrödinger’s equation
[

− h̄2

2m
∇2 + vsext(r)

]

|χα〉 = εα|χα〉 , (9.4.7)

which in real space representation reads as
[

− h̄2

2m
∇2 + vsext(r)

]

χα;σ(r) = εαχα;σ(r) . (9.4.8)

We have used the superscript s to the external potential to indicates that this
potential might be of a more general form as just the potential arising from the
ions. As usual, we assume the single-particle wave functions, which all grow
out of the same Schrödinger equation, to be orthonormalized according to

∑

σ

∫

d3r χ∗
α;σ(r)χβ;σ(r) = δαβ . (9.4.9)

Finally, the many-body wave function is constructed from these single-particle
orbitals as a Slater determinant.

The energy functional arises from Eqs. (9.4.6), (5.5.1), (5.5.7), and (5.5.11)
as

E[ρ] = 〈H{1}
0 〉

=
∑

α

〈χα|
{

− h̄2

2m
∇2 + vsext(r)

}

|χα〉nα

=
∑

α

εαnα

=
∑

σ

∑

α

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2 + vsext(r)

]

χα;σ(r)nα

=
∑

σ

∑

α

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r)nα

+

∫

d3r vsext(r)ρ(r) , (9.4.10)



9.4. THE KOHN-SHAM EQUATIONS 173

where we have turned to the real space representation and used Eq. (9.1.8)
for the electronic density. In particular, for the ground state the occupation
numbers nα of the single-particle states reduce to one and zero, respectively,
hence, the electronic density reduces to Eq. (9.1.9),

ρ0(r) =
∑

σ

occ∑

α

|χα;σ(r)|2 , (9.4.11)

and we obtain

E[ρ0] = Ts[ρ0] +

∫

d3r vsext(r)ρ0(r) =
∑

α

εα , (9.4.12)

where

Ts[ρ0] =
∑

σ

occ∑

α

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r) (9.4.13)

is the ground state kinetic energy functional for non-interacting particles.
In preparing for the second “trick” of Kohn and Sham and being a bit

formal we explicitly write down the Euler-Lagrange equations growing out of
the energy functional (9.4.12)/(9.4.13) for non-interacting particles, both in
terms of the density and the single-particle orbitals, as

δE[ρ]

δρ
− µ =

δTs[ρ]

δρ
+ vsext(r) − µ

!
= 0 (9.4.14)

and

δE[ρ]

δχ∗
α;σ(r)

− εαχα;σ(r) =

[

− h̄2

2m
∇2 + vsext(r) − εα

]

χα;σ(r)
!
= 0 , (9.4.15)

where the Lagrange parameters µ and εα ensure conservation of the total elec-
tron number (9.1.10) as well as of the orthonormalization (9.4.9) of the single-
particle orbitals, respectively. Note furthermore the identity with Eqs. (9.4.3)
and Schrödinger’s equation (9.4.8).

By introducing an orbital picture we have thus, eventually, arrived at a
much improved representation of the kinetic energy, which for an inhomoge-
neous system of non-interacting particles is exact, hence, superiour to Thomas-
Fermi theory. As a consequence, already in this rather simple case the approach
built on single-particle orbitals is superiour to the density approach. Never-
theless, we are still left with the crucial question, how the kinetic energy of an
interacting electron system can be handled. As already mentioned above, the
central quantity of interest is the universal functional G[ρ], which still awaits its
evaluation. This is where the second important step taken by Kohn and Sham
comes in. To be specific, they proposed that the splitting of G[ρ] according
to Eq. (9.3.15) into the two unknown functionals T [ρ] and Wxc[ρ] should be
replaced by

T [ρ] +Wxc[ρ] = G[ρ]
!
= Ts[ρ] + Exc[ρ] , (9.4.16)
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where Ts[ρ] is the kinetic energy functional (9.4.13). With this splitting of
the universal functional G[ρ] and using Eqs. (9.3.11), (9.3.14), and (9.3.15) we
write the energy functional as

E[ρ] = Ts[ρ] +

∫

d3r vext(r)ρ(r)

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′| + Exc[ρ]

=
∑

σ

occ∑

α

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r) +

∫

d3r vext(r)ρ(r)

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′| + Exc[ρ] . (9.4.17)

From this we readily derive the Euler-Lagrange equations as

δE[ρ]

δρ
− µ =

δTs[ρ]

δρ
+ vext(r) + vH(r) + vxc(r) − µ

=
δTs[ρ]

δρ
+ veff (r) − µ

!
= 0 (9.4.18)

and

δE[ρ]

δχ∗
α;σ(r)

− εαχα;σ(r)

=

[

− h̄2

2m
∇2 + vext(r) + vH(r) + vxc(r) − εα

]

χα;σ(r)

=

[

− h̄2

2m
∇2 + veff (r) − εα

]

χα;σ(r)
!
= 0 , (9.4.19)

where we have defined the exchange-correlation potential

vxc(r) :=
δExc[ρ]

δρ
(9.4.20)

and where, as before, the Lagrange parameters µ and εα ensure conservation of
the total electron number (9.1.10) as well as of the orthonormalization (9.4.9)
of the single-particle orbitals, respectively.

The important observation made by Kohn and Sham is that the Euler-
Lagrange equations (9.4.14) and (9.4.15) for non-interacting particles are for-
mally identical to the corresponding Eqs. (9.4.18) and (9.4.19) for interacting
particles the only difference being that the external potential vsext(r) has been
replaced by an effective potential

veff (r) = vext(r) + vH(r) + vxc(r) , (9.4.21)

which, in addition to the external potential, contains the Hartree as well as the
exchange-correlation potential (9.4.20). As a consequence, the Euler-Lagrange
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equation (9.4.19) assumes the form of an effective single-particle Schrödinger
equation, which is called the Kohn-Sham equation. Note that the effective po-
tential (9.4.21) via Eqs. (9.4.4) and (9.4.20) still contains the electronic charge
density and we are thus, as in the case of the Hartree or Hartree-Fock equations,
left with a self-consistent field procedure.

To conclude, by splitting the universal functional G[ρ] into the kinetic en-
ergy of a fictitious, non-interacting electron system and a still unknown remain-
der, which contains part of the kinetic energy of the fully interacting electron
system, Kohn and Sham were able to exactly map the complicated many-body
problem onto an effective single-particle problem. This way they were able
to treat large part of the kinetic energy exactly. However, note that the full
many-body wave function remains completely unspecified and even the single-
particle states growing out of the Kohn-Sham equation (9.4.19) lack a physical
meaning. The same holds true for the “single-particle energies” εα, which are
just Lagrange-multipliers. As we will learn in Sec. 9.5 below, the energy of
the highest occupied level is an exception, since it can be shown to equal the
chemical potential µ. Only in the case of non-interacting electrons the physical
interpretation of both the single-particle orbitals and energies is restored.

Yet, having derived the Kohn-sham equations we may still ask, whether
there exists a fundamental justification. In particular, it is not at all obvious
that there exists a set of single-particle orbitals, which solve th Kohn-Sham
equations and give rise to the correct energy functional. In other words, it is
not guaranteed that any density ρ is non-interacting v representable, i.e. that
a potential vsext exists, which gives rise to the correct single-particle states. In
order to prove this we follow again the constrained search formulation invented
by Levy and use it to express the non-interacting kinetic energy functional

FLL,s[ρ] = Ts[ρ]

= inf
|ΨD〉→ρ

〈ΨD|Hel,kin|ΨD〉

= inf∑

σα
|χα;σ|2=ρ

[
∑

σ

∑

α

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r)

]

.

(9.4.22)

Here the search for the infimum was restricted to all those wave functions ΨD,
which can be written as a single Slater-determinant. To conclude, we may use
the same arguments as in Sec. 9.3 to uniquely determine the wave function
ΨD as well as the “external” potential vsext from the electron density, the only
difference being the single-particle form of the Hamiltonian (9.4.6).

Finally, the total energy functional is easily accessed by multiplying the
Kohn-Sham equation (9.4.19) with χ∗

α;σ(r), summing over all occupied states
α as well as over spins and integrating over all space,

Ts[ρ] +

∫

d3r veff (r)ρ(r) −
∑

α

εα
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= Ts[ρ] +

∫

d3r [vext(r) + vH(r) + vxc(r)] ρ(r) −
∑

α

εα = 0 .

(9.4.23)

Inserting this expression into the total energy functional as given by Eq. (9.4.1),
using the definition (9.4.4) and taking into account the alternative splitting
(9.4.16) of the universal functional G[ρ] we obtain the result

E[ρ] = Ts[ρ] +

∫

d3r vext(r)ρ(r) +
1

2

∫

d3r vH(r)ρ(r) + Exc[ρ]

=
∑

α

εα − 1

2

∫

d3r vH(r)ρ(r) + Exc[ρ] −
∫

d3r vxc(r)ρ(r) .

(9.4.24)

The total energy thus consists of the sum of the eigenvalues and the so called
two-electron or “double-counting” terms.

Density functional theory as outlined above provides an efficient scheme
to reduce the entire many-body problem to a Schrödinger-like effective single-
particle equation, which has proven to give very good agreement of experimen-
tal and theoretical results in numerous cases. Nevertheless, taking a closer look
we raise the question as to which material properties are accessible at all by
electronic structure calculations, which use this formalism. Of course, from the
foundations of DFT we expect ground state properties to be well described of
which we just mention quantities like the ionic positions, the electronic density
or magnetic moments, which can be directly compared to experimental results
e.g. from X-ray or neutron diffraction measurements.

As far as excitation processes are concerned the situation is somewhat more
complicated. Within the concept of DFT/LDA the single particle energies re-
sulting from the Kohn-Sham equation (9.4.19) from a very formal point of view
are not eigenvalues but Lagrange multipliers. They entered the formalism just
to ensure charge conservation. Hence these eigenvalues a priori have no physical
meaning although in many cases they can indeed be successfully interpreted as
single particle energies (see e.g. the discussion in [98] and references therein).

In view of the aforementioned theoretical foundation of DFT/LDA based
electronic structure calculations we understand that relating calculated and
measured results requires some care as well as knowledge about the limita-
tions of both theoretical approaches and experimental techniques. As the most
striking example in this context we refer to the wellknown problem arising
from the straightforward comparison of measured energy gaps of semiconduc-
tors and insulators to the energy difference between the highest occupied and
lowest unoccupied single particle state. Related difficulties might show up in
the theoretical description of photoemission experiments where actually the en-
ergy difference between the ground state and an excited state of the correlated
electronic many body system, hence, the energy of a quasiparticle is measured.
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9.5 Janak’s theorem

As was mentioned in the previous section the “single-particle energies” εα grow-
ing out of the Kohn-Sham equation (9.4.18) entered the formalism as Lagrange-
multipliers guaranteeing normalization of the single-particle wave functions.
As such they have no physical meaning. In particular, they can not be iden-
tified with excitation energies. Only in the case of non-interacting electrons a
physical interpretation is possible. However, as experience has shown, in very
many cases the agreement with excitation energies is surprisingly good and lays
ground for a straightforward comparison of the calculated εα with the results
of e.g. photoemission experiments. Yet, there exist well known exceptions as
the heavy fermion systems, which are characterized by effective masses of up to
several hundred electron masses. In view of this somewhat contradictory situa-
tion it is thus desirable to get more insight into the meaning of the Kohn-Sham
energies and single-particle states.

A first clue was given by Janak [82], who aimed at a proper understand-
ing of single-particle excitations within density functional theory. He started
out by introducing the concept of fractional occupation numbers and, hence,
generalized the expressions (9.4.11) and (9.4.13) to

ρ̃(r) =
∑

σ

∑

α

|χα;σ(r)|2nα (9.5.1)

and

T̃0[ρ̃] =
∑

σ

∑

α

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r)nα , (9.5.2)

where nα ∈ [0, 1] denotes the occupation of the single particle state |χα〉.
Of course, it is not at all obvious that this generalization leads to an N -
representable, let alone, v-representable electron density. A way out of this
would be to fix the occupation numbers nα according to Fermi-Dirac statistics,
in which case we would arrive at a physically meainingful density.

With the electron density and the kinetic energy functional as given by Eqs.
(9.5.1) and (9.5.2) the total energy functional assumes the generalized form

Ẽ[ρ̃] = T̃0[ρ̃] +

∫

d3r veff (r)ρ̃(r) . (9.5.3)

We are now able to calculate the change in total energy with respect to change
in the orbital occupation, hence, the response of the total energy to (fractional)
particle excitation. We note

∂Ẽ[ρ]

∂nα
=

∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r)

+
∑

σ

∑

β

nβ
∂

∂nα

∫

d3r χ∗
β;σ(r)

[

− h̄2

2m
∇2

]

χβ;σ(r)
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+
∑

σ

∫

d3r veff (r)



|χα;σ(r)|2 +
∑

β

nβ
∂|χβ;σ(r)|2

∂nα





=
∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2 + veff (r)

]

χα;σ(r)

+
∑

σ

∑

β

nβ

[

∂

∂nα

∫

d3r χ∗
β;σ(r)

[

− h̄2

2m
∇2

]

χβ;σ(r)

+

∫

d3r veff (r)
∂|χβ;σ(r)|2

∂nα

]

= εα +
∑

σ

∑

β

nβ

∫

d3r

{

∂χ∗
β;σ(r)

∂nα

[

− h̄2

2m
∇2 + veff (r)

]

χβ;σ(r)

+χ∗
β;σ(r)

[

− h̄2

2m
∇2 + veff (r)

]
∂χβ;σ(r)

∂nα

}

= εα +
∑

σ

∑

β

nβεβ

∫

d3r
∂|χβ;σ(r)|2

∂nα

= εα , (9.5.4)

where, in the second but last line, we employed the normalization of the single-
particle states. The result (9.5.4) usually goes under the name Janak’s theorem.
It is similar to Koopman’s theorem for Hartree-Fock theroy. However, while
the latter involves the removal or addition of a whole electron we are here
concerned with the derivative of the total energy with respect to fractional

occupations. For this reason we may not readily interprete the εα as excitation
energies.

Yet, a connection to physical properties can be made by relating Janak’s
theorem to the total energies of an N and N + 1 particle system via

EN+1 − EN =

∫ 1

0

εα(n)dn , (9.5.5)

where α denotes the highest occupied single-particle orbital. On evaluating Eq.
(9.5.5) one may approximate the integral by the value εα(n = 1/2) and thereby
make a close connection to Slater’s transition state concept.

In particular for extended systems the change of the single-particle energy
εα(n) on removal of an electron, i.e. on changing the occupation n of this state
is only small and the integral in Eq. (9.5.5) can be exactly calculated, this
leading to the result

µ = EN+1 − EN = εα . (9.5.6)

To conclude, in extended systems the energy of the highest occupied single-
particle state is identical to the chemical potential. This finding was lateron
rigorously proven by Almbladh and von Barth, who demonstrated that the
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eigenvalue of the uppermost occupied orbital equals the exact ionization po-
tential [2].

A quite different approach to the same issue was presented by von Barth
[14, 15], who considered the homogeneous, interacting electron gas, where the
exact excitation energies are generally given by the implicit equation

εexkσ =
h̄2

k2

2m
+ Σ(k, εkσ) . (9.5.7)

Here Σ(k, εkσ) denotes the momentum- and energy-dependent complex self
energy.

Eq. (9.5.7) is contrasted by the DFT expression

εDFTkσ =
h̄2k2

2m
+ veff,σ , (9.5.8)

where, for the homogeneous electron gas the effective potential has reduced
to a constant. As a ground state theory, DFT correctly describes the Fermi
energy and the effective potential can thus be identified with the electron self
energy taken at the Fermi wave vector and energy,

εDFTkσ =
h̄2

k2

2m
+ Σ(kFσ , EFσ) . (9.5.9)

Obviously, the difference between the exact excitation energies εexkσ and the
single-particle energies εDFTkσ raises from zero as one moves away from the
Fermi energy.

εexkσ − εDFTkσ = Σ(k, εkσ) − Σ(kFσ , EFσ) . (9.5.10)

However, the energies differ only to the extent that the self energy Σ(k, εkσ)
varies with k and εkσ. If these variations are rather small we can expect the
single-particle energies as resulting from the DFT to provide a satisfactory
description of excitation energies not only in the vicinity of the Fermi energy.

An alternative way of quantifying the deviation of the DFT from the exact
result starts out from expanding the self energy Σ(k, ω) about the Fermi energy
and writing the exact excitation energies εexkσ as

ω = ωF +
h̄2(k2 − k2

F )

2m
+ (∇kΣ)k=kF

(k − kF )

+

(
δΣ

δω

)

ω=ωF

(ω − ωF ) + . . . . (9.5.11)

The requirement that the self energy varies only slowly with k and ω can
now be expressed in terms of the effective mass m∗. In the effective mass
approximation Eq. (9.5.11) is contrasted by

ω = ωF +
h̄2(k2 − k2

F )

2m∗ , (9.5.12)
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which, in combination with Eq. (9.5.11) leads to

m∗

m
=

1 − (δΣ/δω)ω=ωF σ

1 + m
h̄2kF σ

(∇kΣ)k=kF σ

at k = kFσ . (9.5.13)

For a self energy slowly varying with both k and ω we thus have the condition
m∗/m ≈ 1, which holds for most of the simple metals but is strongly violated
by the heavy fermion compounds. An intermediate situation arises when we
aim at the electronic structure far below or above the Fermi energy, where the
difference between the exact self energy and its DFT counterpart eventually
becomes appriciably.

9.6 Spin-density functional theory

The generalization of density functional theory to spin-polarized systems, al-
ready discussed by Kohn and Sham [91], was worked out in detail by von Barth
and Hedin, Pant amd Rajagopal as well as, for relativistic systems, Rajagopal
and Callaway [17, 123, 139].

In general, spin-polarization may arise from a corresponding symmetry
breaking contribution to the external potential, specifically an external mag-
netic field. Nevertheless, it may likewise be the consequence of the electron-
electron interaction and then can be traced back to the exchange term. The
latter situation has been discussed for the homogeneous electron gas in Sec.
7.3, which for low densities displayed an instability of the spin-degenerate case
in favour of full spin-polarization as displayed in Fig. 7.7.

