Computational Materials Science

Volker Eyert

Institut für Physik, Universität Augsburg

Electronic Structure in a Nutshell

Organization of the Course

	Mon	Tue	Wed	Thu
General	Comp. Mat.	DFT	DFT	LDA
	Science	Basics	Basics	Introduct.
ASW	Introduction	Standard	Full. Pot.	Miscell.
Method	History	ASW	ASW	
	Background			
ASW	Installation	Distribution	CTRL File	Miscell.
Program		Data Files		
	Cu, Be	FeS ₂	CrO ₂	

Volker Eyert Computational Materials Science

INSTITUT für PHYSIK

-2

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Outline

2 Calculated Materials Properties

3 Computational Approaches

Outline

Volker Eyert Computational Materials Science

Outline

- 2 Calculated Materials Properties
- 3 Computational Approaches

What Are We Aiming At?

- Interpretation of Experiments,
- Understanding, and
- Prediction of Materials Properties

What Are We Aiming At?

- Interpretation of Experiments,
- Understanding, and
- Prediction of Materials Properties

What Are We Aiming At?

- Interpretation of Experiments,
- Understanding, and
- Prediction of Materials Properties

Outline

Structural and Mechanical Properties

Structural

- geometries of molecules
- o crystal structures
- electron densities
- defect structures
- interface structures
- surface structures
- adsorption

Structural and Mechanical Properties

- geometries of molecules
- crystal structures
- electron densities
- o defect structures
- interface structures
- surface structures
- adsorption

Structural and Mechanical Properties

Structural

- geometries of molecules
- crystal structures
- electron densities
- defect structures
- interface structures
- surface structures
- adsorption

TITUT für PH

3 × 4 3

Structural and Mechanical Properties

Structural

- geometries of molecules
- crystal structures
- electron densities
- defect structures
- interface structures
- surface structures
- adsorption

< 口 > < 同

Structural and Mechanical Properties

- geometries of molecules
- crystal structures
- electron densities
- defect structures
- interface structures
- surface structures
- adsorption

Structural and Mechanical Properties

- geometries of molecules
- crystal structures
- electron densities
- defect structures
- interface structures
- surface structures
- adsorption

Structural and Mechanical Properties

- geometries of molecules
- crystal structures
- electron densities
- defect structures
- interface structures
- surface structures
- adsorption

Structural and Mechanical Properties

Mechanical

- compressibility
- elastic moduli
- thermal expansion
- vibrational properties
- hardness

Structural and Mechanical Properties

Mechanical

- compressibility
- elastic moduli
- thermal expansion
- vibrational properties

< □ > < 同 >

hardness

Structural and Mechanical Properties

Mechanical

- compressibility
- elastic moduli
- thermal expansion
- vibrational properties

< □ > < 同 >

hardness

Structural and Mechanical Properties

Mechanical

- compressibility
- elastic moduli
- thermal expansion
- vibrational properties

hardness

Structural and Mechanical Properties

Mechanical

- compressibility
- elastic moduli
- thermal expansion
- vibrational properties
- hardness

Electronic, Optical and Magnetic Properties

Volker Evert

Electronic

- band structure
 - metal
 - semiconductor
 - insulator
- band gap
- band offsets
- density distributions
- opolarizabilities
- ionization energies
- electron affinities
- electrostatic potential

・ロット (雪) (日) (日)

STITUT für PH

Electronic, Optical and Magnetic Properties

Electronic

- band structure
- band gap
- band offsets
- density distributions
- opolarizabilities
- ionization energies
- electron affinities
- electrostatic potential
- work functions

Electronic, Optical and Magnetic Properties

Electronic

- band structure
- band gap
- band offsets
- density distributions
 - electrical moments
 - electric field gradients
- opolarizabilities
- ionization energies
- electron affinities
- electrostatic potential
- work functions

Electronic, Optical and Magnetic Properties

Electronic

- band structure
- band gap
- band offsets
- density distributions
- polarizabilities
- ionization energies
- electron affinities
- electrostatic potential
- work functions

Electronic, Optical and Magnetic Properties

Electronic

- band structure
- band gap
- band offsets
- density distributions
- polarizabilities
- ionization energies
- electron affinities
- electrostatic potentia
- work functions

Electronic, Optical and Magnetic Properties

Electronic

- band structure
- band gap
- band offsets
- density distributions
- polarizabilities
- ionization energies
- electron affinities
- electrostatic potentia
- work functions

