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Motivation

What Are We Aiming At?

@ Interpretation of
Experiments,

@ Understanding, and

@ Prediction of
Materials Properties
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Calculated Materials Properties

Structural and Mechanical Properties

Structural

@ geometries of molecules
@ crystal structures

@ electron densities

@ defect structures

@ interface structures

@ surface structures

@ adsorption
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Calculated Materials Properties

Structural and Mechanical Properties
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Structural and Mechanical Properties

Mechanical

@ compressibility
@ elastic moduli
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Structural and Mechanical Properties

Mechanical

@ compressibility
@ elastic moduli
@ thermal expansion
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Calculated Materials Properties

Structural and Mechanical Properties
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Mechanical

@ compressibility
@ elastic moduli
@ thermal expansion

@ vibrational properties
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Calculated Materials Properties

Structural and Mechanical Properties

Mechanical

@ compressibility
@ elastic moduli

@ thermal expansion
@ vibrational properties

@ hardness
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

Electronic

@ band structure
@ band gap
@ band offsets
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

Electronic ‘

@ band structure
@ band gap
@ band offsets

@ density distributions

@ electrical moments
@ electric field gradients
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

Electronic

@ band structure

@ band gap

@ band offsets

@ density distributions
@ polarizabilities
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

Electronic

@ band structure

@ band gap

@ band offsets

@ density distributions
@ polarizabilities

@ ionization energies
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

Electronic

@ band structure
@ band gap

@ band offsets

@ density distributions
@ polarizabilities

@ ionization energies
@ electron affinities
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

Electronic

@ band structure
band gap

band offsets
density distributions
polarizabilities
ionization energies
electron affinities
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

Electronic

@ band structure

band gap

band offsets

density distributions
polarizabilities
ionization energies
electron affinities
electrostatic potential
work functions WTUT o RS
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

— Optical

1F Ime,y

Ree 1 @ optical spectra
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

@ optical spectra
@ magneto-optical properties
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Electronic, Optical and Magnetic Properties

@ optical spectra
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Electronic, Optical and Magnetic Properties

@ optical spectra

@ magneto-optical properties
@ dielectric response

@ luminescence
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

@ optical spectra

@ magneto-optical properties
@ dielectric response

@ luminescence

@ fluorescence
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

@ spin-density distribution
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

@ spin-density distribution
@ magnetic moments
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Calculated Materials Properties

Electronic, Optical and Magnetic Properties

@ spin-density distribution
@ magnetic moments
@ NMR chemical shifts
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Calculated Materials Properties

Transport, Chemical, and Thermodynamic Properties

@ electrical conductivity
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Transport, Chemical, and Thermodynamic Properties

@ electrical conductivity
@ thermal conductivity
@ diffusion constants

@ permeability
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Calculated Materials Properties

Transport, Chemical, and Thermodynamic Properties

@ electrical conductivity
@ thermal conductivity
@ diffusion constants

@ permeability

@ catalytic properties
@ corrosion
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Calculated Materials Properties

Transport, Chemical, and Thermodynamic Properties

@ electrical conductivity
@ thermal conductivity
@ diffusion constants

@ permeability

@ catalytic properties
@ corrosion
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Calculated Materials Properties

Transport, Chemical, and Thermodynamic Properties

electrical conductivity
thermal conductivity

diffusion constants
permeability
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catalytic properties
corrosion
surface reactivity
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Calculated Materials Properties

Transport, Chemical, and Thermodynamic Properties

Thermodynamic

electrical conductivity @ binding energies

thermal conductivity

diffusion constants
permeability

¢ 6 ¢ ¢

catalytic properties
corrosion
surface reactivity
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Calculated Materials Properties

Transport, Chemical, and Thermodynamic Properties

Thermodynamic

@ electrical conductivity @ binding energies

@ thermal conductivity @ phase transitions

@ diffusion constants

@ permeability ’
o B—
=l e

@ catalytic properties i e

@ corrosion m——

@ surface reactivity % L y

@ photochemical properties 7a06w00
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Calculated Materials Properties