In the presence of an external magnetic field the response of the electrons
may be twofold since the field can couple to both the orbital currents and the
electron spin. Ignoring for the time being the former coupling, which has been
dealt with by Vignale and Rasolt [165, 166], we concentrate especially on the
coupling of the electron spin to an external magnetic field. In this case the
contribution (9.1.13) to the Hamiltonian referring to the external potential has
to be rewritten as

Hext({ri}) =

∫

d3r [vext(r)ρ̂(r) − µBB(r) · m̂(r)] , (9.6.1)

where µB = eh̄
2mc is the Bohr magneton. In addition, we have introduced the

vector of the spin density operator

m̂(r) = −
∑

σσ′

ψ+
σ (r)σσσ′ψσ′(r) , (9.6.2)

which generalizes Eq. (5.7.8) and where σ denotes the vector of Pauli matrices,

σx =

(

0 1

1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0

0 −1

)

. (9.6.3)
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Note that the spin density operator (9.6.2) just denotes special linear combi-
nations of the spin density matrices (5.7.15) for equal sites

ρ̂σσ′(r) = ρ̂σσ′ (r; r′)δ(r − r′)

= ψ+
σ′(r)ψσ(r) . (9.6.4)

Specifically, we have

m̂(r) = −
∑

σσ′

σσσ′ ρ̂σ′σ(r) , (9.6.5)

m̂x(r) = − (ρ̂↑↓(r) + ρ̂↓↑(r)) , (9.6.6)

m̂y(r) = i (ρ̂↓↑(r) − ρ̂↑↓(r)) , (9.6.7)

m̂z(r) = − (ρ̂↑↑(r) − ρ̂↓↓(r)) , (9.6.8)

which latter is identical to Eq. (5.7.8). Just to be complete we note

ρ̂(r) =
∑

σ

ρ̂σ(r)

=
∑

σσ′

δσσ′ ρ̂σ′σ(r)

= ρ̂↑↑(r) + ρ̂↓↓(r) , (9.6.9)

With these identities at hand we cast the contribution (9.6.1) to the Hamilto-
nian into the compact form

Hext({ri}) =
∑

σσ′

∫

d3r vext,σσ′ (r)ρ̂σ′σ(r) , (9.6.10)

where
vext,σσ′ (r) = vext(r)δσσ′ + µBB(r) · σσσ′ . (9.6.11)

Finally, we note for the ground state expectation values

ρ(r) = 〈Ψ0|ρ̂(r)|Ψ0〉 , (9.6.12)

m(r) = 〈Ψ0|m̂(r)|Ψ0〉 , (9.6.13)

or, alternatively, the compact variant

ρσσ′(r) = 〈Ψ0|ρ̂σσ′ (r)|Ψ0〉
= 〈Ψ0|ψ+

σ′(r)ψσ(r)|Ψ0〉 . (9.6.14)

In close analogy to Eq. (9.1.15) the functional arising from the external poten-
tial is thus written as

〈Ψ0|Hext({ri})|Ψ0〉 =
∑

σσ′

∫

d3r vext,σσ′ (r)ρσ′σ(r) . (9.6.15)

In contrast, the expression (9.1.15) for the universal functional F [ρ] remains
unaltered with the slight exception that the dependence on the density has to
be replaced by the dependence on the spin density matrix.
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In order to formulate density functional theory for spin-polarized systems
we next have to prove the proper generalization of the theorems by Hohenberg
and Kohn. To this end we first investigate the relation

|Ψ0〉
(2)
=⇒ ρ0,σσ′(r) (9.6.16)

between the ground state and its spin density matrix. For a non-degenerate
ground state two different wave functions |Ψ0〉 6= |Ψ′

0〉 then lead to two different
spin density matrices ρ0,σσ′(r) 6= ρ′0,σσ′(r). Following the proof given in Eqs.
(9.1.17) to (9.1.20) but replacing Eq. (9.1.18) by

E′ = E +
∑

σσ′

∫

d3r
[
v′ext,σσ′ (r) − vext,σσ′ (r)

]
ρσ′σ(r) (9.6.17)

and Eq. (9.1.19) by the analogous expression with primed and unprimed quan-
tities exchanged we are able to prove invertibility of this map also for spin-
polarized systems,

|Ψ0〉
(2)⇐⇒ ρ0,σσ′(r) . (9.6.18)

Again, the constrained search formulation proposed by Levy offeres several
advantages in setting up the theorems by Hohenberg and Kohn. We thus write
instead of Eq. (9.3.12)

E0[ρ] = inf
|Ψ〉

〈Ψ|H0|Ψ〉

= inf
|Ψ〉

〈Ψ|Hel,kin +Hel−el +Hext|Ψ〉

= inf
ρσσ′ (r)

[

inf
|Ψ〉∈S(ρσσ′ )

〈Ψ|Hel,kin +Hel−el|Ψ〉

+
∑

σσ′

∫

d3r vext,σσ′ (r)ρσ′σ(r)

]

= inf
ρσσ′ (r)

[

FLL[ρσσ′ ] +
∑

σσ′

∫

d3r vext,σσ′ (r)ρσ′σ(r)

]

,(9.6.19)

where the universal functional is explicitly given by

FLL[ρσσ′ ] = inf
|Ψ〉∈S(ρσσ′ )

〈Ψ|Hel,kin({ri}) +Hel−el({ri})|Ψ〉 (9.6.20)

with the set S(ρσσ′) now comprising all those wave functions, which lead to
the particular spin density matrix ρσσ′ .

To conclude, also for spin-polarized systems we have succeeded in proving
the fundamental theorems, as Eq. (9.6.19) establishes the variational principle
in terms of the spin density matrix (2nd theorem) and furthermore provides
a means to express the ground state also in terms of this spin density matrix
(1st theorem).
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However, one ambiguity remains for spin-polarized systems, which has been
the matter of long debates and has found a definite answer only recently
[37, 26, 43]. It is centered about the relation between external potentials and
ground state wave functions, in particular, about the question, if two differ-
ent external potentials v′ext,σσ′ 6= vext,σσ′ can lead to the same ground state
wave function. For non-spin-polarized, non-degenerate ground states this point
has been clarified by Eqs. (9.1.21) to (9.1.24). In contrast, for spin-polarized
systems, Eq. (9.1.23) writes as

[Hext −H ′
ext] |Ψ0〉

=
∑

σσ′

∫

d3r
[
vext,σσ′ (r) − v′ext,σσ′ (r)

]
ρ̂σ′σ(r) |Ψ0〉

= [E − E′] |Ψ0〉 , (9.6.21)

which defines a 2 × 2 eigenvalue problem

det
{
vext,σσ′ (r) − v′ext,σσ′ (r) − (E − E′) δσσ′

}
= 0 . (9.6.22)

Indeed this can be solved by two potentials differing by more than a constant.
However, note that this finding, while violating injectivity of the first map
entering Eqs. (9.1.16) and (9.1.25), does not affect the validity of the theorems
by Hohenberg and Kohn, as we have just demonstrated by writing the total
energy in termso of the Levy-Lieb functional in Eq. (9.6.19). This is due to the
fact that the constrained search formulation requires only N -representability
of the electronic density whereas the external potential does not enter any of
the proofs.

Having laid ground the formal basis of spin-density functional theory we
still have to derive the spin-dependent single-particle Kohn-Sham equations.
To this end we start out again writing down the complete energy functional,
which, except for the inclusion of the term growing out of the magnetic field,
is formally identical to Eq. (9.4.17). We write

E[ρ] = Ts[ρ] +
∑

σσ′

∫

d3r vext,σσ′ (r)ρσ′σ(r)

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′| + Exc[ρ]

=
∑

σ

occ∑

α

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r)

+
∑

σσ′

∫

d3r vext,σσ′ (r)ρσ′σ(r)

+
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′| + Exc[ρ]

=
∑

σ

occ∑

α

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2

]

χα;σ(r)
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+
∑

σσ′

occ∑

α

∫

d3r vext,σσ′ (r)χ∗
α;σ(r)χα;σ′ (r)

+
1

2

e2

4πǫ0

∑

σσ′

occ∑

αβ

∫

d3r

∫

d3r′
|χα;σ(r)|2|χβ;σ′(r′)|2

|r − r′| + Exc[ρ] .

(9.6.23)

In the last lines we have added a formulation using the explicit expressions
(5.7.14) and (5.7.17) of the spin density as well as the spin-dependent den-
sity matrix, respectively, in terms of the single-particle orbitals. Using the
orthonormalization of these orbitals, we then obtain the Kohn-Sham equations
as

δE[ρ]

δχ∗
α;σ(r)

− εα;σχα;σ(r)

=
∑

σ′

[

− δσσ′

h̄2

2m
∇2 + vext,σσ′ (r) + δσσ′vH(r)

+vxc,σσ′(r) − δσσ′εα;σ

]

χα;σ(r)

=

[

−δσσ′

h̄2

2m
∇2 + veff,σσ′ (r) − δσσ′εα;σ

]

χα;σ(r)
!
= 0 , (9.6.24)

where we have used the definition of the Hartree potential

vH(r) =
∑

σ′

∫

d3r′
ρσ′(r′)

|r − r′|

=

∫

d3r′
ρ(r′)

|r − r′| , (9.6.25)

as well as that of the exchange-correlation potential

vxc,σσ′(r) =
δExc[ρ]

δρσ′σ(r)
. (9.6.26)

In addition, we have in the last step of Eq. (9.6.24) implicitly defined the
effective potential matrix

veff,σσ′ (r) = vext,σσ′ (r) + δσσ′vH(r) + vxc,σσ′(r) . (9.6.27)

To conclude, for spin-polarized systems we arrive at a set of two coupled Kohn-
Sham equations, one for each spin.

Finally, in order the standard expression of the total energy functional in
terms of the single particle energies we multiply the Kohn-Sham equations
(9.6.24) with χ∗

α;σ(r), sum over all occupied states α as well as both spins and
integrate over all space,

Ts[ρ] +
∑

σσ′

∫

d3r veff,σσ′ (r)ρσ′σ(r) −
∑

σ

∑

α

εα;σ
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= Ts[ρ] −
∑

σ

∑

α

εα;σ

+
∑

σσ′

∫

d3r [vext,σσ′ (r) + δσσ′vH(r) + vxc,σσ′(r)] ρσ′σ(r)

= 0 .

(9.6.28)

Inserting this expression into the total energy functional as given by Eq. (9.6.23),
using the definition (9.4.4) we obtain the result

E[ρ] = Ts[ρ] +
∑

σσ′

∫

d3r veff,σσ′ (r)ρσ′σ(r)

+
1

2

∫

d3r vH(r)ρ(r) + Exc[ρ]

=
∑

σ

∑

α

εα;σ − 1

2

∫

d3r vH(r)ρ(r)

+Exc[ρ] −
∑

σσ′

∫

d3r vxc,σσ′(r)ρσ′σ(r) , (9.6.29)

which again consists of the sum of the eigenvalues and the so called two-electron
or “double-counting” terms.
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Chapter 10

Local density

approximation and beyond

10.1 Local density approximation

So far our discussion about density functional theory has been of somewhat
artificial nature since we have not yet specified the exchange-correlation func-
tional. The missing link is provided by the local density approximation (LDA),
which is the subject of the present section.

The starting point for the local density approximation is the expression
of the exchange-correlation energy as an integral over the local exchange-
correlation energy density weighted with the local electron density,

Exc[ρ] =

∫

d3r ρ(r)ǫxc(ρ(r)) . (10.1.1)

Note that ǫxc(ρ) is a function of the density rather than a functional. The
energy density in turn is evaluated from the respective expression for the ho-
mogeneous, interacting electron gas, where the electron density is a constant
in space.

The main idea behind the local density approximation is that for any real
system, where of course the density is not homogeneous, space may be divided
into small “boxes” such that within each box the variation of the density is
small. We denote the average density within the box located at r as ρ(r).
If the variation of the density outside a box is ignored but the whole system
assumed to behave as a homogeneous electron gas with the density ρ(r) we have
a notion to calculate the energy density and the potential within the box and,
finally, by combining the results for all the boxes, to arrive at a prescription
of the inhomogeneous electron gas as a superposition of locally homogeneous
electron gases.

From these considerations it becomes clear that the local density approxi-
mation is exact in the limit of a constant density or density matrix, respectively.

187
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In addition, we would expect it to be quite good for slowly varying densities
but not for systems as atoms or molecules where the density depends strongly
on position. Even for solids the deviation from a homogeneous density is sub-
stantial and thus cannot be neglected. Surprisingly, experience shows that the
local density approximation works well in a large number of cases.

Using Eq. (9.4.19) we express the exchange-correlation potential in terms
of the energy density as

vxc(ρ(r)) =

[
∂

∂ρ
{ρǫxc(ρ)}

]

ρ=ρ(r)

= ǫxc(ρ(r)) + ρ(r)

[
∂

∂ρ
{ǫxc(ρ)}

]

ρ=ρ(r)

. (10.1.2)

For the spin-polarized ground state we have both the spin up and down
density at hand, which may be expressed in terms of the density and the spin
polarization,

ρ(r) = ρ↑(r) + ρ↓(r) , ζ(r) =
ρ↑(r) − ρ↓(r)

ρ(r)
, (10.1.3)

as

ρα(r) =
ρ(r)

2

(

1 + zαζ(r)

)

(10.1.4)

where α =↑, ↓ and

zα =

{
+1 for α =↑
−1 for α =↓ . (10.1.5)

Even in the general situation described in subsection 9.6, where we lack a global
spin quantization axis, the eigenvalues ρ↑ and ρ↓ of the spin density matrix
(9.6.4), hence, the spin-up and spin-down density, are locally well defined. We
are thus able to write the exchange-correlation energy and potential as [17, 42]

Exc[ρ] =

∫

d3r ρ(r)ǫxc(ρ(r), ζ(r)) (10.1.6)

and

vxc,σ(ρ(r), ζ(r)) =

[
∂

∂ρσ
{ρǫxc(ρ, ζ)}

]

ρ=ρ(r),ζ=ζ(r)

. (10.1.7)

Using the identity

∂

∂ρσ
=

∂ρ

∂ρσ

∂

∂ρ
+

∂ζ

∂ρσ

∂

∂ζ
=

∂

∂ρ
+
zσ − ζ

ρ

∂

∂ζ
, (10.1.8)

which follows from equation (10.1.3), we may further write

vxc,σ(ρ(r), ζ(r)) =

[
∂

∂ρ
{ρǫxc(ρ, ζ)} + (zσ − ζ)

∂

∂ζ
{ǫxc(ρ, ζ)}

]

ρ=ρ(r),ζ=ζ(r)

.

(10.1.9)
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We have thus reduced the problem of determining the exchange-correlation
energy and potential to the problem of expressing the energy density in terms
of the charge density and the spin polarization. Nowadays there exist several
parametrizations for the energy density, which were derived from perturbation
theory or accurate Monte Carlo simulations of the homogeneous electron gas.
Following a recent overview by MacLaren et al. [108] we will in the remaining
part of this section describe some of these schemes in more detail.

Nevertheless, despite a variety of different schemes there exist some more
general rules, which are obeyed by most parametrizations. Among these is
the so-called RPA scaling proposed by Hedin [74], which relates the energy
densities for the non-spin-polarized and the fully polarized ground state by

ǫRPAxc (ρ, ζ = 1) =
1

2
ǫRPAxc (24ρ, ζ = 0) . (10.1.10)

Furthermore, von Barth and Hedin proposed to model the polarization depen-
dence of the exchange-correlation energy density of the homogeneous electron
gas between the paramagnetic (ζ = 0) and the saturated ferromagnetic (ζ = 1)
cases according to the so-called spin interpolation formula,

ǫxc(ρ, ζ) = ǫPxc(ρ) +
[
ǫFxc(ρ) − ǫPxc(ρ)

]
f(ζ) , (10.1.11)

where

ǫPxc(ρ) = ǫxc(ρ, ζ = 0) , (10.1.12)

ǫFxc(ρ) = ǫxc(ρ, ζ = 1) , (10.1.13)

and

f(ζ) =
1

2
4
3 − 2

[

(
2ρ↑
ρ

)
4
3 + (

2ρ↓
ρ

)
4
3 − 2

]

=
(1 + ζ)4/3 + (1 − ζ)4/3 − 2

2
4
3 − 2

.

(10.1.14)
is the spin interpolation function f(ζ), which is displayed in Fig. 10.1. Obviously,
this function is symmetric in ζ and so is the exchange-correlation energy den-
sity ǫxc(ρ, ζ). In conclusion, the spin dependence of the energy density and
potential is completely determined by equations (10.1.9) to (10.1.14), and, if
we are willing to accept the RPA scaling and the spin interpolation formula,
we are left with only the problem of evaluating the ρ-dependence of ǫPxc(ρ).

Combining equations (10.1.9) and (10.1.11) we are finally able to derive a
spin interpolation formula for the exchange-correlation potential

vxc,σ(ρ, ζ) =
∂

∂ρ

{
ρǫPxc(ρ)

}
+

[
∂

∂ρ

{
ρǫFxc(ρ)

}
− ∂

∂ρ

{
ρǫPxc(ρ)

}
]

f(ζ)

+ (zσ − ζ)
[
ǫFxc(ρ) − ǫPxc(ρ)

] ∂

∂ζ
{f(ζ)} . (10.1.15)

Using the definition

µixc(ρ) :=
∂

∂ρ

{
ρǫixc(ρ)

}
= ǫixc(ρ) + ρ

∂

∂ρ
ǫixc for i = P, F (10.1.16)
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Figure 10.1: Spin polarization interpolation function f(ζ) as given by equation
(10.1.14).

as well as the derivative

(zσ − ζ)
∂f(ζ)

∂ζ
= γ

(

(1 + zσζ)
1
3 − 1

)

− 4

3
f(ζ) , (10.1.17)

where

γ =
4

3

1

2
1
3 − 1

(10.1.18)

we thus get the result

vxc,σ(ρ, ζ) = µPxc(ρ) +
[
µFxc(ρ) − µPxc(ρ)

]
f(ζ)

+
[
ǫFxc(ρ) − ǫPxc(ρ)

]
[

γ
(

(1 + zσζ)
1
3 − 1

)

− 4

3
f(ζ)

]

(10.1.19)

for the spin interpolation of the exchange-correlation potential.