Electronic, Optical and Magnetic Properties

Electronic

- band structure
- band gap
- band offsets
- density distributions
- polarizabilities
- ionization energies
- electron affinities
- electrostatic potential
- work functions

Electronic, Optical and Magnetic Properties

Electronic

- band structure
- band gap
- band offsets
- density distributions
- polarizabilities
- ionization energies
- electron affinities
- electrostatic potential
- work functions

Electronic, Optical and Magnetic Properties

Optical

- optical spectra
- magneto-optical properties
- dielectric response

- Iuminescence
- fluorescence

Electronic, Optical and Magnetic Properties

Optical

- optical spectra
- magneto-optical properties
- dielectric response
- Iuminescence
- fluorescence

Electronic, Optical and Magnetic Properties

Optical

- optical spectra
- magneto-optical properties
- dielectric response
- Iuminescence
- fluorescence

Electronic, Optical and Magnetic Properties

Optical

- optical spectra
- magneto-optical properties
- dielectric response

- Iuminescence
- fluorescence

Electronic, Optical and Magnetic Properties

Optical

- optical spectra
- magneto-optical properties
- dielectric response

- Iuminescence
- fluorescence

Electronic, Optical and Magnetic Properties

Magnetic

- spin-density distribution
- magnetic moments
- NMR chemical shifts

Electronic, Optical and Magnetic Properties

Magnetic

- spin-density distribution
- magnetic moments
- NMR chemical shifts

Electronic, Optical and Magnetic Properties

Magnetic

- spin-density distribution
- magnetic moments
- NMR chemical shifts

Transport, Chemical, and Thermodynamic Properties

Transport

- electrical conductivity
- thermal conductivity
- diffusion constants
- permeability

Thermodynamic

- binding energies
- phase transitions
- phase diagrams

- catalytic properties
- corrosion
- surface reactivity
- photochemical properties

Transport, Chemical, and Thermodynamic Properties

Transport

- electrical conductivity
- thermal conductivity
- diffusion constants
- permeability

Chemical

- catalytic properties
- corrosion
- surface reactivity
- photochemical properties

Thermodynamic

- binding energies
- phase transitions
- phase diagrams

Transport, Chemical, and Thermodynamic Properties

Transport

- electrical conductivity
- thermal conductivity
- diffusion constants
- permeability

Chemical

- catalytic properties
- corrosion
- surface reactivity
- photochemical properties

Thermodynamic

- binding energies
- phase transitions
- phase diagrams

Transport, Chemical, and Thermodynamic Properties

Transport

- electrical conductivity
- thermal conductivity
- diffusion constants
- permeability

Chemical

- catalytic properties
- corrosion
- surface reactivity
- photochemical properties

Thermodynamic

- binding energies
- phase transitions
- phase diagrams

Transport, Chemical, and Thermodynamic Properties

Transport

- electrical conductivity
- thermal conductivity
- diffusion constants
- permeability

Thermodynamic

- binding energies
- phase transitions
- phase diagrams

- catalytic properties
- corrosion
- surface reactivity
- photochemical properties

Transport, Chemical, and Thermodynamic Properties

Transport

- electrical conductivity
- thermal conductivity
- diffusion constants
- permeability

Thermodynamic

- binding energies
- phase transitions
- phase diagrams

- catalytic properties
- corrosion
- surface reactivity
- photochemical properties

Transport, Chemical, and Thermodynamic Properties

Transport

- electrical conductivity
- thermal conductivity
- diffusion constants
- permeability

Thermodynamic

- binding energies
- phase transitions
- phase diagrams

- catalytic properties
- corrosion
- surface reactivity
- photochemical properties

Transport, Chemical, and Thermodynamic Properties

Transport

- electrical conductivity
- thermal conductivity
- diffusion constants
- permeability

Thermodynamic

- binding energies
- phase transitions
- phase diagrams

- catalytic properties
- corrosion
- surface reactivity
- photochemical properties

Transport, Chemical, and Thermodynamic Properties

Transport

- electrical conductivity
- thermal conductivity
- diffusion constants
- permeability

Thermodynamic

- binding energies
- phase transitions
- phase diagrams

- catalytic properties
- corrosion
- surface reactivity
- photochemical properties

Transport, Chemical, and Thermodynamic Properties

Transport

- electrical conductivity
- thermal conductivity
- diffusion constants
- permeability