Transport, Chemical, and Thermodynamic Properties

Thermodynamic

@ electrical conductivity @ binding energies

@ thermal conductivity @ phase transitions

@ diffusion constants @ phase diagrams

@ permeability ' i
o PR—
=

@ catalytic properties o I S

@ corrosion m—— L

@ surface reactivity % L y

@ photochemical properties 7a0aw00
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Calculated Materials Properties

Calculated Electronic Properties of Metals

Cohesive Energies

Moruzzi, Janak, Williams, 1978
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Calculated Materials Properties

Calculated Electronic Properties of Metals
Wigner-Seitz Radii

Moruzzi, Janak, Williams, 1978
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Calculated Materials Properties

Calculated Electronic Properties of Metals

Bulk Moduli

Moruzzi, Janak, Williams, 1978
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Calculated Materials Properties

Calculated Electronic Properties

ARPES Data and Calculated Band Structure of Td-WTe,

Augustin et al., 2000
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Calculated Materials Properties

Calculated Optical Properties

Diagonal-Conductivity and Normal Incidence Reflectivity of CrO,

le et al., 1993
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Calculated Materials Properties

Calculated Electronic Properties

Experimental and Calculated Fermi Surface of Cu and TiTe,

betal., 19
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Calculated Materials Properties

Calculated Electronic Properties

Calculated Electron Density of Si
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Calculated Materials Properties

Calculated Electronic Properties

Calculated Electron Density of Si
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Calculated Materials Properties

Calculated Optical Properties

Dielectric Function of Al,O3

rosseini et al,, 2005
Ahuja et al., 2004 d
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Calculated Materials Properties

Calculated Optical Properties

Dielectric Function of Al,O3
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Computational Approaches

Theoretical Foundation

Newton’s 2nd Law

Schrédinger’'s Equation
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Computational Approaches

Foundation of Density Functional Theory 1964/1965

Pierre C. Hohenberg

Volker Eyert Computational Materials Science



Computational Approaches

Density Functional Theory |

Guidelines — to remember |

@ theory for the ground state
@ no excitations (!)

v
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Density Functional Theory |

Guidelines — to remember |

@ theory for the ground state
@ no excitations (!)
@ electron density as the central variable

@ no need for the many-body wave function
@ many-body wave function and potential from the density
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Density Functional Theory |

Guidelines — to remember |

@ theory for the ground state
@ no excitations (!)
@ electron density as the central variable

@ no need for the many-body wave function
@ many-body wave function and potential from the density

@ variational principle with respect to the electron density
@ minimization of total energy
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Computational Approaches

Density Functional Theory |

Guidelines — to remember

@ theory for the ground state
@ no excitations (!)
@ electron density as the central variable

@ no need for the many-body wave function
@ many-body wave function and potential from the density

@ variational principle with respect to the electron density
@ minimization of total energy

@ many-body problem < single-particle problem
@ exact mapping

-
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Computational Approaches

Density Functional Theory Il

Many-Body <= Single-Particle

Exact Mapping

@ many-body problem

@ real, unsolvable ()
o density pmp

Y5
D,
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Computational Approaches

Density Functional Theory Il

Many-Body <= Single-Particle

Exact Mapping

@ many-body problem

@ real, unsolvable ()
o density pmp

@ single-particle problem
@ fictitious, solvable (??7?)
o density psp = pmb
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Computational Approaches

Density Functional Theory Il

Many-Body <= Single-Particle

Exact Mapping

@ many-body problem

@ real, unsolvable ()
o density pmp

@ single-particle problem
@ fictitious, solvable (??7?)

o density psp = pmb
o effective single-particle potential

Veit,o (1) = Vext () + V() 4 Vxe,o (1)

@ single-particle equations: Kohn-Sham equations

Y5

[—VZ + Veff,o(r) - 6‘7] o (r) =0 4
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation

| = V2 Vext(1) 4 Vi (1) + Vi, (1) = 0 (K)] o (ky1) = 0
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation

[ V24 Vex (1) + VR (1) + Vic.o(1) = 0 (K)] (K, 1) = O

Kinetic Energy

@ non-relativistic

@ scalar-relativistic
@ fully relativistic

VR for Y
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation

[ = T2+ Ve (1) + VR (1) + Vic.o(1) = 0 (K)] (K, 1) = 0

4

External Potential (lons)