The first approach to modelling the energy density and potential goes back
to Kohn, Sham and Gaspár (KSG), who ignored any contribution due to cor-
relations and specified the exchange energy density as

ǫPx (ρ) = −3e2kF
4π

= −3e2

4π
(3π2ρ)

1
3 , (10.1.20)

where kF is the Fermi wave vector. Following common practice we express the
density in terms of the density parameter rS as

4π

3
r3S =

1

ρ
. (10.1.21)
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For later use we note

ρ
drs
dρ

= −1

3

(
3

4πρ

) 1
3

= −1

3
rS . (10.1.22)

With our choice of atomic units, especially with e2 = 2, we thus obtain

ǫPx (ρ) = −3(
3ρ

8π
)

1
3 = − ǫ0x

rS
, (10.1.23)

where we have abbreviated

ǫ0x =
3

2π
(
9π

4
)

1
3 = 0.916330587 . (10.1.24)

The exchange energy density for the ferromagnetically saturated ground state
arises from the RPA scaling, equation (10.1.10), as

ǫFx (ρ) = 2
1
3 ǫPx (ρ) . (10.1.25)

From this we get

ǫFx (ρ)−ǫPx (ρ) = (2
1
3 −1)ǫPx (ρ) = −(2

1
3 −1)

ǫ0x
rS

= −0.238173608
1

rS
. (10.1.26)

Combining now equations (10.1.11), (10.1.14) and (10.1.26) we obtain the fol-
lowing result for the exchange energy density

ǫx(ρ, ζ) = ǫPx (ρ) + (2
1
3 − 1)ǫPx (ρ)f(ζ)

=
1

2
ǫPx (ρ)

[(
2ρ↑
ρ

) 4
3

+

(
2ρ↓
ρ

) 4
3

]

. (10.1.27)

In the last line we have added the alternative representation of the spin inter-
polation function f(ζ) as a sum over the two spin channels, which was already
given in equation (10.1.14). Since, according to equation (10.1.23), the param-
agnetic exchange energy density scales as ρ1/3, we may further write

ρǫx(ρ, ζ) =
1

2

[
2ρ↑ǫ

P
x (2ρ↑) + 2ρ↓ǫ

P
x (2ρ↓)

]
, (10.1.28)

and inserting this into Eq. (10.1.6) we obtain

Ex[ρ↑, ρ↓] =
∑

σ

∫

d3r ρσ(r)ǫ
P
x (2ρσ(r))

= −3e2

4π
(6π2)

1
3

∑

σ

∫

d3r ρ
4
3
σ (r)

=
1

2

[

Ex[2ρ↑] + Ex[2ρ↓]

]

. (10.1.29)
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We thus arrive at two alternative representation of the density weighted ex-
change energy density, ρǫx(ρ, ζ), as a single function, which is symmetric with
respect to exchange of spin up and down, or as a sum of contributions from
both spin directions, which comprises only the paramagnetic exchange energy
densities. This is where the RPA scaling (10.1.25) comes in again. The second
representation of the weighted exchange energy density will be used especially
in connection with the generalized gradient approximation to be presented in
section 10.3.

From the previous specifications of the energy density we are finally in a
position to derive

µix(ρ) =
∂

∂ρ

{
ρǫix(ρ)

}
= ǫix(ρ) + ρ

∂ǫix(ρ)

∂ρ
=

4

3
ǫix(ρ) for i = P, F ,

(10.1.30)
which, when combined with equation (10.1.19), results in the following expres-
sion for the exchange potential

vx,σ(ρ, ζ) =
4

3
ǫPx (ρ) + γ

[
ǫFx (ρ) − ǫPx (ρ)

] (

(1 + zσζ)
1
3 − 1

)

=
4

3
ǫPx (ρ)(1 + zσζ)

1
3

=
4

3
ǫPx (ρ)

(
2ρσ
ρ

) 1
3

,

= µPx (ρ)

(
2ρσ
ρ

) 1
3

= µPx (2ρσ) . (10.1.31)

Here we have used the RPA scaling (10.1.10), equation (10.1.26) as well as the
identities (10.1.4) and (10.1.18). We have furthermore in the last line expressed
the spin dependent exchange potential in terms of the paramagnetic potential
in close analogy to equation (10.1.28). Of course, the same results is obtained
from combining equations (10.1.7), (10.1.28), and (10.1.30),

vx,σ(ρ↑, ρ↓) =

[
∂

∂ρσ
{ρǫx(ρ↑, ρ↓)}

]

ρσ=ρσ(r)

=

[
∂

∂ρ

{
ρǫPx (ρ)

}
]

ρ=2ρσ(r)

= µPx (2ρσ) . (10.1.32)

The previous expressions for the exchange energy density and potential as
given by Kohn, Sham and Gaspár are common to all the density functionals
described below, which, hence, deviate only with respect to their modelling
of the correlation energy density. Before entering a more detailed discussion
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of the latter we note, however, that in all schemes the contributions due to
exchange and correlation add to each other,

ǫxc(ρ, ζ) = ǫx(ρ, ζ) + ǫc(ρ, ζ)

=
1

2
ǫPx (ρ)

[

(
2ρ↑
ρ

)
4
3 + (

2ρ↓
ρ

)
4
3

]

+ǫPc (ρ) +
[
ǫFc (ρ) − ǫPc (ρ)

]
f(ζ) . (10.1.33)

Here we used the spin interpolation formula (10.1.11) as well as the RPA scaling
as inherent in equations (10.1.10) and (10.1.25). Contributions from exchange
and correlation add up also in the non-spin-polarized and fully spin-polarized
potential as given by equation (10.1.16) as well as in the spin-interpolated
potential and, using equations (10.1.4), (10.1.19) and (10.1.31), we obtain the
result

vxc,σ(ρ, ζ) = vx,σ(ρ, ζ) + vc,σ(ρ, ζ)

=
4

3
ǫPx (ρ)

(
2ρσ
ρ

) 1
3

+ µPc (ρ) +
[
µFc (ρ) − µPc (ρ)

]
f(ζ)

+
[
ǫFc (ρ) − ǫPc (ρ)

]
[

γ
(

(1 + zσζ)
1
3 − 1

)

− 4

3
f(ζ)

]

=

[
4

3
ǫPx (ρ) + γ

(
ǫFc (ρ) − ǫPc (ρ)

)
](

2ρσ
ρ

) 1
3

+µPc (ρ) − γ
(
ǫFc (ρ) − ǫPc (ρ)

)

+

[

µFc (ρ) − µPc (ρ) − 4

3

(
ǫFc (ρ) − ǫPc (ρ)

)
]

f(ζ)

=

[
4

3
ǫPx (ρ) + νc(ρ)

](
2ρσ
ρ

) 1
3

+ µPc (ρ) − νc(ρ) + τc(ρ)f(ζ) ,

(10.1.34)

where in the last step we have abbreviated

νc(ρ) = γ
(
ǫFc (ρ) − ǫPc (ρ)

)
, (10.1.35)

τc(ρ) = µFc (ρ) − µPc (ρ) − 4

3

(
ǫFc (ρ) − ǫPc (ρ)

)
. (10.1.36)

In this context it should again be noted that for the paramagnetic and the
saturated ferromagnetic ground state the correlation potential trivially reduces
to µPc (rS) and µFc (rS), respectively.

One of the most used parametrizations of the correlation energy density
was first suggested by Hedin and Lundqvist (HL) [75], who, however, did not
deal with the spin-polarized ground state. This was made up for lateron by von
Barth and Hedin (vBH) [17], who proposed to use the ρ-dependence of ǫPc (ρ)
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as given by Hedin and Lundqvist also for ǫFc (ρ). To be specific, von Barth and
Hedin modelled the correlation energy density by

ǫic(ρ) = −ciG
(
rS
ri

)

for i = P, F , (10.1.37)

where

G(x) = (1 + x3) ln(1 +
1

x
) +

x

2
− x2 − 1

3
. (10.1.38)

In order to derive the correlation potential we first note

µic =
∂

∂ρ

{
ρǫic
}

= ǫic(ρ) + ρ
∂x

∂ρ

∂ǫic
∂x

for i = P, F , (10.1.39)

where

x =
rS
ri

=
1

ri

(
3

4πρ

) 1
3

, ρ
∂x

∂ρ
= −1

3
x . (10.1.40)

Taking the derivative of G with respect to x,

dG(x)

dx
= 3x2 ln(1 +

1

x
) − 1 + x3

x+ x2
+

1

2
− 2x , (10.1.41)

we obtain

µic(ρ) = −ciG(x) +
1

3
cix

dG(x)

dx

= −ci ln
(

1 +
1

x

)

= −ci ln(1 +
ri
rS

) for i = P, F , (10.1.42)

Still, the scheme suggested by Hedin and Lundqvist as well as von Barth
and Hedin depends on the four parameters rP , rF , cP , and cF . Different values
for these parameters have been proposed, which are listed in Table 10.1. The

Scheme rP rF cP cF

HL / MJW 21.0 52.91668 0.045 0.0225

HL / JMW 21.0 26.4583 0.045 0.0357

vBH 30.0 75.0 0.0504 0.0254

GLW 11.4 15.9 0.0666 0.0406

Table 10.1: Parameters for the Hedin-Lundqvist parametrization of the corre-
lation energy density.
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first two lines give the parameters for the non-spin-polarized case as proposed
by Hedin and Lundqvist as well as the parameters rF and cF as arising from
different scalings of rP and cP . While Moruzzi, Janak and Williams (MJW)
[117] used the exact RPA scaling,

rF = 2
4
3 rP , cF =

1

2
cP , (10.1.43)

the parameter set proposed by von Barth and Hedin obeys this scaling approx-
imately within an accuracy of 1%.

Another set was given by Gunnarsson, Lundqvist and Wilkins (GLW) [67],
who, while still using the spin interpolation formula (10.1.11) for the exchange-
correlation energy, proposed a different spin interpolation for the exchange-
correlation potential,

vxc,σ(ρ, ζ) =
4

3
ǫPx (ρ) + µPc (ρ) − 4

9
ǫ0x
δ̄(ρ)

rS

zσζ

1 + γ̄zσζ
, (10.1.44)

where

δ̄(ρ) = 1 − 0.036rS − 1.36rS
1 + 10rS

, (10.1.45)

and γ̄ = 0.297 [67] (Eq. (10.1.45) has been erraneously given with a plus sign
in front of the last term in a later publication by Gunnarsson and Lundqvist
[66]). Since we have from equation (10.1.3)

ζ =

(
2ρ↑
ρ

− 1

)

= −
(

2ρ↓
ρ

− 1

)

, (10.1.46)

hence

zσζ =

(
2ρσ
ρ

− 1

)

for σ =↑, ↓ , (10.1.47)

we arrive at the result

vxc,σ(ρ, ζ) =
4

3
ǫPx (ρ) + µPc (ρ) − 4

9
ǫ0x
δ̄(ρ)

rS

(
2ρσ

ρ − 1
)

1 − γ̄ + γ̄ 2ρσ

ρ

. (10.1.48)

Janak, Moruzzi and Williams (JMW) [83] lateron adopted the same density and
spin dependence of the energy density and potential as Gunnarsson, Lundqvist
and Wilkins. They used, however, the parameters rP and cP as given by Hedin
and Lundqvist and suggested to derive the parameters for the correlation energy
density of the fully spin-polarized ground state from the scaling

rF = 2
1
3 rP , cF = 2−

1
3 cP . (10.1.49)

While all the previous schemes employed the same functional relationship
for the energy density, albeit with different values for the parameters, the work
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of Ceperley and Alder marked the starting point for new parametrizations [31,
30]. These authors performed Monte Carlo simulations for the homogeneous
electron gas, which results lateron gave rise to the parametrizations by Perdew
and Zunger (PZ) [136] as well as by Vosko, Wilk and Nusair (VWN) [167].
However, as already mentioned these new parametrizations did not affect the
exchange energy density and potential, which were incorporated as outlined
above.

Perdew and Zunger [136] used a two-point Padé approximant to fit the
correlation energy density to the Monte Carlo data by Ceperley and Alder. In
doing so they furthermore distinguished the high and low density range and
proposed the following form for the correlation energy density

ǫic(ρ) =

{

γi
(
1 + βi1

√
rS + βi2rS

)−1
for rS ≥ 1

Ai ln rS +Bi + CirS ln rS +DirS for rS < 1
for i = P, F .

(10.1.50)
The parameters given by Perdew and Zunger are listed in Table 10.2. Note that

i γi βi1 βi2 Ai Bi Ci Di

P -0.2846 1.0529 0.3334 0.0622 -0.096 0.0040 -0.0232

F -0.1686 1.3981 0.2611 0.0311 -0.0538 0.0014 -0.0096

Table 10.2: Parameters for the parametrization of the correlation energy den-
sity as given by Perdew and Zunger [136].

the values for γi, Ai, Bi, Ci, and Di are twice as large as those originally listed
by Perdew and Zunger, since these authors used Hartree atomic units instead
of Rydberg atomic units. From equation (10.1.50) we obtain the following
expressions for the correlation potential

µic = ǫic(ρ) + ρ
∂rS
∂ρ

∂ǫic
∂rS

= ǫic(ρ) −
1

3
rS
∂ǫic
∂rS

=

{

γi
(
1 + 7

6β
i
1

√
rS + 4

3β
i
2rS
) (

1 + βi1
√
rS + βi2rS

)−2
for rS ≥ 1

Ai ln rS + (Bi − 1
3Ai) + 2

3CirS ln rS + 1
3 (2Di − Ci)rS for rS < 1

=

{
4(ǫic)

2

3γi

(
3
4 + 7

8β
i
1

√
rS + βi2rS

)
for rS ≥ 1

ǫic − 1
3 [Ai + (Ci(1 + ln rS) +Di) rS ] for rS < 1

for i = P, F . (10.1.51)

Finally, in order to arrive at a full specification of the exchange-correlation en-
ergy density and potential, we have to feed the formulas (10.1.50) and (10.1.51)
for the unpolarized and fully polarized correlation energy density and potential
into the spin interpolation formulas (10.1.33) and (10.1.34).
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Yet another parametrization of the Monte Carlo results by Ceperley and
Alder was proposed by Vosko, Wilk and Nusair [167], who likewise performed a
Padé approximation. This parametrization has the virtue of being continuous
over rS . Following Vosko et al., Painter [122] and MacLaren et al. [107], we
note

ǫic(ρ) = Ai

[

ln
x2

Xi(x)
+

2bi
Qi

Fi(x)

− bix0,i

Xi(x0,i)

(

ln
(x − x0,i)

2

Xi(x)
+

2(bi + 2x0,i)

Qi
Fi(x)

)]

= Ai

[

ln
x2

Xi(x)
− bix0,i

Xi(x0,i)
ln

(x− x0,i)
2

Xi(x)

+
2bi

QiXi(x0,i)

(

Xi(x0,i) − x0,i(bi + 2x0,i)

)

Fi(x)

]

for i = P, F, S , (10.1.52)

where x =
√
rS and

Xi(x) = x2+bix+ci , Qi =
√

4ci − b2i , Fi(x) = arctan
Qi

2x+ bi
, (10.1.53)

and the parametersAi, bi, ci, and x0,i are listed in Table 10.3. The parametriza-

i Ai bi ci x0,i

P 2(1 − ln 2)/π2 ≈ 0.0621814 3.72744 12.9352 -0.10498

F (1 − ln 2)/π2 ≈ 0.0310907 7.06042 18.0578 -0.32500

S −1/(3π2) ≈ −0.0337737 1.13107 13.0045 -0.00475840

Table 10.3: Parameters for the parametrization of the correlation energy den-
sity and the spin stiffness as given by Vosko, Wilk and Nusair [167].

tion (10.1.52) is valid for the paramagnetic and the saturated ferromagnetic
ground state. In addition, it holds for the spin stiffness (subscript S), which
will be discussed below. For later use we note

dXi(x)

dx
= 2x+ bi ,

dFi(x)

dx
= − Qi

2Xi(x)
(10.1.54)

The correlation potential for the paramagnetic and saturated ferromagnetic
ground state is then calculated along the lines of equation (10.1.16) as

µic(ρ) = ǫic(ρ) + ρ
∂

∂ρ
ǫic(ρ)
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= ǫic(ρ) + ρ
∂rS
∂ρ

∂x

∂rS

∂ǫic
∂x

= ǫic(ρ) −
x

6

∂ǫic
∂x

for i = P, F, S ,

(10.1.55)

where we have used equation (10.1.22). For the derivative of the energy density
with respect to x we note the following detailed derivation

∂ǫic
∂x

= Ai

[

Xi(x)

x2

2xXi(x) − x2(2x+ bi)

X2
i (x)

− bix0,i

Xi(x0,i)

Xi(x)

(x− x0,i)2
2(x− x0,i)Xi(x) − (x− x0,i)

2(2x+ bi)

X2
i (x)

− 2bi
QiXi(x0,i)

(Xi(x0,i) − x0,i(bi + 2x0,i))
Qi

2Xi(x)

]

= Ai

[

2

x
−
(

1 − bix0,i

Xi(x0,i)

)
2x+ bi
Xi(x)

− 2bix0,i

(x− x0,i)Xi(x0,i)

−
(

1 − bi + 2x0,i

Xi(x0,i)
x0,i

)
bi

Xi(x)

]

= Ai

[

2

x
− 2x+ 2bi

Xi(x)
+ bix0,i

2x+ 2x0,i + 2bi
Xi(x0,i)Xi(x)

− 2bix0,i

(x− x0,i)Xi(x0,i)

]

= 2Ai

[

ci
xXi(x)

+ bix0,i
(x+ x0,i + bi)(x− x0,i) −Xi(x)

(x − x0,i)Xi(x0,i)Xi(x)

]

= 2Ai

[

ci
xXi(x)

− bix0,i

(x− x0,i)Xi(x)

]

= 2Ai

[

ci(x− x0,i) − bix0,ix

x(x− x0,i)Xi(x)

]

=
2Ai
x

cix0,i + (bix0,i − ci)x

cix0,i + (bix0,i − ci)x+ (x0,i − bi)x2 − x3

=
2Ai
x

1 + b1,ix

1 + b1,ix+ b2,ix2 + b3,ix3
for i = P, F, S , (10.1.56)

where

b1,i =
bix0,i − ci
cix0,i

, b2,i =
x0,i − bi
cix0,i

, b3,i = − 1

cix0,i
. (10.1.57)

Combining equations (10.1.55) and (10.1.56) we thus write down the result

µic(ρ) = ǫic(ρ) −
Ai
3

1 + b1,ix

1 + b1,ix+ b2,ix2 + b3,ix3
for i = P, F, S ,

(10.1.58)
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which, taken together with the spin interpolation formula (10.1.34), provides a
full specification of the correlation potential.

However, in addition to the previous parametrization for the non-spin-
polarized and the fully spin-polarized ground state, Vosko, Wilk and Nusair
proposed a new spin interpolation formula for the correlation energy density,
which they found superiour to the formula (10.1.14) given by von Barth and
Hedin. While still using this spin interpolation for the exchange energy, Vosko
et al. wrote for the correlation energy density

ǫc(ρ, ζ) = ǫPc (ρ) + ∆ǫc(ρ, ζ) , (10.1.59)

where

∆ǫc(ρ, ζ) = ǫSc (ρ)
f(ζ)

f ′′(0)

[
1 + β(ρ)ζ4

]
. (10.1.60)

Here, ǫSc (ρ) is the spin stiffness, for which Vosko et al. gave the same parametriza-
tion (10.1.52) as for the non-spin-polarized and fully polarized correlation en-
ergy density. However, while Vosko et al. used the symbol αc(ρ) for the spin
stiffness we here prefer ǫSc (ρ) for consistency in writing. The parameters for
the spin stiffness are likewise included in Table 10.3.