Chemical

- catalytic properties
- corrosion
- surface reactivity
- photochemical properties

Thermodynamic

- binding energies
- phase transitions
- phase diagrams

JK

Volker Eyert

Computational Materials Science

Transport, Chemical, and Thermodynamic Properties

Transport

- electrical conductivity
- thermal conductivity
- diffusion constants
- permeability

Chemical

- catalytic properties
- corrosion
- surface reactivity
- photochemical properties

Thermodynamic

- binding energies
- phase transitions
- phase diagrams

Volker Eyert

Computational Materials Science

Calculated Electronic Properties of Metals Cohesive Energies

э

Calculated Electronic Properties of Metals Wigner-Seitz Radii

Calculated Electronic Properties of Metals Bulk Moduli

TITUT für PHYSIK

Calculated Electronic Properties ARPES Data and Calculated Band Structure of Td-WTe₂

Augustin et al., 2000

Calculated Optical Properties Diagonal-Conductivity and Normal Incidence Reflectivity of CrO₂

Brändle et al., 1993

Calculated Electronic Properties Experimental and Calculated Fermi Surface of Cu and TiTe₂

Straub et al., 1997

FRG. 3. (Color) Tor: Fermi-level intensity map of Cu(001). The surface Billouin zone is indicated. Bottom: Modulus of the eradient $(|\nabla_k w(\mathbf{k})|)$ of the intensity map, together with the theoretical FS contour (black line).

continuous penetration of a lifetime broadened peak into a typically Gaussian energy window, given by the instramental response function

shows that the position of the intensity maximum along the independent determination of the Fermi vector from the meaured dispersion of the sp band (Fig. 4), as obtained from distribution curves on the same surface. Rath

Volker Eyert

FIG. 1. (Color) (a) Photoemicsion immusity map w(k) for excitations from the Fermi level of TiTe₂ (kv = 21.2 eV). The Brillouin zone is indicated. (b) Corresponding Ferrai-surface concern obtained from an ASW band calculation. (c) Modulus of the two-dimensional gradient $|\nabla_{\mathbf{k}}v(\mathbf{k})|$ of the map in (a). (d) Modulus of the logarithmic gradient $|\nabla_{\mathbf{k}}lm(\mathbf{k})|$

nent features are the "cigar-shaped" intensity maxima centered at the M points, which originate from the Ti 3d band. M and M' points.7 Though the electronic band structure itself does not deviate much from sixfold symmetry in the hexagonal 17 structure.7 the optical transition matrix ele-

spot at the Γ point. Note that we can also access parts of the second BZ (in the periodic zone scheme). The identification The observed intensity pattern reflects the threefold symme- of the intensity maxima becomes possible by comparison to conventional hand mapping results7 and to a corresponding FS cut derived from our ASW calculations [Fig. 1(b)]. An parently, the overall shape of the measured intensity map is already in good agreement with the calculated FS topolog

HYSIK

Computational Materials Science

Calculated Electronic Properties Calculated Electron Density of Si

Calculated Electronic Properties Calculated Electron Density of Si

INSTITUT für PHYSIK

Calculated Optical Properties Dielectric Function of Al₂O₃

Calculated Optical Properties Dielectric Function of Al₂O₃

Outline

2 Calculated Materials Properties

Theoretical Foundation

Newton's 2nd Law

 $\mathbf{F} = -\nabla E = m\mathbf{a}$

Schrödinger's Equation

$$\mathcal{H}\psi = \mathcal{E}\psi$$

INSTITUT für PHYSIK

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Foundation of Density Functional Theory 1964/1965

Pierre C. Hohenberg

Walter Kohn

Lu Jeu Sham

Density Functional Theory I

Guidelines

 \implies to remember

NSTITUT für Pl

3 1 4 3

< 🗇 ▶

- theory for the ground state
 - no excitations (!)
- electron density as the central variable
 - no need for the many-body wave function
 - many-body wave function and potential from the density
- variational principle with respect to the electron density
 - minimization of total energy
- - exact mapping

Density Functional Theory I

Guidelines

 $\exists \rightarrow +$

-

< 口 > < @ >

NSTITUT für PH

- theory for the ground state
 - no excitations (!)
- electron density as the central variable
 - no need for the many-body wave function
 - many-body wave function and potential from the density
- variational principle with respect to the electron density
 minimization of total energy
- - exact mapping