@ non-periodic

@ periodic
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation

[ = 724 Vex (1) + Vi (1) + Vic.o (1) = 0 (K)] (k1) = 0

ot

Effective Potential

@ all-electron muffin-tin

@ all-electron full potential
@ all-electron PAW

@ pseudopotential

-
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation

[— V2 + Vext (1) + Vi (I) + Vye o () — ea(k)} Yo (K,r) =0

Exchange-Correlation Potential

@ non-spin-polarized
@ spin-polarized
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation

[— V2 + Vext (1) + Vi (I) + Vye o () — ea(k)} Yo (K,r) =0

Exchange-Correlation Potential

@ local-density approximation (LDA)
@ generalized gradient approximation (GGA)
@ beyond LDA/GGA

VR for Y
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation

[— V2 + Vext (1) + Vi (I) + Vye o () — ea(k)} Yo (K,r) =0

Exchange-Correlation Potential

@ local-density approximation (LDA)

@ generalized gradient approximation (GGA)
@ beyond LDA/GGA

@ self-interaction correction (SIC)
o LDA+U, LDA+DMFT

o
INSTITUT, firr PHYSIK
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation

[— V2 + Vext (1) + Vi (I) + Vye o () — ea(k)} Yo (K,r) =0

Exchange-Correlation Potential

@ local-density approximation (LDA)

@ generalized gradient approximation (GGA)
@ beyond LDA/GGA
@ optimized effective potential (OEP)

@ exact exchange (EXX)
@ screened exchange (sX)

D KRGS
(e
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation

[— V2 + Vext (1) + Vi (I) + Vye o () — ea(k)} Yo (K,r) =0

Exchange-Correlation Potential

@ local-density approximation (LDA)

@ generalized gradient approximation (GGA)
@ beyond LDA/GGA, beyond DFT

@ model GW
o GW
o time-dependent DFT (TDDFT)

D SRS
\
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation

[ = 724 Vex (1) + VH (1) + Vic.o(1) = 0 (K)] (k. 1) = O

Wave Function, Expanded in

@ atomic orbitals

@ plane waves

@ augmented plane waves

@ augmented spherical waves

@ fully numerical functions

sl
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation
|: — VZ + Vext(r) + VH (r) + VXC,O’(r) — Ea(k):| 1/Ja(k¢ r) =0

Wave Function, Expanded in

@ atomic orbitals

@ Gaussians (GTO)
@ Slater-type (STO)
@ numerical (DMol, Siesta)

@ plane waves
@ augmented plane waves

: HYSIK
@ augmented spherical waves o

Volker Eyert Computational Materials Science



Computational Approaches

DFT Implementations |

Kohn-Sham Equation

[ = 724 Vex (1) + VH (1) + Vic.o(1) = 0 (K)] (k. 1) = O

Wave Function, Expanded in

@ atomic orbitals

@ plane waves

@ augmented plane waves

@ augmented spherical waves

@ fully numerical functions

sl
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation
|: — VZ + Vext(r) + VH (r) + VXC,O’(r) — Ea(k):| 1/Ja(k¢ r) =0

Wave Function, Expanded in

@ atomic orbitals

@ plane waves
@ augmented plane waves
@ augmented plane waves (APW)

@ linear augmented plane waves (LAPW)

o full-potential linear augmented plane waves (FLAPW)
HYSHE

@ augmented spherical waves
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation
|: — VZ + Vext(r) + VH (r) + VXC,O’(r) — Ea(k):| 1/Ja(k¢ r) =0

Wave Function, Expanded in

@ atomic orbitals
@ plane waves

@ augmented plane waves
@ augmented spherical waves
@ Korringa Kohn Rostoker (KKR)

@ linear muffin-tin orbital (LMTO)

@ augmented spherical wave (ASW) HI5KE
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Computational Approaches

DFT Implementations |

Kohn-Sham Equation

[ = 724 Vex (1) + VH (1) + Vic.o(1) = 0 (K)] (k. 1) = O

Wave Function, Expanded in

@ atomic orbitals

@ plane waves

@ augmented plane waves

@ augmented spherical waves

@ fully numerical functions
TS

courtesy of E. Wimmer =
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Computational Approaches