The function β(ρ) is evaluated from the condition that the correlation en-
ergy density ǫc(ρ, ζ) matches ǫFc (ρ) in the saturated ferromagnetic ground state,
hence

∆ǫc(ρ, 1) = ǫFc (ρ) − ǫPc (ρ) = ǫSc (ρ)
1

f ′′(0)
[1 + β(ρ)] , (10.1.61)

as

β(ρ) = f ′′(0)
ǫFc (ρ) − ǫPc (ρ)

ǫSc (ρ)
− 1 . (10.1.62)

Finally combining equations (10.1.59), (10.1.60), and (10.1.62) and inserting
the identity f ′′(0) = γ/3 we arrive at a complete prescription of the correlation
energy density as

ǫc(ρ, ζ) = ǫPc (ρ) +
3

γ
ǫSc (ρ)f(ζ) +

[

ǫFc (ρ) − ǫPc (ρ) − 3

γ
ǫSc (ρ)

]

ζ4f(ζ)

= ǫPc (ρ) +
3

γ
ǫSc (ρ)

(
1 − ζ4

)
f(ζ) +

[
ǫFc (ρ) − ǫPc (ρ)

]
ζ4f(ζ) ,

(10.1.63)

which replaces the spin interpolation formula (10.1.33) given by von Barth
and Hedin. In order to derive the corresponding formula for the correlation
potential we go back to equation (10.1.9). Combining it with the identities
(10.1.16) and (10.1.17) we obtain

vc,σ(ρ, ζ) = µPc (ρ) +
3

γ
µSc (ρ)

(
1 − ζ4

)
f(ζ) +

[
µFc (ρ) − µPc (ρ)

]
ζ4f(ζ)
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+

[
3

γ
ǫSc (ρ)

(
1 − ζ4

)
+
[
ǫFc (ρ) − ǫPc (ρ)

]
ζ4

]

[

γ
(

(1 + zσζ)
1
3 − 1

)

− 4

3
f(ζ)

]

+

[

ǫFc (ρ) − ǫPc (ρ) − 3

γ
ǫSc (ρ)

]

(zσ − ζ) 4ζ3f(ζ)

= γ
(
ǫFc (ρ) − ǫPc (ρ)

)
ζ4

(
2ρσ
ρ

) 1
3

+ 3ǫSc (ρ)
(
1 − ζ4

)
(

2ρσ
ρ

) 1
3

+µPc (ρ) − γ
(
ǫFc (ρ) − ǫPc (ρ)

)
ζ4 − 3ǫSc (ρ)

(
1 − ζ4

)

+

[

µFc (ρ) − µPc (ρ) − 4

3

(
ǫFc (ρ) − ǫPc (ρ)

)
]

ζ4f(ζ)

+
3

γ

[

µSc (ρ) − 4

3
ǫSc (ρ)

]
(
1 − ζ4

)
f(ζ)

+4

[

ǫFc (ρ) − ǫPc (ρ) − 3

γ
ǫSc (ρ)

]

zσζ
3 (1 − zσζ) f(ζ) .(10.1.64)

Using the identity (10.1.47) as well as the abbreviations (10.1.35) and (10.1.36),
we arrive at the following final result for the exchange-correlation potential

vxc,σ(ρ, ζ) =

[
4

3
ǫPx (ρ) + γ

(
ǫFc (ρ) − ǫPc (ρ)

)
ζ4 + 3ǫSc (ρ)

(
1 − ζ4

)
](

2ρσ
ρ

) 1
3

+µPc (ρ) − γ
(
ǫFc (ρ) − ǫPc (ρ)

)
ζ4 − 3ǫSc (ρ)

(
1 − ζ4

)

+

[

µFc (ρ) − µPc (ρ) − 4

3

(
ǫFc (ρ) − ǫPc (ρ)

)
]

ζ4f(ζ)

+
3

γ

[

µSc (ρ) − 4

3
ǫSc (ρ)

]
(
1 − ζ4

)
f(ζ)

+4

[

ǫFc (ρ) − ǫPc (ρ) − 3

γ
ǫSc (ρ)

](

2 − 2ρσ
ρ

)(
2ρσ
ρ

− 1

)3

f(ζ)

=

[
4

3
ǫPx (ρ) + νc(ρ)ζ

4 + 3ǫSc (ρ)
(
1 − ζ4

)
](

2ρσ
ρ

) 1
3

+µPc (ρ) − λc(ρ)

+τc(ρ)ζ
4f(ζ) +

3

γ

[

µSc (ρ) − 4

3
ǫSc (ρ)

]
(
1 − ζ4

)
f(ζ)

+
4

γ

[
νc(ρ) − 3ǫSc (ρ)

]
(

2 − 2ρσ
ρ

)(
2ρσ
ρ

− 1

)3

f(ζ) ,

(10.1.65)

where in the last step we have defined

λc(ρ) = νc(ρ)ζ
4 + 3ǫSc (ρ)

(
1 − ζ4

)
. (10.1.66)

Equation (10.1.65) replaces the spin interpolation formula (10.1.34). Again we
point out that the potential trivially reduces to µPc (rS) and µFc (rS) for ζ = 0
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and ζ = 1, respectively.

Finally, a parametrization, which turned out to give similar results to that
of Vosko, Wilk and Nusair, was presented by Perdew and Wang [135]. They
proposed for the correlation energy density the relation

ǫic(ρ) = −2Ai
(
1 + αix

2
)
ln

(

1 +
1

Qi

)

for i = P, F, S , (10.1.67)

where x =
√
rS and

Qi = 2Ai
(
βi1x+ βi2x

2 + βi3x
3 + βi4x

4
)

, (10.1.68)

hence,

dQi
dx

= 2Ai
(
βi1 + 2βi2x+ 3βi3x

2 + 4βi4x
3
)

=: Q′
i . (10.1.69)

The parameters arising from fitting the functional relationship (10.1.67) to the
Monte Carlo data by Ceperley and Alder are listed in Table 10.4. Note that

i Ai αi βi1 βi2 βi3 βi4

P 2(1 − ln 2)/π2 0.21370 3.79785 1.79380 0.81910 0.24647

F (1 − ln 2)/π2 0.20548 7.05945 3.09885 1.68310 0.312585

S −1/(3π2) 0.11125 -5.1785 -1.81155 -0.44013 -0.248355

Table 10.4: Parameters for the parametrization of the correlation energy den-
sity and the spin stiffness as given by Perdew and Wang [135].

the parameters Ai are identical to those given by Vosko, Wilk and Nusair (see
Table 10.3) and that the values for Ai and βij , j = 1, . . . , 4 are by a factor
two larger and smaller, respectively than those originally listed by Perdew and
Wang due to the use of Hartree atomic units by these authors. In order to
calculate the correlation potential we derive from equation (10.1.67)

dǫic
dx

= −4Aiαix ln

(

1 +
1

Qi

)

+ 2Ai
(
1 + αix

2
) Q′

i

Qi +Q2
i

for i = P, F, S ,

(10.1.70)
and, inserting this into the identity (10.1.55), we obtain the result

µic(ρ) = ǫic(ρ) +
2

3
Aiαix

2 ln

(

1 +
1

Qi

)

−2

3
A2
i

(
1 + αix

2
) βi1x+ 2βi2x

2 + 3βi3x
3 + 4βi4x

4

Qi +Q2
i

for i = P, F, S , (10.1.71)

which, according to Perdew and Wang, like the correlation energy density above
has to be combined with the spin interpolation formula given by Vosko, Wilk
and Nusair [135] with the parameters given in Table 10.4 for the spin stiffness.
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10.2 The adiabatic connection

Having described the local density approximation and given a number of para-
metrizations for its practical use, we might still like to look behind the scene
and try to get deeper insight in the errors coming with it. In particular, we
might still wonder why the local density approximation has proven to give ex-
cellent results in numerous cases. To enlighten this point a little, we turn to a
different approach, which was thoroughly discussed by Harris and Jones [71],
Gunnarsson and Lundqvist [66], Langreth and Perdew [99], as well as Harris
[70] (the interested reader is also referred to an overview by Callaway and March
[25]). These authors derived an exact expression for the exchange-correlation
energy functional based on the pair-correlation function and proved that the
local density approximation is just a special modelling of this function, which,
however, fulfils an important sum rule.

In the course of the subsequent derivations we will make use of the Hellmann-
Feynman theorem [77, 53], which is of a very general nature and applies to a
vast number of situations (see also the book by Eschrig [42]). To be specific,
we start out from a Hamiltonian, which is assumed to depend on a parameter
λ. Of course, all eigenfunctions and eigenvalues will then also depend on this
parameter and the eigenvalues are given by

εn(λ) =
〈ψn(λ)|H(λ)|ψn(λ)〉

〈ψn(λ)|ψn(λ)〉 . (10.2.1)

Here n labels different eigenstates. According to the theorem by Hellmann and
Feynman any eigenstate then fulfils the relation

∂εn(λ)

∂λ
=

〈ψn(λ)|∂H(λ)
∂λ |ψn(λ)〉

〈ψn(λ)|ψn(λ)〉 . (10.2.2)

The proof is easily performed. Using the abbreviation

Nn(λ) = 〈ψn(λ)|ψn(λ)〉 (10.2.3)

for the norm of each eigenfunction as well as Eq. (10.2.1) we write

∂εn(λ)

∂λ

=

(
∂

∂λ

1

Nn(λ)

)

〈ψn(λ)|H(λ)|ψn(λ)〉 +
1

Nn(λ)
〈∂ψn(λ)

∂λ
|H(λ)|ψn(λ)〉

+
1

Nn(λ)
〈ψn(λ)|

∂H(λ)

∂λ
|ψn(λ)〉 +

1

Nn(λ)
〈ψn(λ)|H(λ)|∂ψn(λ)

∂λ
〉

=

(

− 1

(Nn(λ))2
∂Nn(λ)

∂λ

)

εn(λ)Nn(λ)

+
1

Nn(λ)
〈ψn(λ)|

∂H(λ)

∂λ
|ψn(λ)〉 + εn(λ)

1

Nn(λ)

∂Nn(λ)

∂λ

=
1

Nn(λ)
〈ψn(λ)|∂H(λ)

∂λ
|ψn(λ)〉 , (10.2.4)
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which is just Eq. (10.2.2). In passing, we note the integrated Hellmann-Feyman
theorem

εn(λ2) − εn(λ1) =

∫ λ2

λ1

dλ
〈ψn(λ)|∂H(λ)

∂λ |ψn(λ)〉
〈ψn(λ)|ψn(λ)〉 , (10.2.5)

which follows directly from Eq. (10.2.2).

After these preparations we turn to the aforementioned issue of obtaining
more insight into the local density approximation. Actually, our discussion will
even go further back to the basics of the Kohn-Sham equations. In Sec. 9.4
we established a close connection between an interacting electron system with
density ρ and a corresponding interaction-free reference system with exactly
the same density. The relationship between these two systems is at the center
of the adiabatic connection. In order to be concrete, we aim at the identity
(9.4.16), which proposes a different splitting of the functional G[ρ] into the
kinetic energy functional Ts[ρ] and the exchange-correlation functional Exc[ρ].
Combining Eq. (9.4.16) with Eq. (9.3.14) we write the exchange-correlation
functional explicitly as

Exc[ρ] = FLL[ρ] − Ts[ρ] −
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′| , (10.2.6)

with the Levy-Lieb functional defined by Eq. (9.3.9), i.e.

FLL[ρ] = inf
|Ψ〉∈S(ρ)

〈Ψ|Hel,kin({ri}) +Hel−el({ri})|Ψ〉 . (10.2.7)

In the adiabatic connection the latter definition is generalized to an arbitrary
strength of the electron-electron interaction. We note

FLL,λ[ρ] = inf
|Ψ〉∈S(ρ)

〈Ψ|Hel,kin({ri}) + λHel−el({ri})|Ψ〉 , (10.2.8)

where the electron-electron interaction is scaled by a factor λ. Of course, for
λ = 1, the so generalized functional (10.2.8) reduces to the standard Levy-Lieb
functional of the interacting electron system. In contrast, for λ = 0, we arrive
at the non-interacting system and obtain

FLL,λ=0[ρ] = Ts[ρ] . (10.2.9)

To conclude, by varying the parameter λ we may continuously switch on the
electron-electron interaction and thus make a connection between the fully in-
teracting system and the non-interacting reference system introduced by Kohn
and Sham. It is this explicit relationship, which makes the adiabatic connec-
tion an appealing approach to understanding the Kohn-Sham method as well
as the local density approximation built on it.
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With these notions at hand we are able to note for the exchange-correlation
functional

Exc[ρ] = FLL,λ=1[ρ] − FLL,λ=0[ρ] −
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r− r′|

=

∫ 1

0

dλ
∂FLL,λ[ρ]

∂λ
− 1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r − r′| ,

(10.2.10)

which is, except for the Hartree functional, i.e. the contribution arising from
the classical Coulomb interaction, an integral of the derivative of the Levy-Lieb
functional over the coupling strength.

In order to prepare for the following derivations we rewrite Eq. (10.2.8) as

FLL,λ[ρ] = 〈Ψρ
λ|Hel,kin({ri}) + λHel−el({ri})|Ψρ

λ〉 , (10.2.11)

where |Ψρ
λ〉 is just that wave function, which, for each λ, minimizes the func-

tional under the constraint to yield the correct density. The latter is, of course,
the same for all values of λ. The constraint on the wave function can be ex-
plicitly formulated as

ρ(r) = 〈Ψρ
λ|ρ̂(r)|Ψ

ρ
λ〉 = 〈Ψρ

λ|
∑

i

δ(r − ri)|Ψρ
λ〉 . (10.2.12)

Here we have used the definition (5.7.11) of the density operator. Calculating
the Levy-Lieb functional for arbitrary λ then corresponds to minimizing the
functional

FLL,λ[ρ] +

∫

d3r

(

vλ(r) −
Eλ
N

)

〈Ψρ
λ|ρ̂(r)|Ψ

ρ
λ〉

= 〈Ψρ
λ|Hel,kin({ri}) + λHel−el({ri}) +

∑

i

vλ(ri) − Eλ|Ψρ
λ〉 ,

(10.2.13)

where the position dependent Lagrange multiplier vλ(r)−Eλ/N was introduced
to ensure the constraint (5.7.12). The variation of Eq. (10.2.13) defines the
eigenvalue problem of a Hamiltonian

Hλ({ri}) = Hel,kin({ri}) + λHel−el({ri}) +
∑

i

vλ(ri) (10.2.14)

with eigenvalues Eλ,

Hλ({ri})|Ψρ
λ〉

=

(

Hel,kin({ri}) + λHel−el({ri}) +
∑

i

vλ(ri)

)

|Ψρ
λ〉

= Eλ|Ψρ
λ〉 . (10.2.15)
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At this point it is instructive to have a closer look at the Hamiltonian Hλ as
given by Eq. (10.2.14). Obviously, the additional potential

∑

i vλ(ri), which we
orginally introduced as Lagrange parameter, is a multiplicative single-particle
potential. It will be zero in case of λ = 1, when the full electron-electron
interaction is “switched on”. In contrast, on reducing the electron-electron
interaction this potential comes into play and eventually takes over the role of
the electron-electron interaction. In other words, on decreasing λ we gradually
replace the electron-electron interaction, a two-particle operator, by the single-
particle potential. In doing so, we guarantee conservation of the local charge
density.

According to the Hellmann-Feynman theorem the eigenvalues in Eq. (10.2.15)
fulfil the identity

∂Eλ
∂λ

= 〈Ψρ
λ|
∂Hλ

∂λ
|Ψρ

λ〉

= 〈Ψρ
λ|Hel−el({ri})|Ψρ

λ〉 + 〈Ψρ
λ|
∂

∂λ

∑

i

vλ(ri)|Ψρ
λ〉

= 〈Ψρ
λ|Hel−el({ri})|Ψρ

λ〉 +

∫

d3r ρ(r)
∂

∂λ
vλ(r) . (10.2.16)

Comparing this to

Eλ = 〈Ψρ
λ|Hel,kin({ri}) + λHel−el({ri}) +

∑

i

vλ(ri)|Ψρ
λ〉

= FLL,λ[ρ] + 〈Ψρ
λ|
∑

i

vλ(ri)|Ψρ
λ〉 , (10.2.17)

which follows directly from Eq. (10.2.15), we are able to note the intermediate
result

∂FLL,λ[ρ]

∂λ
= 〈Ψρ

λ|Hel−el({ri})|Ψρ
λ〉 . (10.2.18)

Finally, inserting this into Eq. (10.2.10) we obtain

Exc[ρ] =

∫ 1

0

dλ 〈Ψρ
λ|Hel−el({ri})|Ψρ

λ〉

−1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r− r′|

=

∫ 1

0

dλ
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
Pσσ′,λ(r; r

′)

|r − r′|

−1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρσ(r)ρσ′ (r′)

|r− r′|

= −
∫ 1

0

dλ
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
|ρσσ′,λ(r; r

′)|2
|r − r′| ,

(10.2.19)
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where we have used the expectation value of the Hamiltonian comprising the
electron-electron interaction in the same manner as in Eq. (9.3.13). Finally,
using the identities (5.7.31) and (5.7.33) for the pair-correlation function, we
may still rewrite the result (10.2.19) as

Exc[ρ] =
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρ(r)ρ(r′)

|r − r′|

∫ 1

0

dλ
[
gσσ′,λ(r; r

′) − 1
]

=
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρ(r)ρ(r′)

|r − r′|
[
g̃σσ′(r; r′) − 1

]
, (10.2.20)

where in the last step we have used the definition

g̃σσ′ (r; r′) =

∫ 1

0

dλ gσσ′,λ(r; r
′) (10.2.21)

of the integrated pair-correlation function. Finally, defining the socalled exchange-
correlation hole by

ρxc,σσ′(r; r′) := ρσ′(r′)
[
g̃σσ′ (r; r′) − 1

]
, (10.2.22)

we arrive at the important expression

Exc[ρ] =
1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρ(r)ρxc,σσ′ (r; r′)

|r − r′| , (10.2.23)

which suggests to interpret the exchange-correlation functional as arising from
the Coulomb interaction of the electron density with the exchange-correlation
hole.