Density Functional Theory I

Guidelines

NSTITUT für PH

- theory for the ground state
 - no excitations (!)
- electron density as the central variable
 - no need for the many-body wave function
 - many-body wave function and potential from the density
- variational principle with respect to the electron density
 - minimization of total energy
- - exact mapping

< 口 > < 同 >

Density Functional Theory I

Guidelines

NSTITUT für PH

- theory for the ground state
 - no excitations (!)
- electron density as the central variable
 - no need for the many-body wave function
 - many-body wave function and potential from the density
- variational principle with respect to the electron density
 - minimization of total energy
- many-body problem \iff single-particle problem
 - exact mapping

Density Functional Theory II Many-Body ↔ Single-Particle

Exact Mapping

- many-body problem
 - real, unsolvable (!!!)
 - density ρ_{mb}
- single-particle problem
 - fictitious, solvable (???)
 - density $\rho_{sp} \stackrel{!}{=} \rho_{mb}$
 - effective single-particle potential

$$V_{eff,\sigma}(\mathbf{r}) = V_{ext}(\mathbf{r}) + V_{H}(\mathbf{r}) + V_{xc,\sigma}(\mathbf{r})$$

• single-particle equations: Kohn-Sham equations

$$\left[-\nabla^2 + v_{\text{eff},\sigma}(\mathbf{r}) - \varepsilon_{\sigma}\right]\psi_{\sigma}(\mathbf{r}) = 0$$

HYSIK

Density Functional Theory II Many-Body ↔ Single-Particle

Exact Mapping

- many-body problem
 - real, unsolvable (!!!)
 - density ρ_{mb}
- single-particle problem
 - fictitious, solvable (???)
 - density $\rho_{sp} \stackrel{!}{=} \rho_{mb}$
 - effective single-particle potential

$$V_{eff,\sigma}(\mathbf{r}) = V_{ext}(\mathbf{r}) + V_H(\mathbf{r}) + V_{xc,\sigma}(\mathbf{r})$$

• single-particle equations: Kohn-Sham equations

$$\left[-\nabla^2 + v_{\text{eff},\sigma}(\mathbf{r}) - \varepsilon_{\sigma}\right]\psi_{\sigma}(\mathbf{r}) = 0$$

HYSIK

Density Functional Theory II Many-Body ↔ Single-Particle

Exact Mapping

- many-body problem
 - real, unsolvable (!!!)
 - density ρ_{mb}
- single-particle problem
 - fictitious, solvable (???)
 - density $\rho_{sp} \stackrel{!}{=} \rho_{mb}$
 - effective single-particle potential

$$v_{eff,\sigma}(\mathbf{r}) = v_{ext}(\mathbf{r}) + v_{H}(\mathbf{r}) + v_{xc,\sigma}(\mathbf{r})$$

single-particle equations: Kohn-Sham equations

$$\left[-\nabla^2 + v_{\text{eff},\sigma}(\mathbf{r}) - \varepsilon_{\sigma}\right]\psi_{\sigma}(\mathbf{r}) = 0$$

HYSIK

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{\text{ext}}(\mathbf{r}) + v_{\text{H}}(\mathbf{r}) + v_{\text{xc},\sigma}(\mathbf{r}) - \varepsilon_{\sigma}(\mathbf{k}) \right] \psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{ext}(\mathbf{r}) + v_{H}(\mathbf{r}) + v_{xc,\sigma}(\mathbf{r}) - \varepsilon_{\sigma}(\mathbf{k}) \right] \psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

Kinetic Energy

- non-relativistic
- scalar-relativistic
- fully relativistic

< 口 > < 同 >

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + \frac{\mathbf{v}_{ext}(\mathbf{r})}{\mathbf{v}_{ext}(\mathbf{r})} + v_{\mathcal{H}}(\mathbf{r}) + v_{xc,\sigma}(\mathbf{r}) - \varepsilon_{\sigma}(\mathbf{k}) \right] \psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

External Potential (Ions)

- non-periodic
- periodic

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + \mathbf{v}_{\boldsymbol{\Theta}\boldsymbol{x}\boldsymbol{t}}(\mathbf{r}) + \mathbf{v}_{\boldsymbol{H}}(\mathbf{r}) + \mathbf{v}_{\boldsymbol{x}\boldsymbol{c},\sigma}(\mathbf{r}) - \varepsilon_{\sigma}(\mathbf{k}) \right] \psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