DFT Implementations II

Potentials and Partial Waves

Full Potential Full Potential

@ spherical symmetric near
nuclei

@ flat outside the atomic
cores

INSTITUT, fiir PHYSIK
UNITVERSITZ \UGSBURG
ker Eyert Computational Materials Science



Computational Approaches

DFT Implementations II

Potentials and Partial Waves

John C. Slater Full Potential

@ spherical symmetric near
nuclei

@ flat outside the atomic
cores

Muffin-Tin Approximation

@ approximate the potential
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Computational Approaches

DFT Implementations II

Potentials and Partial Waves

John C. Slater Muffin-Tin Approximation

distinguish:
@ atomic regions
@ muffin-tin spheres
@ Veft () = Vett o (|1])
@ remainder

@ interstitial region
] veffﬁ(r) =0

ot
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Computational Approaches

DFT Implementations II

Potentials and Partial Waves

Muffin-Tin Potential Muffin-Tin Approximation

distinguish:
@ atomic regions
@ muffin-tin spheres
@ Veft () = Vett o (|1])
@ remainder

@ interstitial region
o veﬁyg(r) =0

(NRTLTT: i M
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Computational Approaches

DFT Implementations II

Potentials and Partial Waves

Muffin-Tin Potential Partial Waves

@ muffin-tin spheres

9 Veft o () = Veit,o ([r])
@ solve radial Schrodinger
equation numerically
@ interstitial region
[~} veﬁyg(r) = O
@ exact solutions
@ plane waves
@ spherical waves
@ match at sphere surface
(,augment®)
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Computational Approaches

DFT Implementations IlI

Plane Waves <= Spherical Waves

Augmented Plane Waves |

@ require periodic cell

)
o CHYSIK

UNTVER
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Computational Approaches

DFT Implementations IlI

Plane Waves <= Spherical Waves

Augmented Plane Waves |

@ require periodic cell
@ good for solids and surfaces

)
o CHYSIK

UNTVER
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Computational Approaches

DFT Implementations IlI

Plane Waves <= Spherical Waves

Augmented Plane Waves |

@ require periodic cell
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DFT Implementations IV

Plane Waves <= Spherical Waves

Augmented Spherical Waves

@ do not require periodic cell

@ good for solids and surfaces

@ good for metals, semiconductors, and insulators
°

good for all atoms including transition metals, rare earth,
and actinides

still efficient for open structures
minimal basis set
computationally efficient
difficult to implement | rsik
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Summary

Density Functional Theory ...

@ allows for an accurate determination of a still growing
number of materials properties

@ is a ground state theory
@ is in principle exact

@ has given rise to a large variety of implementations
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Further Reading |

@ P.Hohenberg and W. Kohn
Inhomogeneous Electron Gas
Phys. Rev. 136, B864 (1964)

1 W. Kohn and L. J. Sham
Quantum Density Oscillations in an Inhomogeneous
Electron Gas
Phys. Rev. 140, A1133 (1965)

1 W. Kohn
An Essay on Condensed Matter Physics in the Twentieth
Century
Rev. Mod. Phys. 71, S59 (1999)
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Further Reading Il

¥ R. M. Dreizler and E. K. U. Gross
Density Functional Theory (Springer, Berlin, 1990)

¥ R. G. Parr and W. Yang
Density-Functional Theory of Atoms and Molecules (Oxford
University Press, Oxford, 1989)

¥ H. Eschrig
The Fundamentals of Density-Functional Theory (Edition
am Gutenbergplatz, Leipzig 2003)
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Further Reading llI

® J. Kibler and V. Eyert
Electronic structure calculations
in: Electronic and Magnetic Properties of Metals and
Ceramics
ed by K. H. J. Buschow (VCH, Weinheim, 1992), pp. 1-145
Volume 3A of Materials Science and Technology

® E. Wimmer
Prediction of Materials Properties
in: Encyclopedia of Computational Chemistry
ed by P. von Ragué-Schleyer (Wiley, New York, 1998)
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