The foregoing considerations have several important consequences: First
of all, we have by now established a one-to-one correspondence between the
exchange-correlation energy functional and the pair-correlation functional or
the exchange-correlation hole. For this reason, we may view any approxima-
tion to Exc alternatively as an approximation to the pair-correlation function
or to the exchange-correlation hole. Of course, this will allow for improved
interpretation of approximations. We will come to this point below.

Second, from the definition of the function Pσσ′ (r; r′), which, when inte-
grated over both spatial coordinates and summed over both spins gives the
probability of finding one particle somewhere and another particle somewhere
else, hence, results in N(N − 1), we obtain the important sum rule

∑

σ′

∫

d3r′ ρxc,σσ′(r; r′) = −1 . (10.2.24)

Finally, we observe that the exchange-correlation energy functional depends
only on the spherical average of the exchange-correlation hole,

ρSAxc,σσ′(r; |r − r′|) =
1

4π

∫

dr̂′ ρxc,σσ′(r; r′) (10.2.25)
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via

Exc[ρ] =
1

2

e2

4πǫ0

∑

σσ′

∫

d3r ρ(r)

∫

ds 4πsρSAxc,σσ′(r; s) , (10.2.26)

where we have set s = |r − r′|.

Using the previous expressions as well as the relationship between the
exchange-correlation energy and the pair-correlation function we may now turn
to approximations. Of course, our first choice is the local density approxima-
tion, which consists of replacing the exact function g̃σσ′(r; r′) by the corre-
sponding expression for the homogeneous electron gas. To be specific, we note
for the LDA

ρLDAxc,σσ′(r; r′) := ρσ(r)
[
g̃HEGσσ′ (r; r′, ρσ(r) − 1

]
, (10.2.27)

εxc[ρ] =
1

2

e2

4πǫ0

∫

d3r′
ρLDAxc,σσ′(r; r′)

|r − r′| , (10.2.28)

and

Exc[ρ] =
∑

σ

∫

d3r ρσ(r)εxc(ρ(r), ζ(r)) . (10.2.29)

With these expressions as well as Eq. (7.4.7) we arrive at two important obser-
vations. First, the exchange-correlation hole of the LDA is spherical symmetric.
Second, it does obay the sum rule (10.2.24).

10.3 Generalized gradient approximation

Despite the overwhelming success of the local density approximation, there
have still been attempts to improve it. The earliest approach was made by
Kohn and Sham themselves, who proposed to add a gradient correction term
to the exchange-correlation energy density similar to the von Weizsäcker cor-
rection to the Thomas-Fermi theory. However, attempts along these lines were
not convincing and in many cases the good agreement obtained from the lo-
cal density approximation was even spoiled. In recent years, this gave rise
to the development of more general schemes as e.g. the generalized gradient
approximation (GGA), which has proven very successful in particular for the
calculation of structural properties [134, 127, 133, 39, 130].

At the beginning of the discussion about gradient approximations we have
to become aware of and, at the same time, release an important assumption
underlying the parametrizations coming with the local density approximation
outlined in the previous section, namely the spin symmetry of the exchange-
correlation energy density. As mentioned in connection with the spin interpola-
tion formula, equation (10.1.14), both the function f(ζ) and the energy density
ǫxc(ρ, ζ) were constructed to be symmetric in ζ and, hence, to retain there
form under exchange of ρ↑ and ρ↓. This became also obvious from equation
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(10.1.27), where we have written the exchange energy density ǫx(ρ, ζ) both in
terms of the spin interpolation formula and as a sum of equal contributions
from both spins. Note that the latter can not be done for most parametriza-
tions of the correlation energy density. Yet, in the case of the exchange energy
density the splitting into contributions from each spin is essential for the gra-
dient correction to be discussed now. For this reason, we will from now on
work with the second representation of the exchange energy density given in
equation (10.1.27). As we have moreover discussed in connection with equa-
tions (10.1.28) and (10.1.29), the density weighted exchange energy density,
ρǫx(ρ, ζ) can be expressed in terms of the paramagnetic exchange energy den-
sity. Hence, we may concentrate on the spin-symmetric case first and only later
generalize the results to the spin-polarized ground state.

Within the generalized gradient approximation the paramagnetic exchange
energy density is written as

ǫP,GGAx (ρ, ξ) = ǫP,LDAx (ρ)F (ξ) , (10.3.1)

where

ξ =
|∇ρ(r)|
2kFρ(r)

=
|∇ρ(r)|

2(3π2ρ(r))1/3ρ(r)
(10.3.2)

is the scaled gradient of the electronic density and the function F (ξ) comprises
all the corrections due to the spatial variation of the electronic charge density.
As for the local density approximation several parametrizations for this function
have been proposed in the past. However, in order to keep our discussion of
the generalized gradient approximation as simple as possible we postpone an
explicit specification of the function F (ξ). Defining, in addition to equation
(10.3.2),

ξi =
1

2kFρ(r)

∂ρ(r)

∂ri
=

1

2(3π2ρ(r))1/3ρ(r)

∂ρ(r)

∂ri
(10.3.3)

we obtain

ξ =

(
∑

i

ξ2i

) 1
2

, hence,
∂ξ

∂ξi
=
ξi
ξ

(10.3.4)

and are thus prepared to write the paramagnetic exchange potential as the
variational derivative of the exchange energy,

µP,GGAx (ρ, ξ) =
∂

∂ρ

{
ρǫP,GGAx (ρ, ξ)

}
+
∂ξ

∂ρ

∂

∂ξ

{
ρǫP,GGAx (ρ, ξ)

}

−
∑

i

d

dri

∂

∂(2kFρξi)

{
ρǫP,GGAx (ρ, ξ)

}

= ǫP,GGAx (ρ, ξ) + ρ
∂ǫP,GGAx (ρ, ξ)

∂ρ

−4

3

ξ

ρ

∂

∂ξ

{
ρǫP,GGAx (ρ, ξ)

}
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−
∑

i

d

dri

1

2kFρ

∂ξ

∂ξi
ρ
∂ǫP,GGAx (ρ, ξ)

∂ξ

= ǫP,GGAx (ρ, ξ) + ρ
∂ǫP,GGAx (ρ, ξ)

∂ρ

−4

3
ξ2
{

1

ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ

}

−
∑

i

d

dri

1

2kF

ξi
ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ
. (10.3.5)

Here we have used the identiy

∂ξ

∂ρ
= −4

3

ξ

ρ
, (10.3.6)

which follows from equation (10.3.2). The total derivative with respect to ri is
expressed in terms of the partial derivatives,

d

dri
=

∂ρ

∂ri

∂

∂ρ
+
∑

j

∂ξj
∂ri

∂

∂ξj
+

∂

∂ri
, (10.3.7)

for which we use in addition

∑

j

∂ξj
∂ri

∂

∂ξj
=
∑

j

∂ξj
∂ri

∂ξ

∂ξj

∂

∂ξ
=
∑

j

ξj
ξ

∂ξj
∂ri

∂

∂ξ
=

∂ξ

∂ri

∂

∂ξ
. (10.3.8)

Inserting this into equation (10.3.5) we write for the potential

µP,GGAx (ρ, ξ)

= ǫP,GGAx (ρ, ξ) + ρ
∂ǫP,GGAx (ρ, ξ)

∂ρ
− 4

3
ξ2
{

1

ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ

}

−
∑

i

[

2kFρξi
∂

∂ρ
+
∂ξ

∂ri

∂

∂ξ
+

∂

∂ri

]
1

2kF

ξi
ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ
.

(10.3.9)

The terms in square brackets can be further simplified. Using

∂

∂ρ

1

2kF
= −1

6

3π2

k4
F

= −1

6

1

kFρ
(10.3.10)

as well as the fact that, according to the definitions (10.3.2) and (10.3.3), the
quotient ξi/ξ does not depend on ρ we first note

∑

i

2kFρξi
∂

∂ρ

1

2kF

ξi
ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ

= 2kFρξ
∂

∂ρ

1

2kF

∂ǫP,GGAx (ρ, ξ)

∂ξ
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= 2kFρξ

[

− 1

6

1

kFρ

∂ǫP,GGAx (ρ, ξ)

∂ξ
+

1

2kF

∂2ǫP,GGAx (ρ, ξ)

∂ρ∂ξ

+
1

2kF

∂ξ

∂ρ

∂2ǫP,GGAx (ρ, ξ)

∂ξ2

]

= ξ

[

−1

3

∂ǫP,GGAx (ρ, ξ)

∂ξ
+ ρ

∂ǫP,GGAx (ρ, ξ)

∂ρ∂ξ

]

−4

3
ξ2
{

1

ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ

}

− 4

3
ξ3
∂

∂ξ

{
1

ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ

}

,

(10.3.11)

where in the last step we have used equation (10.3.6) and the identity

∂2ǫP,GGAx (ρ, ξ)

∂ξ2
=

{
1

ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ

}

+ ξ
∂

∂ξ

{
1

ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ

}

. (10.3.12)

For the second term in square brackets in equation (10.3.9) we use

∂ξ

∂ri
=

∂

∂ri

|∇ρ|
2kFρ

=
1

2kFρ

∂|∇ρ|
∂ri

. (10.3.13)

Inserting the previous identities into equation (10.3.9) we thus arrive at the
following result for the paramagnetic exchange potential

µP,GGAx (ρ, ξ)

= ǫP,GGAx (ρ, ξ) + ρ
∂ǫP,GGAx (ρ, ξ)

∂ρ

−ξ
[

−1

3

∂ǫP,GGAx (ρ, ξ)

∂ξ
+ ρ

∂ǫP,GGAx (ρ, ξ)

∂ρ∂ξ

]

−
∑

i

[
1

(2kF )2ρ

∂|∇ρ|
∂ri

ξi −
4

3
ξ3
]
∂

∂ξ

{
1

ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ

}

−
∑

i

1

2kF

∂ξi
∂ri

{
1

ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ

}

= ǫP,GGAx (ρ, ξ) + ρ
∂ǫP,GGAx (ρ, ξ)

∂ρ

−ξ
[

−1

3

∂ǫP,GGAx (ρ, ξ)

∂ξ
+ ρ

∂ǫP,GGAx (ρ, ξ)

∂ρ∂ξ

]

−
[

1

(2kF )3ρ2
∇|∇ρ| · ∇ρ− 4

3
ξ3
]
∂

∂ξ

{
1

ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ

}

− 1

(2kF )2ρ
∇2ρ

{
1

ξ

∂ǫP,GGAx (ρ, ξ)

∂ξ

}

. (10.3.14)

Next we combine this result with equation (10.3.1) and, using the identity
(10.1.30), we obtain

µP,GGAx (ρ, ξ)
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= µP,LDAx (ρ)F (ξ) − ξ

[

−1

3
ǫP,LDAx (ρ) + ρ

∂ǫP,LDAx (ρ)

∂ρ

]
∂F (ξ)

∂ξ

−
[

1

(2kF )3ρ2
∇|∇ρ| · ∇ρ− 4

3
ξ3
]

ǫP,LDAx (ρ)
∂

∂ξ

{
1

ξ

∂F (ξ)

∂ξ

}

− 1

(2kF )2ρ
∇2ρ ǫP,LDAx (ρ)

{
1

ξ

∂F (ξ)

∂ξ

}

. (10.3.15)

According to the definition (10.1.27) of the paramagnetic exchange energy den-
sity the first square bracket vanishes and we are thus left with the final result

µP,GGAx (ρ, ξ)

= ǫP,LDAx (ρ)

[

4

3
F (ξ) − 1

(2kF )2ρ
∇2ρ

{
1

ξ

∂F (ξ)

∂ξ

}

−
(

1

(2kF )3ρ2
∇|∇ρ| · ∇ρ− 4

3
ξ3
)
∂

∂ξ

{
1

ξ

∂F (ξ)

∂ξ

}]

= µP,LDAx (ρ)

[

F (ξ) − 3

4

1

(2kF )2ρ
∇2ρ

{
1

ξ

∂F (ξ)

∂ξ

}

−
(

3

4

1

(2kF )3ρ2
∇|∇ρ| · ∇ρ− ξ3

)
∂

∂ξ

{
1

ξ

∂F (ξ)

∂ξ

}]

,

(10.3.16)

which is identical to equation (24) of Ref. [134].

In order to derive expressions for the spin-polarized exchange energy density
and potential we start out from equations (10.1.28) as well as (10.1.31) and
combine them with equations (10.3.1) and (10.3.16). Hence we note

ρǫGGAx (ρ, ζ, ξ)

=
1

2

[
2ρ↑ǫ

P,GGA
x (2ρ↑, ξ↑) + 2ρ↓ǫ

P,GGA
x (2ρ↓, ξ↓)

]

=
1

2

[
2ρ↑ǫ

P,LDA
x (2ρ↑)F (ξ↑) + 2ρ↓ǫ

P,LDA
x (2ρ↓)F (ξ↓)

]

=
1

2
ρ

[

ǫP,LDAx (ρ)

(
2ρ↑
ρ

) 4
3

F (ξ↑) + ǫP,LDAx (ρ)

(
2ρ↓
ρ

) 4
3

F (ξ↓)

]

,

(10.3.17)

where we have used the definition

ξσ :=
|∇ρσ(r)|

2kFσρσ(r)
:=

|∇ρσ(r)|
2(6π2ρσ(r))1/3ρσ(r)

. (10.3.18)

We may thus finally complement equation (10.1.27) with its GGA counterpart

ǫGGAx (ρ, ζ, ξ) =
1

2
ǫP,LDAx (ρ)

[(
2ρ↑
ρ

) 4
3

F (ξ↑) +

(
2ρ↓
ρ

) 4
3

F (ξ↓)

]

. (10.3.19)
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It is important to note that, since ξσ is not symmetric with respect to exchang-
ing σ by −σ, we cannot rewrite equation (10.3.19) in a form analogous to the
first line of equation (10.1.27).

For the potential we start out from equations (10.1.31) and (10.1.32) and
combine them with the intermediate result (10.3.16). We thus arrive at the
final result

vGGAx,σ (ρ, ζ, ξ)

= µP,GGAx (2ρσ, ξσ)

= µP,LDAx (2ρσ)

[

F (ξσ) − 3

4

1

(2kFσ)2ρσ
∇2ρσ

{
1

ξσ

∂F (ξσ)

∂ξσ

}

−
(

3

4

1

(2kFσ)3ρ2
σ

∇|∇ρσ| · ∇ρσ − ξ3σ

)
∂

∂ξσ

{
1

ξσ

∂F (ξσ)

∂ξσ

}]

= vLDAx,σ (ρ, ζ)

[

F (ξσ) −
3

4

1

(2kFσ)2ρσ
∇2ρσ

{
1

ξσ

∂F (ξσ)

∂ξα

}

−
(

3

4

1

(2kFσ)3ρ2
σ

∇|∇ρσ| · ∇ρσ − ξ3σ

)
∂

∂ξσ

{
1

ξσ

∂F (ξσ)

∂ξσ

}]

.

(10.3.20)

Note that 2ρσ appears only in the spin dependent scaled gradient, ξσ, via the
spin dependent Fermi wave vector, kFσ = (6π2ρσ(r))

1/3, while the factor 2
cancels out in all other places.

As already mentioned above several parametrizations for the function F (ξ)
have been given in the literature. The first one goes back to Perdew and Wang
(PW86) [134], who fitted numerical results and proposed

F (ξ) = (1 + aξ2/m+ bξ4 + cξ6)m , (10.3.21)

where m = 1/15, a = 0.0864, b = 14, and c = 0.2. Lateron, Perdew and Wang
(PW91) [128, 129, 133] presented a refined approach,

F (ξ) =
1 + a1ξ sinh−1(a2ξ) +

(

a3 − a4e
−mξ2

)

ξ2

1 + a1ξ sinh−1(a2ξ) + a5ξ4
, (10.3.22)

with the parameters listed in Table 10.5. These parametrizations are also
referred to as PW GGA-I and PW GGA-II, respectively.

Yet another parametrization was given by Engel and Vosko (EV93) [39],
who aimed, in particular, at improving the exchange potential rather than the
energy. Using a [3/3]-Padé approximation to numerical data obtained from
exact exchange calculations for spherical atoms these authors proposed

F (ξ) =
1 + a1 ξ

2 + a2 ξ
4 + a3 ξ

6

1 + b1 ξ2 + b2 ξ4 + b3 ξ6
(10.3.23)
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a1 a2 a3 a4 m a5

0.19645 7.7956 0.2743 0.1508 100 0.004

Table 10.5: Parameters for the Perdew-Wang 1991 parametrization of the gen-
eralized gradient approximation to the exchange energy density.

a1 a2 a3 b1 b2 b3

1.647127 0.980118 0.017399 1.523671 0.367229 0.011282

Table 10.6: Parameters for the Engel-Vosko parametrization of the generalized
gradient approximation to the exchange energy density.

with the coefficients listed in Table 10.6. More recently, Perdew, Burke and
Ernzerhof (PBE96) [130, 132] presented a rather simple parametrization,

F (ξ) = 1 + κ− κ

1 + µ ξ2/κ
, (10.3.24)

where κ = 0.804 and µ = 0.21951. The derivatives of the function F (ξ) neces-
sary to calculate the exchange potential (10.3.16) with the previous parametriza-
tions are given in the Appendix A.1.

Within the generalized gradient approximation the correlation energy den-
sity still retains its spin-symmetric form as in the local density approximation.
Following the work by Perdew et al. [133] we write

ǫGGAc (ρ, ζ, ξ̄) = ǫLDAc (ρ, ζ) +H(ρ, ζ, ξ̄) , (10.3.25)

where ζ is the spin polarization as given by equation (10.1.3) and ξ̄ is another
scaled gradient of the density,

ξ̄ =
|∇ρ(r)|

2g(ζ)kSρ(r)
, (10.3.26)

with the spin interpolation function

g(ζ) =
1

2

[

(
2ρ↑
ρ

)
2
3 + (

2ρ↓
ρ

)
2
3

]

=
1

2

[

(1 + ζ)2/3 + (1 − ζ)2/3
]

(10.3.27)

which is displayed in Fig. 10.2, and the local screening vector

kS =

(
4kF
π

)1/2

=

(
4(3π2ρ(r))1/3

π

)1/2

. (10.3.28)

In analogy to equation (10.3.3) we define in addition to equation (10.3.26)

ξ̄i =
1

2g(ζ)kSρ(r)

∂ρ(r)

∂ri
=

√
π

4(3π2ρ(r))1/6ρ(r)

∂ρ(r)

∂ri
(10.3.29)
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Figure 10.2: Spin polarization interpolation function g(ζ) as given by equation
(10.3.27).

and obtain

ξ̄ =

(
∑

i

ξ̄2i

) 1
2

, hence,
∂ξ̄

∂ξ̄i
=
ξ̄i

ξ̄
, (10.3.30)

which is formally identical to equation (10.3.4).