Effective Potential

- all-electron muffin-tin
- all-electron full potential
- all-electron PAW
- pseudopotential

< □ > < 同 >

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{ext}(\mathbf{r}) + v_{H}(\mathbf{r}) + \frac{v_{xc,\sigma}(\mathbf{r})}{v_{\sigma}(\mathbf{k},\mathbf{r})} - \varepsilon_{\sigma}(\mathbf{k}) \right] \psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

Exchange-Correlation Potential

- non-spin-polarized
- spin-polarized

< □ > < 同 >

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{ext}(\mathbf{r}) + v_{\mathcal{H}}(\mathbf{r}) + \frac{\mathbf{v}_{xc,\sigma}(\mathbf{r})}{\mathbf{v}_{\sigma}(\mathbf{k},\mathbf{r})} = 0 \right]$$

Exchange-Correlation Potential

- local-density approximation (LDA)
- generalized gradient approximation (GGA)
- beyond LDA/GGA

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{ext}(\mathbf{r}) + v_{\mathcal{H}}(\mathbf{r}) + \frac{\mathbf{v}_{xc,\sigma}(\mathbf{r})}{\mathbf{v}_{\sigma}(\mathbf{k},\mathbf{r})} = 0 \right]$$

Exchange-Correlation Potential

- local-density approximation (LDA)
- generalized gradient approximation (GGA)
- beyond LDA/GGA
 - self-interaction correction (SIC)
 - LDA+U, LDA+DMFT

< □ > < 同 >

NSTITUT für PH

ъ

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{ext}(\mathbf{r}) + v_{H}(\mathbf{r}) + \frac{v_{xc,\sigma}(\mathbf{r})}{\varepsilon_{\sigma}(\mathbf{k})} - \varepsilon_{\sigma}(\mathbf{k}) \right] \psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

Exchange-Correlation Potential

- local-density approximation (LDA)
- generalized gradient approximation (GGA)
- beyond LDA/GGA
 - optimized effective potential (OEP)
 - exact exchange (EXX)
 - screened exchange (sX)

< □ > < 同 > < 回 > < 回 >

HYSIK

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{ext}(\mathbf{r}) + v_{H}(\mathbf{r}) + \frac{v_{xc,\sigma}(\mathbf{r})}{\varepsilon_{\sigma}(\mathbf{k})} - \varepsilon_{\sigma}(\mathbf{k}) \right] \psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

Exchange-Correlation Potential

- local-density approximation (LDA)
- generalized gradient approximation (GGA)
- beyond LDA/GGA, beyond DFT
 - model GW
 - GW
 - time-dependent DFT (TDDFT)

< □ > < 同 > < 回 > < 回 >

HYSIK

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{ext}(\mathbf{r}) + v_{\mathcal{H}}(\mathbf{r}) + v_{xc,\sigma}(\mathbf{r}) - \varepsilon_{\sigma}(\mathbf{k})\right]\psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

Wave Function, Expanded in

- atomic orbitals
- plane waves
- augmented plane waves
- augmented spherical waves
- fully numerical functions

HYSIk

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{ext}(\mathbf{r}) + v_{\mathcal{H}}(\mathbf{r}) + v_{xc,\sigma}(\mathbf{r}) - \varepsilon_{\sigma}(\mathbf{k}) \right] \psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

Wave Function, Expanded in

- atomic orbitals
 - Gaussians (GTO)
 - Slater-type (STO)
 - numerical (DMol, Siesta)
- plane waves
- augmented plane waves
- augmented spherical waves
 - fully pupe griced functions Volker Eyert

HYSIK

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{ext}(\mathbf{r}) + v_{\mathcal{H}}(\mathbf{r}) + v_{xc,\sigma}(\mathbf{r}) - \varepsilon_{\sigma}(\mathbf{k})\right]\psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

Wave Function, Expanded in

- atomic orbitals
- plane waves
- augmented plane waves
- augmented spherical waves
- fully numerical functions

HYSIk

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{\text{ext}}(\mathbf{r}) + v_{\mathcal{H}}(\mathbf{r}) + v_{\text{xc},\sigma}(\mathbf{r}) - \varepsilon_{\sigma}(\mathbf{k}) \right] \psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