In the same way as for the exchange potential above the correlation potential
arises as the variational derivative of the correlation energy density,

vGGAc,σ (ρ, ζ, ξ̄)

=
∂

∂ρσ

{
ρǫGGAc (ρ, ζ, ξ̄)

}
−
∑

i

d

dri

∂

∂(2g(ζ)kSρξ̄i)

{
ρǫGGAc (ρ, ζ, ξ̄)

}

=
∂

∂ρσ

{
ρǫGGAc (ρ, ζ, ξ̄)

}
−
∑

i

d

dri

1

2g(ζ)kSρ

∂ξ̄

∂ξ̄i
ρ
∂ǫGGAc (ρ, ζ, ξ̄)

∂ξ̄

=
∂

∂ρσ

{
ρǫGGAc (ρ, ζ, ξ̄)

}
−
∑

i

d

dri

1

2g(ζ)kS

ξ̄i

ξ̄

∂ǫGGAc (ρ, ζ, ξ̄)

∂ξ̄

= vLDAc,σ (ρ, ζ) +
∂

∂ρσ

{
ρH(ρ, ζ, ξ̄)

}
−
∑

i

d

dri

1

2g(ζ)kS

ξ̄i

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄
.

(10.3.31)

The total derivative with respect to ri is expressed in terms of the partial
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derivatives as

d

dri
=

∂ρ

∂ri

∂

∂ρ
+
∂ζ

∂ri

∂

∂ζ
+
∑

j

∂ξ̄j
∂ri

∂

∂ξ̄j
+

∂

∂ri

=
∂ρ

∂ri

∂

∂ρ
+
∂ζ

∂ri

∂

∂ζ
+
∂ξ̄

∂ri

∂

∂ξ̄
+

∂

∂ri
, (10.3.32)

where we have used the formal identity to equation (10.3.8). Combining this
with equation (10.3.31) we obtain

vGGAc,σ (ρ, ζ, ξ̄)

= vLDAc,σ (ρ, ζ) +
∂

∂ρσ

{
ρH(ρ, ζ, ξ̄)

}

−
∑

i

[

2g(ζ)kSρξ̄i
∂

∂ρ
+
∂ζ

∂ri

∂

∂ζ
+
∂ξ̄

∂ri

∂

∂ξ̄
+

∂

∂ri

]

1

2g(ζ)kS

ξ̄i

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄
.

(10.3.33)

In order to simplify the terms in square brackets we derive from equation
(10.3.28)

∂

∂ρ

1

2kS
=

∂

∂ρ

√
π

4(3π2ρ)1/6
= −1

6

1

2kSρ
(10.3.34)

and use the fact that according to the definitions (10.3.26) and (10.3.29) the
quotient ξ̄i/ξ̄ does depend neither on the density nor on the spin polarization.
We thus note

∑

i

2g(ζ)kSρξ̄i
∂

∂ρ

1

2g(ζ)kS

ξ̄i

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

= 2kSρξ̄
∂

∂ρ

1

2kS

∂H(ρ, ζ, ξ̄)

∂ξ̄

= 2kSρξ̄

[

− 1

6

1

2kSρ

∂H(ρ, ζ, ξ̄)

∂ξ̄
+

1

2kS

∂2H(ρ, ζ, ξ̄)

∂ρ∂ξ̄

+
1

2kS

∂ξ̄

∂ρ

∂2H(ρ, ζ, ξ̄)

∂ξ̄2

]

= ξ̄

[

−1

6

∂H(ρ, ζ, ξ̄)

∂ξ̄
+ ρ

∂2H(ρ, ζ, ξ̄)

∂ρ∂ξ̄

]

−7

6
ξ̄2
{

1

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

}

− 7

6
ξ̄3
∂

∂ξ̄

{
1

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

}

,

(10.3.35)
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where we have used the identity (10.3.12) for the second derivative of H(ρ, ζ, ξ̄)
with respect to ξ̄, and

∂ζ

∂ri

∂

∂ζ

1

2g(ζ)kS

ξ̄i

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

=
1

2g(ζ)kSρ

1

ξ̄
∇ρ · ∇ζ ∂

∂ζ

1

2g(ζ)kS

∂H(ρ, ζ, ξ̄)

∂ξ̄

=
1

2g(ζ)kSρ

1

ξ̄
∇ρ · ∇ζ

[

1

2g(ζ)kS

∂2H(ρ, ζ, ξ̄)

∂ζ∂ξ̄

+
1

2g(ζ)kS

∂ξ̄

∂ζ

∂2H(ρ, ζ, ξ̄)

∂ξ̄2

− 1

2g(ζ)kS

g′(ζ)

g(ζ)

∂H(ρ, ζ, ξ̄)

∂ξ̄

]

=
1

(2g(ζ)kS)2ρ
∇ρ · ∇ζ

[

1

ξ̄

∂2H(ρ, ζ, ξ̄)

∂ζ∂ξ̄

−g
′(ζ)

g(ζ)

(
∂2H(ρ, ζ, ξ̄)

∂ξ̄2
+

1

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

)]

=
1

(2g(ζ)kS)2ρ
∇ρ · ∇ζ

[

1

ξ̄

∂2H(ρ, ζ, ξ̄)

∂ζ∂ξ̄

−g
′(ζ)

g(ζ)

(

2

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

+ξ̄
∂

∂ξ̄

{
1

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

})]

.

(10.3.36)

Here we have used the identity

∂ξ̄

∂ζ
= −g

′(ζ)

g(ζ)
ξ̄ . (10.3.37)

For the third term in square brackets in equation (10.3.33) we use

∂ξ̄

∂ri
=

∂

∂ri

|∇ρ|
2g(ζ)kSρ

=
1

2g(ζ)kSρ

∂|∇ρ|
∂ri

. (10.3.38)

Finally, we rewrite the derivative with respect to ρσ in close analogy to equation
(10.1.8) as

∂

∂ρσ
=

∂ρ

∂ρσ

∂

∂ρ
+

∂ζ

∂ρσ

∂

∂ζ
+

∂ξ̄

∂ρσ

∂

∂ξ̄

=
∂

∂ρ
+
zσ − ζ

ρ

∂

∂ζ
+

[
∂ρ

∂ρσ

∂ξ̄

∂ρ
+

∂ζ

∂ρσ

∂ξ̄

∂ζ

]
∂

∂ξ̄
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=
∂

∂ρ
+
zσ − ζ

ρ

∂

∂ζ
− 7

6

ξ̄

ρ

∂

∂ξ̄
− zσ − ζ

ρ

g′(ζ)

g(ζ)
ξ̄
∂

∂ξ̄
. (10.3.39)

Inserting the previous identities into equation (10.3.33) we arrive at the follow-
ing result for the correlation potential

vGGAc,σ (ρ, ζ, ξ̄)

= vLDAc,σ (ρ, ζ) +H(ρ, ζ, ξ̄) + ρ
∂H(ρ, ζ, ξ̄)

∂ρ

− (ζ − zσ)

[
∂H(ρ, ζ, ξ̄)

∂ζ
− g′(ζ)

g(ζ)
ξ̄2
{

1

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

}]

+
1

6
ξ̄2
{

1

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

}

− ξ̄ρ
∂2H(ρ, ζ, ξ̄)

∂ρ∂ξ̄

− 1

(2g(ζ)kS)2ρ
∇ρ · ∇ζ

[

1

ξ̄

∂2H(ρ, ζ, ξ̄)

∂ζ∂ξ̄

−g
′(ζ)

g(ζ)

(

2

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

+ξ̄
∂

∂ξ̄

{
1

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

})]

−
[

1

(2g(ζ)kS)3ρ2
∇|∇ρ| · ∇ρ− 7

6
ξ̄3
]
∂

∂ξ̄

{
1

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

}

− 1

(2g(ζ)kS)2ρ
∇2ρ

{
1

ξ̄

∂H(ρ, ζ, ξ̄)

∂ξ̄

}

, (10.3.40)

where we may still use the identity

ζ − zσ = zσ (zσζ − 1) = zσ

(
2ρσ
ρ

− 2

)

= −zσ
2ρ−σ
ρ

(10.3.41)

for the fourth term. Equation (10.3.40) is identical to equation (33) of Ref.
[129] except for the sixth term on the right hand side, which was forgotten in
the original work. However, it is included in the Fortran program distributed
by J. Perdew.

A parametrization of the function H(ρ, ζ, ξ̄) has been first given by Perdew
(PW91) [129] as H = H0 +H1 with

H0 = 2g3 β
2

2α
ln

[

1 +
2α

β

ξ̄2 +Aξ̄4

1 +Aξ̄2 +A2ξ̄4

]

, (10.3.42)

where α = 0.09, ν = 16(3/π)1/3 ≈ 15.7559, Cc(0) = 0.004235, β = νCc(0) ≈
0.066726,

A =
2α

β

(

e−2αǫLDA
c (ρ,ζ)/(2g3β2) − 1

)−1

, (10.3.43)
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and

H1 = 2ν

[

Cc(rS) − Cc(0) − 3

7
Cx

]

g3ξ̄2e
−100g4(

k2
S

k2
F

ξ̄2

, (10.3.44)

Cx = −0.001667, Cc(0) + 3
7Cx = 0.003521. The function Cc(rS) is given by a

parametrization of Rasolt and Geldart [140] as

Cc(rS) = Cxc(rS) − Cx =
c1 + c2rS + c3r

2
S

1 + c4rS + c5r2S + c6r3S
− Cx , (10.3.45)

where the coefficients are listed in Table 10.7. Note that we included a factor of

c1 c2 c3 c4 c5 c6

0.002568 0.023266 7.389 × 10−6 8.723 0.472 7.389 × 10−2

Table 10.7: Parameters for the Rasolt-Geldart parametrization of the function
Cxc(rS).

two in front of the g3 terms in equations (10.3.42) and (10.3.43) since Perdew
and Wang used Hartree atomic units instead of Rydbergs.

Lateron, this approach was simplified by Perdew, Burke and Ernzerhof
(PBE96) [130, 132], who omitted the term H1 and proposed

H = 2g3γ ln

[

1 +
β

γ

ξ̄2 +Aξ̄4

1 +Aξ̄2 +A2ξ̄4

]

, (10.3.46)

where

A =
β

γ

(

e−ǫ
LDA
c (ρ,ζ)/(2g3γ) − 1

)−1

, (10.3.47)

and γ = (1 − ln 2)/π2 ≈ 0.031091. The term H0 originally given by Perdew
reduces to equations (10.3.46)/(10.3.47) when we use γ = β2/(2α) ≈ 0.024735.
Note again the additional factor two. As for the exchange potential we defer
the evaluation of the derivatives of the function H necessary to calculate the
correlation potential to the Appendix A.1. However, since the correlation en-
ergy density enters the PW91 parametrization by Perdew and Wang as well as
the newer one by Perdew, Burke and Ernzerhof we will need in addition the
derivatives of this energy density with respect to both the density ρ and the
spin polarization ζ, which we provide here. In doing so, we have to distinguish
the spin interpolations given by von Barth and Hedin and by Vosko, Wilk and
Nusair. In the former case, we start out from equation (10.1.33) and using the
identity (10.1.16) in the form

ρ
∂ǫic(ρ)

∂ρ
= µic(ρ) − ǫic(ρ) for i = P, F , (10.3.48)
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we obtain

ρ
∂ǫc(ρ, ζ)

∂ρ
= µPc (ρ) − ǫPc (ρ) +

[
µFc (ρ) − ǫFc (ρ) − µPc (ρ) + ǫPc (ρ)

]
f(ζ) .

(10.3.49)

For the derivative with respect to ζ we obtain from equation (10.1.33)

∂ǫc(ρ, ζ)

∂ζ
=
[
ǫFc (ρ) − ǫPc (ρ)

] df(ζ)

dζ
, (10.3.50)

where the derivative of the spin interpolation functions results from the defini-
tion (10.1.14) as

df(ζ)

dζ
=

4

3

(1 + ζ)1/3 − (1 − ζ)1/3

2
4
3 − 2

. (10.3.51)

In case we want to apply the spin interpolation proposed by Vosko, Wilk
and Nusair we start out from equation (10.1.63) and, again using the iden-
tity (10.3.48), we note

ρ
∂ǫc(ρ, ζ)

∂ρ
= µPc (ρ) − ǫPc (ρ) +

3

γ

(
µSc (ρ) − ǫSc (ρ)

) (
1 − ζ4

)
f(ζ)

+
[
µFc (ρ) − ǫFc (ρ) − µPc (ρ) + ǫPc (ρ)

]
ζ4f(ζ) . (10.3.52)

The derivative with respect to ζ is likewise easily formulated as

∂ǫc(ρ, ζ)

∂ζ
=

3

γ
ǫSc (ρ)

[

−4ζ3f(ζ) +
(
1 − ζ4

) df(ζ)

dζ

]

+
[
ǫFc (ρ) − ǫPc (ρ)

]
[

4ζ3f(ζ) + ζ4 df(ζ)

dζ

]

. (10.3.53)

We close this section with a complete expression for the total energy for the
generalized gradient approximation. Combining equations (10.1.6), (10.3.19),
and (10.3.25) we note

Exc[ρ, ζ, ξξ̄]

=

∫

d3r ρ(r)ǫGGAxc (ρ(r), ζ(r), ξ(r), ξ̄(r))

=
1

2

∫

d3r ρ

{

ǫP,LDAx (ρ)

[(
2ρ↑
ρ

) 4
3

F (ξ↑) +

(
2ρ↓
ρ

) 4
3

F (ξ↓)

]

+ǫLDAc (ρ, ζ) +H(ρ, ζ, ξ̄)

}

=
1

2

∑

σ

∫

d3r ρ

{

ǫP,LDAx (ρ)

(
2ρσ
ρ

) 4
3

F (ξσ)

+ǫLDAc (ρ, ζ) +H(ρ, ζ, ξ̄)

}

. (10.3.54)
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10.4 Self-interaction correction

In particular in the course of our discussion of Hartree-Fock theory we have, at
several places, pointed to the exact cancellation of the electronic self-interaction
in the combination of the Hartree and exchange terms. We used this property
especially when we represented the respective potentials in Eqs. (6.1.13) and
(6.1.14) in terms of the spin-dependent densities and density matrices rather
than the single-particle orbitals. Nevertheless, already at that early stage we
warned for any approximation to be done on only one of these two terms with-
out taking care of a corresponding compensation in order to avoid a spurious
self-interaction.

Of course, theories based on the density are predestinated for problems of
the aforementioned kind and it is indeed the local density approximation to
density functional theory, which violates the exact self-interaction cancellation.
This is due to the fact that the exchange functional is approximated by the
local density expression, whereas the exact form of the classical, Hartree po-
tential is taken into consideration. While the consequences of this procedure
remain somewhat small in metals, for which the approximation by a homoge-
neous electron gas is well justified, severe problems show up in inhomogeneous
systems, in particular, semiconductors, insulators or systems with rather local-
ized d or f electrons. Band gaps in such systems are usually underestimated
by a factor of two and sometimes even missed.

In order to overcome such errors several researchers invented a new ap-
proach, which nowadays goes under the name self-interaction correction (SIC)
and consists of a proper compensation of the errors introduced by the LDA. A
good account of this approach has been given by Perdew and Zunger [136]. To
be specific, we define an extra term in the total energy functional by

ESIC [ρ] =
∑

α

[

− 1

2

e2

4πǫ0

∑

σσ′

∫

d3r

∫

d3r′
ρα;σ(r)ρα;σ′ (r′)

|r− r′|

+
3e2

4π
(6π2)

1
3

∑

σ

∫

d3r ρ
4
3
α;σ(r)

]

,

(10.4.1)

where

ρα;σ(r) = |χα;σ(r)|2 . (10.4.2)

Obviously, this extra contribution consists of a sum over all single-particle
states and subtracts for each state the self-interaction in both the Hartree and
the exchange term. In other words, both contributions to the total energy are
finally restored self-interaction free. This can be easly seen by comparing Eq.
(10.4.1) to Eqs. (9.6.23) and (10.1.29). It should be noted that the SIC energy
functional does not constitute an additional energy term but just corrects for
erraneous terms contained in the total energy functional of density functional
theory after the local density approximation has been done. Again this becomes
clear from comparing the SIC functional to Eqs. (6.1.13) and (6.1.14).
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With the definition of the SIC contribution to the energy functional at hand
the SIC potential is readily calculated as

vxc,α;σ(r) =
δExc[ρ]

δρα;σ(r)

= − e2

4πǫ0

∑

σ′

∫

d3r′
ρα;σ′(r′)

|r− r′| +
e2

π
(6π2)

1
3

∫

d3r ρ
1
3
α;σ(r) .

(10.4.3)

It has to be added to the Kohn-Sham equations. While being clear in concept
and simple in formulation the self-interaction correction nevertheless causes
severe problems on implementation. These are due to the fact that the SIC
potential explicitly depends on the orbital, the self-interaction of which has
been removed. In other words, the Hamiltonian becomes orbital-dependent.
As a consequence, wave functions are no longer orthogonal and the Kohn-
Sham equations can no longer be formulated as a standard eigenvalue problem.
Although the results of SIC calculations are indeed very promising the afor-
mentioned severe difficulties have so far hindered more widespread use of this
approach.

10.5 Exact exchange

While the need for an improved treatment especially of the exchange contribu-
tion to the total energy functional has become obvious from the discussion at
the beginning of the previous section there exist several approaches to overcome
the problems arising from the local exchange potential. A very promising idea
was proposed already in the 1950’ties by Sharp and Horton [144] and, more
recently, by Talman and Shadwick [160]. Their work has found widespread
interest in the last decade and nowadays is summarized under the term “exact
exchange”. In short, the main idea consists of starting from the exact exchange
energy functional as provided by Hartree-Fock theory and, by using the vari-
ational principle, mapping the exact nonlocal exchange potential onto a local
potential. As a matter of fact this approach, like the self-interaction correction
outlined in Sec. 10.4, resulted in much improved band gaps. Yet, the price is
high. The complexity of the formalism substantially increases and the com-
puter times are by a factor 20-30 higher as compared to the LDA treatment.

Nevertheless, the exact exchange approach is quite instructive and promis-
ing and thus will be the subject of the present section. To start with, we recall
the total energy functional (6.1.7) of the Hartree-Fock method, which we write
as

E = 〈H0〉ψ

=
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2 + vext,σ(r)

]

χα;σ(r)
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+
1

2

e2

4πǫ0

∑

αγ

(1 − δαγ)
∑

σσ′

∫

d3r

∫

d3r′

[ |χα;σ′(r′)|2|χγ;σ′(r′)|2
|r − r′| −

χ∗
α;σ(r)χ

∗
γ;σ′(r′)χα;σ′(r′)χγ;σ(r)

|r − r′|

]

=
∑

α

∑

σ

∫

d3r χ∗
α;σ(r)

[

− h̄2

2m
∇2 + vext,σ(r)

]

χα;σ(r)

+
1

2

e2

4πǫ0

∑

αγ

∑

σσ′

∫

d3r

∫

d3r′

[ |χα;σ′(r′)|2|χγ;σ′(r′)|2
|r − r′| −

χ∗
α;σ(r)χ

∗
γ;σ′(r′)χα;σ′(r′)χγ;σ(r)

|r − r′|

]

,

(10.5.1)

where we used the exact cancellation of the self-interaction term in the sum
of the direct and exchange integral as well as the spin-dependent density and
density matrix with the latter given by Eq. (5.7.17). In the functional (10.5.1)
we identify the contributions due to the kinetic energy, external potential,
classical Coulomb interaction, and the exchange contribution. As we have
seen in Sec. 6.1 the Hartree-Fock equations are complicated integrodifferential
equations, which are rather difficult to solve. As we have also seen, it is the
exchange contribution, which makes things very involved. For this reason,
improvements of this term were and still are desperately needed.

Following an idea of Slater, Sharp and Horton as well as Talman and Shad-
wick aimed at replacing the nonlocal potential coming with the Hartree-Fock
approximation by an effective local potential. It would allow for a much sim-
pler form of the single-particle equations. These authors suggested to calculate
the desired effective local potential veff,σ(r) variationally by inserting it into
Schrödingers equation and minimizing the total energy with respect to it. The
variational problem is thus posed by

∂E

∂veff,σ(r)
=

occ∑

α

∑

σ′

∫

d3r′
[

∂E

∂χ∗
α;σ′(r′)

∂χ∗
α;σ′(r′)

∂veff,σ(r)

+
∂E

∂χα;σ′(r′)

∂χα;σ′(r′)

∂veff,σ(r)

]

!
= 0 .

(10.5.2)

The variational derivative

∂E

∂χ∗
α;σ′(r′)

=

[

− h̄2

2m
∇2 + veff,σ′ (r′)

]

χα;σ′(r′)

=

[

− h̄2

2m
∇2 + vext,σ′(r′) + vH(r′)

]

χα;σ′(r′)

− e2

4πǫ0

occ∑

γ

∑

σ′′

∫

d3r′′
χ∗
γ;σ′′(r′′)χγ;σ′(r′)

|r′ − r′′| χα;σ′′ (r′′)
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(10.5.3)

is just the left-hand side of the Hartree-Fock Eq. (6.1.11). In order to elim-
inate the kinetic energy operator we combine Eq. (10.5.3) with Schrödinger’s
equation

[

− h̄2

2m
∇2 + veff,σ′ (r′) − εα

]

χα;σ′(r′) = 0 (10.5.4)

and are thus able to write down the intermediate result

− ∂E

∂χ∗
α;σ′(r′)

=
[

veff,σ′ (r′) − vext(r
′) − vH(r′) − εα

]

χα;σ′(r′)

+
e2

4πǫ0

occ∑

γ

∑

σ′′

∫

d3r′′
χ∗
γ;σ′′(r′′)χγ;σ′(r′)

|r′ − r′′| χα;σ′′(r′′) .

(10.5.5)

The other variational derivative entering Eq. (10.5.2), the variational derivative
of χ∗

α;σ′(r′) with respect to veff,σ(r), is calculated by perturbation theory.
Using δveff,σ(r) as a perturbation Schrödinger’s equation reads as

[

− h̄2

2m
∇2 + veff,σ′ (r′) − εα

]

δχα;σ′ (r′) = [−δεα + δveff,σ′ (r′)]χα;σ′(r′) ,

(10.5.6)
with the first order correction to the single-particle wave function given by

δχα;σ′(r′) =
∑

σ

∫

d3r Gα;σ′σ(r
′, r)δveff,σ(r)χα;σ(r) , (10.5.7)

where

Gα;σ′σ(r
′, r) =

∑

β 6=α

χ∗
β;σ(r)χβ;σ′ (r′)

εα − εβ
= G∗

α;σσ′ (r, r′) . (10.5.8)

From this we obtain

∂χ∗
α;σ′(r′)

∂veff,σ(r)
= G∗

α;σ′σ(r
′, r)χ∗

α;σ(r) . (10.5.9)

Note that the expressions (10.5.7)/(10.5.8) are used here only to evaluate the
variational derivative, hence, for an infinitesimaly small perturbation, in which
limit perturbation theory is exact.

Finally, combining Eqs. (10.5.2), (10.5.5) and (10.5.9) we arrive at the result

0 =

occ∑

α

∑

σ′

∫

d3r′
([

veff,σ′ (r′) − εα − vext,σ′(r′) − vH(r′)
]

χα;σ′(r′)

+
e2

4πǫ0

occ∑

γ

∑

σ′′

∫

d3r′′
χ∗
γ;σ′′(r′′)χγ;σ′(r′)

|r′ − r′′| χα;σ′′(r′′)

)
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×G∗
α;σ′σ(r

′, r)χ∗
α;σ(r)

+
occ∑

α

∑

σ′

∫

d3r′
([

veff,σ′(r′) − εα − vext,σ′ (r′) − vH(r′)
]

χ∗
α;σ′(r′)

+
e2

4πǫ0

occ∑

γ

∑

σ′′

∫

d3r′′
χγ;σ′′(r′′)χ∗

γ;σ′(r′)

|r′ − r′′| χ∗
α;σ′′(r′′)

)

×Gα;σ′σ(r
′, r)χα;σ(r) .

(10.5.10)

Since Gα;σ′σ(r
′, r) projects onto the subspace orthogonal to χα;σ(r) and χ∗

α;σ(r)
the terms containing εα fall out and we are left with the result

∑

σ′

∫

d3r′
[

Xσ(r
′, r) +X∗

σ(r
′, r)

]

[

veff,σ′ (r′) − vext,σ′(r′) − vH(r′)
]

= Q(r) ,

(10.5.11)

where

Xσ(r
′, r) =

occ∑

α

∑

σ′

χα;σ′(r′)G∗
α;σ′σ(r

′, r)χ∗
α;σ(r)

=

occ∑

αβ
α 6=β

∑

σ′

χα;σ′(r′)χβ;σ(r)χ
∗
β;σ′ (r)χ∗

α;σ(r)

εα − εβ

= X∗
σ(r, r

′) (10.5.12)

and

Q(r) = − e2

4πǫ0

occ∑

αγ

∑

σ′σ′′

∫

d3r′
∫

d3r′′

[

χ∗
γ;σ′′(r′′)χγ;σ′(r′)

|r′ − r′′| χα;σ′′(r′′)G∗
α;σ′σ(r

′, r)χ∗
α;σ(r)

+
χγ;σ′′(r′′)χ∗

γ;σ′(r′)

|r′ − r′′| χ∗
α;σ′′(r′′)Gα;σ′σ(r

′, r)χα;σ(r)

]

.

(10.5.13)

Note that the sum over β in Eq. (10.5.12) actually includes only the unoccupied
states since each term in the sum is antisymmetric with respect to exchange of
α and β.

As concerns interpretation of the just defined quantities we identify the
difference of the potentials in square brackets on the left-hand side of Eq.
(10.5.11) as the sought effective local exchange potential vx,σ′(r′). As expected,
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it vanishes trivially when the exact, non-local exchange potential, which enters
Eq. (10.5.11) via the quantity Q(r), is set to zero. This latter function can
be traced back to the last term in Eq. (10.5.3) and, hence, identified as the
derivative of the exchange energy,

Ex = −1

2

e2

4πǫ0

∑

αγ

∑

σσ′

∫

d3r

∫

d3r′
χ∗
α;σ(r)χ

∗
γ;σ′(r′)χα;σ′ (r′)χγ;σ(r)

|r − r′| ,

(10.5.14)
with respect to the effective local potential,

Q(r) =
∂Ex

∂veff,σ(r)
. (10.5.15)

Combining this with Eq. (10.5.11) and writing the local effective exchange
potential in the second square bracket on the left-hand side as the derivative
of the exchange energy with respect to the charge density, hence,

[

veff,σ′ (r′) − vext,σ′ (r′) − vH(r′)
]

=
∂Ex

∂ρσ′(r′)
, (10.5.16)

we obtain

∑

σ′

∫

d3r′
[

Xσ(r
′, r) +X∗

σ(r
′, r)

] ∂Ex
∂ρσ′(r′)

=
∂Ex

∂veff,σ(r)
. (10.5.17)

Comparing this to Eq. (10.5.2) we are thus able to relate the quantity Xσ(r
′, r)

as given by Eq. (10.5.12) to the derivative of the charge density with respect
to the local effective potential, i.e.

Xσ(r
′, r) +X∗

σ(r
′, r) =

∂ρ(r′)

∂veff,σ(r)
. (10.5.18)

In order to prepare for the discussion as well as further evaluation of the
previous results we point to some important sum rules obeyed by Q(r) and
Xσ(r

′, r). They are based on the orthonormalization of the wave functions,

∫

d3r χ∗
β;σ(r)χα;σ(r) = δβα;

!
= 0 for α 6= β . (10.5.19)

Since the double sum in the definition (10.5.12) of Xσ(r
′, r) excludes the term

α = β we arrive at the sum rules
∫

d3r′
[

Xσ(r
′, r) +X∗

σ(r
′, r)

]

= 0 (10.5.20)

as well as
∫

d3r

∫

d3r′
[

Xσ(r
′, r) +X∗

σ(r
′, r)

]

=

∫

d3r Q(r) = 0 . (10.5.21)
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From these identities Görling recently draw the conclusion that inversion of the
matrix Xσ(r

′, r) has to be preceded by proper exclusion of a constant potential
[60]. However, as we will demonstrate next, the problem of a constant potential
actually does never occur.

Of course, evaluation of the effective local exchange potential via Eqs.
(10.5.11) to (10.5.13) depends on the actual representation of the wave function
and thus must be worked out in detail for each particular calculational method.
Nevertheless, it is useful to outline the general procedure for calculating the
exact exchange potential already now.

To this end we start out by defining an basis of orthonormalized functions
|fi(r)〉,

〈fi(r)|fj(r)〉 = δij , (10.5.22)

which we use for the representation of products of wave functions,

χ∗
β;σ(r)χα;σ(r) =

∑

i

Cβα;i|fi(r)〉 . (10.5.23)

The expansion coefficients are calculated from

∫

d3r f∗
i (r)χ∗

β;σ(r)χα;σ(r) = Cβα;i . (10.5.24)

Comparing this to the identity (10.5.18) we realize that the basis set of the
product wave functions does not comprise a constant function if only products
with α 6= β are considered. Combining now Eqs. (10.5.12) and (10.5.22) we
write

Xσ(r
′, r) +X∗

σ(r
′, r) =

∑

i

∑

j

|fi(r′)〉αij〈fj(r)| (10.5.25)

where

αij =
occ∑

α;σ

∑

β 6=α;

Cα;βi
1

εα − εβ
C∗
α;βj . (10.5.26)

Obviously, the matrix Xσ(r
′, r) +X∗

σ(r
′, r) acts like a projection operator onto

the space spanned by the basis functions |fi(r)〉 for the representation of the
product wave functions. As a consequence, from Eq. (10.5.11) the effective
local exchange potential is determined only within this space and, hence, can
never comprise a constant contribution.

Finally, we formulate Eq. (10.5.11) as

∑

i

∑

j

|fi(r′)〉αij〈fj(r)|v(r)〉 = |Q(r′)〉 (10.5.27)

hence ∑

j

αij〈fj(r)|v(r)〉 = 〈fi(r′)|Q(r′)〉 . (10.5.28)



Appendix A

Density functional theory:

Details

A.1 GGA parametrizations

In the present section we complement the parametrizations for the functions
F (ξ) and H(ρ, ζ, ξ̄) entering the generalized gradient approximation with its
first and second derivatives. They are needed for the calculation of the exchange
and the correlation potential according to equations (10.3.20) and (10.3.40).

We start out with the parametrization of F (ξ) given by Perdew and Wang
(PW86) [134],

F (ξ) = (A(ξ))
m

=
(
1 + aξ2/m+ bξ4 + cξ6

)m
, (A.1.1)

where m = 1/15, a = 0.0864, b = 14, and c = 0.2. From this we have

1

ξ

d

dξ
F (ξ) = m (A(ξ))

m−1
B(ξ)

= m
(
1 + aξ2/m+ bξ4 + cξ6

)m−1 (
2a/m+ 4bξ2 + 6cξ4

)
,

(A.1.2)

and

d

dξ

{
1

ξ

d

dξ
F (ξ)

}

= m(m− 1) (A(ξ))m−2 (B(ξ))2 ξ +m (A(ξ))m−1B′(ξ)

= m(m− 1)
(
1 + aξ2/m+ bξ4 + cξ6

)m−2

×
(
2a/m+ 4bξ2 + 6cξ4

)2
ξ

+m
(
1 + aξ2/m+ bξ4 + cξ6

)m−1 (
8bξ + 24cξ3

)
.

(A.1.3)

227



228 APPENDIX A. DENSITY FUNCTIONAL THEORY: DETAILS

In the GGA-II parametrization proposed by Perdew and Wang (PW91)
[128, 129, 133] the function F (ξ) is given by

F (ξ) =
A(ξ)

B(ξ)
, (A.1.4)

with

A(ξ) = 1 + a1ξ sinh−1(a2ξ) +
(

a3 − a4e
−mξ2

)

ξ2

= 1 + a1ξ ln

(

a2ξ +
√

1 + a2
2ξ

2

)

+
(

a3 − a4e
−mξ2

)

ξ2 ,(A.1.5)

B(ξ) = 1 + a1ξ sinh−1(a2ξ) + a5ξ
4

= 1 + a1ξ ln

(

a2ξ +
√

1 + a2
2ξ

2

)

+ a5ξ
4 , (A.1.6)

and the parameters listed in Table 10.5. For the first derivative with respect
to ξ we write

d

dξ
F (ξ) = F (ξ)

[
A′(ξ)

A(ξ)
− B′(ξ)

B(ξ)

]

, (A.1.7)

where

A′(ξ) = a1 ln

(

a2ξ +
√

1 + a2
2ξ

2

)

+ a1a2ξ
1

√

1 + a2
2ξ

2

+2ξ
(

a3 − a4e
−mξ2

)

+ 2ξ3a4me
−mξ2 (A.1.8)

and

B′(ξ) = a1 ln

(

a2ξ +
√

1 + a2
2ξ

2

)

+ a1a2ξ
1

√

1 + a2
2ξ

2
+ 4a5ξ

3 . (A.1.9)

From this we obtain finally

1

ξ

d

dξ
F (ξ) =

1

ξ
F (ξ)

[
A′(ξ)

A(ξ)
− B′(ξ)

B(ξ)

]

, (A.1.10)

and

d

dξ

{
1

ξ

d

dξ
F (ξ)

}

=
1

ξ

d

dξ
F (ξ)

[
A′(ξ)

A(ξ)
− B′(ξ)

B(ξ)

]

− 1

ξ2
F (ξ)

[
A′(ξ)

A(ξ)
− B′(ξ)

B(ξ)

]

+
1

ξ
F (ξ)

[

A′′(ξ)

A(ξ)
−
(
A′(ξ)

A(ξ)

)2

− B′′(ξ)

B(ξ)
+

(
B′(ξ)

B(ξ)

)2
]

=
1

ξ

d

dξ
F (ξ)

[
A′(ξ)

A(ξ)
− B′(ξ)

B(ξ)
− 1

ξ

]

+
1

ξ
F (ξ)

[

A′′(ξ)

A(ξ)
−
(
A′(ξ)

A(ξ)

)2

− B′′(ξ)

B(ξ)
+

(
B′(ξ)

B(ξ)

)2
]

,

(A.1.11)
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with

A′′(ξ) = 2a1a2
1

√

1 + a2
2ξ

2
− a1a2ξ

a2
2ξ

(√

1 + a2
2ξ

2
)3 + 2

(

a3 − a4e
−mξ2

)

+4ξ2a4me
−mξ2 + 6ξ2a4me

−mξ2 − 4ξ4a4m
2e−mξ

2

= a1a2
2 + a2

2ξ
2

(√

1 + a2
2ξ

2
)3 + 2

(

a3 − a4e
−mξ2

)

+10ξ2a4me
−mξ2 − 4ξ4a4m

2e−mξ
2

(A.1.12)

and

B′′(ξ) = a1a2
2 + a2

2ξ
2

(√

1 + a2
2ξ

2
)3 + 12a5ξ

2 . (A.1.13)

The parametrization given by Engel and Vosko (EV93) [39], arising from a
[3/3]-Padé approximation, is written as

F (ξ) =
A(ξ2)

B(ξ2)
, (A.1.14)

with

A(x) = 1 + a1 x
2 + a2 x

4 + a3 x
6 (A.1.15)

and

B(x) = 1 + b1 x
2 + b2 x

4 + b3 x
6 , (A.1.16)

where

x = ξ2 , hence
dx

dξ
= 2ξ . (A.1.17)

The coefficients entering this parametrization are given in Table 10.6. We thus
obtain for the first derivative with respect to ξ

d

dξ
F (ξ) =

dx

dξ

d

dx

A(x)

B(x)
= 2ξF (ξ)

[
A′(x)

A(x)
− B′(x)

B(x)

]

, (A.1.18)

with

A′(x) = a1 + 2a2 x+ 3a3 x
2 (A.1.19)

and

B′(x) = b1 + 2b2 x+ 3b3 x
2 . (A.1.20)

Next we note
1

ξ

d

dξ
F (ξ) = 2F (ξ)

[
A′(x)

A(x)
− B′(x)

B(x)

]

, (A.1.21)
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and thus finally arrive at

d

dξ

{
1

ξ

d

dξ
F (ξ)

}

= 2
d

dξ
F (ξ)

[
A′(x)

A(x)
− B′(x)

B(x)

]

+ 2F (ξ)
dx

dξ

d

dx

[
A′(x)

A(x)
− B′(x)

B(x)

]

= 2ξ

{
1

ξ

d

dξ
F (ξ)

}[
A′(x)

A(x)
− B′(x)

B(x)

]

+4ξF (ξ)

[

A′′(x)

A(x)
−
(
A′(x)

A(x)

)2

− B′′(x)

B(x)
+

(
B′(x)

B(x)

)2
]

(A.1.22)

with
A′′(x) = 2a2 + 6a3 x (A.1.23)

and
B′′(x) = 2b2 + 6b3 x . (A.1.24)

Last but not least the parametrization by Perdew, Burke and Ernzerhof
(PBE96) [130, 132] is given by

F (ξ) = 1 + κ− κ

1 + µ ξ2/κ
, (A.1.25)

where κ = 0.804 and µ = 0.21951. Hence,

d

dξ
F (ξ) =

2µξ

(1 + µ ξ2/κ)2
, (A.1.26)

1

ξ

d

dξ
F (ξ) =

2µ

(1 + µ ξ2/κ)2
, (A.1.27)

and
d

dξ

{
1

ξ

d

dξ
F (ξ)

}

= − 8µ2ξ/κ

(1 + µ ξ2/κ)3
. (A.1.28)

For the determination of the gradient correction to the correlation energy
density and potential we start out discussing the parametrization given by
Perdew, Burke and Ernzerhof (PBE96) [130, 132],

H = 2g3γ ln

[

1 +
β

γ

ξ̄2 +Aξ̄4

1 +Aξ̄2 +A2ξ̄4

]

, (A.1.29)

where

A =
β

γ

(

e−ǫ
LDA
c (ρ,ζ)/(2g3γ) − 1

)−1

, (A.1.30)

and γ = (1 − ln 2)/π2 ≈ 0.031091. Here g(ζ) is the spin interpolation function
defined by equation (10.3.27). The term H0 originally given by Perdew reduces
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to equations (10.3.45)/(10.3.46) when we use γ = β2/(2α) ≈ 0.024735. From
these specifications we easily derive

∂A

∂ρ
=
β

γ

1

2g3γ

∂ǫLDAc

∂ρ

e−ǫ
LDA
c /(2g3γ)

(e−ǫLDA
c (ρ,ζ)/(2g3γ) − 1)2

=
A2

2g3β
E
∂ǫLDAc

∂ρ
(A.1.31)

and

∂A

∂ζ
=

β

γ

∂ǫLDA
c

∂ζ 2g3γ − ǫLDAc 6g′g2γ

(2g3γ)2
e−ǫ

LDA
c /(2g3γ)

(e−ǫLDA
c (ρ,ζ)/(2g3γ) − 1)2

=
A2

2g3β
E

(
∂ǫLDAc

∂ζ
− 3ǫLDAc

g′

g

)

, (A.1.32)

where we have abbreviated

E = e−ǫ
LDA
c /(2g3γ) = 1 +

β

γ

1

A
. (A.1.33)

In addition, we calculate the derivative of the spin interpolation function (10.3.27)
as

dg(ζ)

dζ
=

1

3

[

(1 + ζ)−1/3 − (1 − ζ)−1/3
]

(A.1.34)

Next we define

B =
a

b
=

x+Ax2

1 +Ax+A2x2
, (A.1.35)

for x = ξ̄2 and obtain
∂B

∂x
= B

(
ax
a

− bx
b

)

(A.1.36)

with

ax =
∂a

∂x
= 1 + 2Ax , bx =

∂b

∂x
= A+ 2A2x = Aax , (A.1.37)

hence
∂B

∂x
= Bax

(
1

a
− A

b

)

=
ax
b2

. (A.1.38)

In addition, we note
∂B

∂A
= B

(
aA
a

− bA
b

)

(A.1.39)

with

aA =
∂a

∂A
= x2 , bA =

∂b

∂A
= x+ 2Ax2 = xax , (A.1.40)

hence
∂B

∂A
= −Ax

3

b2
(2 +Ax) (A.1.41)
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From the previous identities we have

∂H

∂ρ
= 2g3γ

β
γ
∂B
∂A

∂A
∂ρ

1 + β
γB

= 2g3β
1

1 + β
γB

B

(
aA
a

− bA
b

)
A2

2g3β
E
∂ǫLDAc

∂ρ

= BA2 1

1 + β
γB

(
aA
a

− bA
b

)

E
∂ǫLDAc

∂ρ
, (A.1.42)

∂H

∂ζ
= 6g2g′γ ln

[

1 +
β

γ
B

]

+ 2g3γ

β
γ
∂B
∂A

∂A
∂ζ

1 + β
γB

= 3
g′

g
H + 2g3β

1

1 + β
γB

B

(
aA
a

− bA
b

)
A2

2g3β
E

(
∂ǫLDAc

∂ζ
− 3ǫLDAc

g′

g

)

= 3
g′

g
H +BA2 1

1 + β
γB

(
aA
a

− bA
b

)

E

(
∂ǫLDAc

∂ζ
− 3ǫLDAc

g′

g

)

,

(A.1.43)

and

∂H

∂ξ̄
= 2g3γ

β
γ 2ξ̄ ∂B∂x

1 + β
γB

= 2g3β
1

1 + β
γB

2ξ̄Bax

(
1

a
− A

b

)

. (A.1.44)

Defining

Λ = B
1

1 + β
γB

(
aA
a

− bA
b

)

=
1

1 + β
γB

∂B

∂A
= Λ(ξ̄) (A.1.45)

we note
∂H

∂ρ
= A2ΛE

∂ǫLDAc

∂ρ
(A.1.46)

and
∂H

∂ζ
= 3

g′

g
H +A2ΛE

(
∂ǫLDAc

∂ζ
− 3ǫLDAc

g′

g

)

. (A.1.47)

From equation (A.1.45) we evaluate

∂Λ

∂ξ̄
= 2ξ̄

1

1 + β
γB

∂2B

∂x∂A
− 2ξ̄

1

(1 + β
γB)2

β

γ

∂B

∂x

∂B

∂A

= 2ξ̄
1

(1 + β
γB)2

[
∂2B

∂x∂A
+
β

γ

(

B
∂2B

∂x∂A
− ∂B

∂x

∂B

∂A

)]

.(A.1.48)

Using

aAx =
∂2a

∂A∂x
= 2x , bAx =

∂2b

∂A∂x
= 1 + 4Ax (A.1.49)
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as well as equations (A.1.37), (A.1.38) and (A.1.40) we write

∂2B

∂A∂x
=
aAxb

2 − ax2bbA
b4

=
2xb

(
b− a2

x

)

b4
=

−6Axab

b4
. (A.1.50)

Combining this with equations (A.1.37), (A.1.38) and (A.1.41) we arrive at

B
∂2B

∂A∂x
− ∂B

∂x

∂B

∂A
=

1

b4
[
−6Axa2 + (1 + 2Ax)Ax3(2 +Ax)

]

=
−Ax
b4

[
6a2 − x2(2 + 5Ax+ 2A2x2)

]

=
−Ax
b4

[
6a2 + bx2 − 3(x2 + 2Ax3 +A2x4)

]

=
−Ax
b4

[
3a2 + bx2

]
. (A.1.51)

We thus collect the identities (A.1.48), (A.1.50) and (A.1.51) and obtain

1

ξ̄

∂Λ

∂ξ̄
= −2

Ax

b4
1

(1 + β
γB)2

[

6ab+
β

γ

(
3a2 + bx2

)
]

. (A.1.52)

We are thus in a position to write the second derivatives as

1

ξ̄

∂2H

∂ρ∂ξ̄
= A2 1

ξ̄

∂Λ

∂ξ̄
E
∂ǫLDAc

∂ρ
(A.1.53)

and

1

ξ̄

∂2H

∂ζ∂ξ̄
= 3

g′

g

1

ξ̄

∂H

∂ξ̄
+A2 1

ξ̄

∂Λ

∂ξ̄
E

(
∂ǫLDAc

∂ζ
− 3ǫLDAc

g′

g

)

. (A.1.54)

For the second derivative ofH with respect to ξ we start from equation (A.1.44)
and write

∂

∂ξ̄

{
1

ξ̄

∂H

∂ξ̄

}

=
∂

∂ξ̄

{

4g3β
1

1 + β
γB

∂B

∂x

}

= 2g3β
(
4ξ̄
)

[

1

1 + β
γB

∂2B

∂x2
− 1

(1 + β
γB)2

β

γ

(
∂B

∂x

)2
]

= 2g3β
(
4ξ̄
) 1

(1 + β
γB)2

[

∂2B

∂x2
+
β

γ

(

B
∂2B

∂x2
−
(
∂B

∂x

)2
)]

.

(A.1.55)

Using

axx =
∂2a

∂x2
= 2A , bxx =

∂2b

∂x2
= 2A2 = Aaxx (A.1.56)
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as well as equations (A.1.37) and (A.1.38) we obtain

∂2B

∂x2
=
axxb

2 − ax2bbx
b4

=
2Ab

(
b− a2

x

)

b4
=

−6A2ab

b4
, (A.1.57)

and this results in

B
∂2B

∂x2
−
(
∂B

∂x

)2

=
1

b4
[
−6A2a2 − a2

x

]
=

1

b4
[
−6A2a2 − 4Aa− 1

]

= − 1

b4
[
3 − 8b+ 6b2

]
. (A.1.58)

Inserting this into equation (A.1.55) we arrive at

∂

∂ξ̄

{
1

ξ̄

∂H

∂ξ̄

}

= −2g3β
(
4ξ̄
) 1

b4
1

(1 + β
γB)2

[

6A2ab+
β

γ

(
3 − 8b+ 6b2

)
]

.

(A.1.59)

As already mentioned in section 10.3 the functional form of the H as given
by Perdew, Burke and Ernzerhof had been proposed before by Perdew and
Wang with slightly different parameters. In addition, these authors included a
second term. Just to be complete, Perdew and Wang proposed H = H0 +H1

withH0 given by equations (10.3.42) and (10.3.43) or alternatively by equations
(A.1.29) and (A.1.30) with γ = β2/(2α) ≈ 0.024735. The second term has the
form

H1 = 2ν

[

Cc(rS) − Cc(0) − 3

7
Cx

]

g3ξ̄2e−Ē , (A.1.60)

where

Cc(rS) = Cxc(rS)−Cx =
c1 + c2rS + c3r

2
S

1 + c4rS + c5r2S + c6r3S
−Cx =:

C

D
−Cx , (A.1.61)

with the coefficients listed in Table 10.7. In addition, using equation (10.3.28)
as well as the identity

4

πkF
=

4

π(3π2ρ)1/3
=

(
16

3π2

) 2
3

rS , (A.1.62)

which follows from combining equations (10.1.20) and (10.1.21), we abbreviated

Ē = 100g4 4

πkF
ξ̄2 = 100g4ξ̄2

(
16

3π2

) 2
3

rS . (A.1.63)

From equation (10.1.22) we obtain

ρ
dCc(rS)

dρ
= −1

3
rS
dCc(rS)

drS
= −1

3
rS
C′D − CD′

D2
, (A.1.64)
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where

C′ =
dC

drS
= c2 + 2c3rS , D′ =

dD

drS
= c4 + 2c5rS + 3c6r

2
S . (A.1.65)

The derivatives of Ē are easily evaluated as

ρ
∂Ē

∂ρ
= −1

3
Ē , (A.1.66)

∂Ē

∂ζ
= 4

g′

g
Ē , (A.1.67)

∂Ē

∂ξ̄
=

2

ξ̄
Ē , (A.1.68)

and we thus obtain

ρ
∂H1

∂ρ
= 2νρ

dCc
dρ

g3ξ̄2e−Ē +
1

3
H1Ē , (A.1.69)

∂H1

∂ζ
= H1

g′

g

[
3 − 4Ē

]
, (A.1.70)

∂H1

∂ξ̄
=

2

ξ̄
H1

[
1 − Ē

]
. (A.1.71)

This leads to the following results for the second derivatives

1

ξ̄
ρ
∂2H1

∂ρ∂ξ̄
=

2

ξ̄2
ρ
∂

∂ρ

{
H1

[
1 − Ē

]}

=
2

ξ̄2
2νρ

dCc
dρ

g3ξ̄2e−Ē
[
1 − Ē

]
+

2

3ξ̄2
H1Ē

[
1 − Ē

]
+

2

3ξ̄2
H1Ē

= 4νρ
dCc
dρ

g3e−Ē
[
1 − Ē

]
+

2

3ξ̄2
H1Ē

[
2 − Ē

]
, (A.1.72)

1

ξ̄

∂2H1

∂ζ∂ξ̄
=

2

ξ̄2
∂

∂ζ

{
H1

[
1 − Ē

]}

=
2

ξ̄2
H1

g′

g

[
3 − 4Ē

] [
1 − Ē

]
− 2

ξ̄2
H14

g′

g
Ē

=
2

ξ̄2
H1

g′

g

[
3 − 11Ē + 4Ē2

]
, (A.1.73)

∂

∂ξ̄

{
1

ξ̄

∂H1

∂ξ̄

}

=
∂

∂ξ̄

{
2

ξ̄2
H1

[
1 − Ē

]
}

= − 4

ξ̄3
H1

[
1 − Ē

]
+

2

ξ̄2
2

ξ̄
H1

[
1 − Ē

]2 − 2

ξ̄2
H1

2

ξ̄
Ē

= − 4

ξ̄3
H1Ē

(
2 − Ē

)
. (A.1.74)
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[98] J. Kübler and V. Eyert, Electronic structure calculations, in: Electronic

and Magnetic Properties of Metals and Ceramics, edited by K. H. J.
Buschow (VCH Verlagsgesellschaft, Weinheim, 1992), pp. 1-145;
Volume 3A of Materials Science and Technology, edited by R. W. Cahn,
P. Haasen, and E. J. Kramer (VCH Verlagsgesellschaft, Weinheim, 1991-
1996).

[99] D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).

[100] H. J. Levinson, F. Greuter, and E. W. Plummer, Phys. Rev. B 27, 727
(1983).

[101] M. Levy, Proc. Natl. Acad. Sci. (USA) 76, 6062 (1979).

[102] M. Levy, Phys. Rev. A 26, 1200 (1982).

[103] E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981); Rev. Mod. Phys. 54, 311
(1982).

[104] E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).

[105] T. Loucks, Augmented Plane Wave Method (Benjamin, New York, 1967).

[106] W. Ludwig and C. Falter, Symmetries in Physics (Springer, Berlin, 1996).

[107] J. M. MacLaren, D. P. Clougherty, and R. C. Albers, Phys. Rev. B 42,
3205 (1990).

[108] J. M. MacLaren, D. P. Clougherty, M. E. McHenry, and M. M. Donovan,
Comput. Phys. Commun. 66, 383 (1991).

[109] N. H. March, Adv. Phys. 6, 1 (1957).

[110] N. H. March, Theor. Chem.: A Specialist’s Periodic Report 4, 92 (1981).

[111] N. H. March, Electron Correlations in Molecules and Condensed Phases

(Plenum Press, New York, 1996).

[112] L. F. Mattheiss, Phys. Rev. 133, A1399 (1964).

[113] A. Messiah, Quantum Mechanics, Vol. 1 (North Holland, Amsterdam,
1976).

[114] A. Messiah, Quantum Mechanics, Vol. 2 (North Holland, Amsterdam,
1978).

[115] M. S. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).

[116] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

[117] V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic

Properties of Metals (Pergamon Press, New York, 1978).



BIBLIOGRAPHY 243

[118] W. Nolting, Grundkurs Theoretische Physik, Quantenmechanik, Teil 1:

Grundlagen (Vieweg, Wiesbaden, 1997).

[119] W. Nolting, Grundkurs Theoretische Physik, Quantenmechanik, Teil 2:

Methoden und Anwendungen (Vieweg, Wiesbaden, 1997).

[120] W. Nolting, Grundkurs Theoretische Physik, Statistische Physik (Vieweg,
Wiesbaden, 1998).

[121] W. Nolting, Grundkurs Theoretische Physik, Vielteilchentheorie (Vieweg,
Wiesbaden, 1997).

[122] G. S. Painter, Phys. Rev. B 24, 4264 (1981).

[123] M. M. Pant and A. K. Rajagopal, Solid State Commun. 10, 1157 (1972).

[124] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and

Molecules (Oxford University Press, Oxford, 1989).

[125] W. Pauli, Phys. Rev. 58, 716 (1940).

[126] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopou-
los, Rev. Mod. Phys. 64, 1045 (1992).

[127] J. P. Perdew, Phys. Rev. B 33, 8822 (1986).

[128] J. P. Perdew, Physica B 172, 1 (1991).

[129] J. P. Perdew, in: Electronic Structure of Solids ’91, edited by P. Ziesche
and H. Eschrig (Akademie Verlag, Berlin, 1991), pp. 11-20.

[130] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(1996).

[131] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80, 891
(1998).

[132] J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).

[133] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson,
D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

[134] J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).

[135] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

[136] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

[137] J. C. Phillips, Phys. Rev. 112, 685 (1958).

[138] J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

[139] A. K. Rajagopal and J. Callaway, Phys. Rev. B7, 1912 (1973).



244 BIBLIOGRAPHY

[140] M. Rasolt and D. J. W. Geldart, Phys. Rev. B 34, 1325 (1986).

[141] C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).

[142] K. Schwarz, Phys. Rev. B 5, 2466 (1972).

[143] B. Segall and F. S. Ham, in: Methods in Computational Physics, edited
by B. Alder, S. Fernbach, and M. Rotenberg (Academic Press, New York,
1968), pp. 251-293.

[144] R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953).

[145] C. A. Sholl, Proc. Phys. Soc. 92, 434 (1967).

[146] D. J. Singh, Planewaves, Pseudopotentials and the LAPW Method

(Kluwer Academic Publishers, Boston, 1994).

[147] S. P. Singhal and J. Callaway, Phys. Rev. B 16, 1744 (1977).

[148] H. L. Skriver, The LMTO Method (Springer, Berlin, 1984).

[149] J. C. Slater, Phys. Rev. 35, 210 (1930).

[150] J. C. Slater, Phys. Rev. 36, 57 (1930).

[151] J. C. Slater, Phys. Rev. 51, 846 (1937).

[152] J. C. Slater, Phys. Rev. 81, 385 (1951).

[153] J. C. Slater, Quantum Theory of Atomic Structure, Vols. I and II
(McGraw-Hill, New York, 1960).

[154] J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 2 (McGraw-
Hill, New York, 1965).

[155] J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 3 (McGraw-
Hill, New York, 1967).

[156] M. Springborg, Methods of Electronic Structure Calculations (Wiley,
Chichester, 2000).
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