Wave Function, Expanded in

- atomic orbitals
- plane waves
- augmented plane waves
 - augmented plane waves (APW)
 - linear augmented plane waves (LAPW)
 - full-potential linear augmented plane waves (FLAPW)
- augmented spherical waves
- fully numerical functions

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{\text{ext}}(\mathbf{r}) + v_{\mathcal{H}}(\mathbf{r}) + v_{\text{xc},\sigma}(\mathbf{r}) - \varepsilon_{\sigma}(\mathbf{k}) \right] \psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

Wave Function, Expanded in

- atomic orbitals
- plane waves
- augmented plane waves
- augmented spherical waves
 - Korringa Kohn Rostoker (KKR)
 - linear muffin-tin orbital (LMTO)
 - augmented spherical wave (ASW)
- fully numerical functions

HYSIK

DFT Implementations I

Kohn-Sham Equation

$$\left[-\nabla^2 + v_{ext}(\mathbf{r}) + v_{H}(\mathbf{r}) + v_{xc,\sigma}(\mathbf{r}) - \varepsilon_{\sigma}(\mathbf{k})\right]\psi_{\sigma}(\mathbf{k},\mathbf{r}) = 0$$

Wave Function, Expanded in

- atomic orbitals
- plane waves
- augmented plane waves
- augmented spherical waves
- fully numerical functions

courtesy of E. Wimmer

DFT Implementations II

Potentials and Partial Waves

Full Potential

- spherical symmetric near nuclei
- flat outside the atomic cores

DFT Implementations II

Potentials and Partial Waves

John C. Slater

Full Potential

- spherical symmetric near nuclei
- flat outside the atomic cores

Muffin-Tin Approximation

approximate the potential

(日)

ISTITUT für PHYSIK

DFT Implementations II

Potentials and Partial Waves

John C. Slater

Muffin-Tin Approximation

distinguish:

- atomic regions
 - muffin-tin spheres

•
$$v_{eff,\sigma}(\mathbf{r}) = v_{eff,\sigma}(|\mathbf{r}|)$$

- remainder
 - interstitial region

< □ > < 同 > < 回 > < 回 >

ISTITUT für PHY

•
$$v_{eff,\sigma}(\mathbf{r}) = 0$$

DFT Implementations II

Potentials and Partial Waves

Muffin-Tin Potential

Muffin-Tin Approximation

distinguish:

- atomic regions
 - muffin-tin spheres

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$$

- remainder
 - interstitial region

TITUT für PH

•
$$v_{eff,\sigma}(\mathbf{r}) = 0$$

DFT Implementations II Potentials and Partial Waves

Muffin-Tin Potential

Partial Waves

- muffin-tin spheres
 - $v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$
 - solve radial Schrödinger equation numerically
- interstitial region
 - $v_{eff,\sigma}(\mathbf{r}) = 0$
 - exact solutions
 - plane waves
 - spherical waves

ЯK

 match at sphere surface ("augment")

Augmented Plane Waves

- require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- not recommended for rare earth and actinides
- inefficient for open structures
- systematic but slow convergence of basis set
- matrix elements easy to calculate
- easy to implement

< 🗇 ▶

Augmented Plane Waves

- require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- not recommended for rare earth and actinides
- inefficient for open structures
- systematic but slow convergence of basis set
- matrix elements easy to calculate
- easy to implement

< 🗇 ▶

- require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- not recommended for rare earth and actinides
- inefficient for open structures
- systematic but slow convergence of basis set
- matrix elements easy to calculate
- easy to implement

Augmented Plane Waves

- require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- not recommended for rare earth and actinides
- inefficient for open structures
- systematic but slow convergence of basis set
- matrix elements easy to calculate
- easy to implement

< 🗇 ▶

- require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- not recommended for rare earth and actinides
- inefficient for open structures
- systematic but slow convergence of basis set
- matrix elements easy to calculate
- easy to implement

- require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- not recommended for rare earth and actinides
- inefficient for open structures
- systematic but slow convergence of basis set
- matrix elements easy to calculate
- easy to implement

- require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- not recommended for rare earth and actinides
- inefficient for open structures
- systematic but slow convergence of basis set
- matrix elements easy to calculate
- easy to implement

- require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- not recommended for rare earth and actinides
- inefficient for open structures
- systematic but slow convergence of basis set
- matrix elements easy to calculate
- easy to implement

Augmented Spherical Waves

- o not require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- good for all atoms including transition metals, rare earth, and actinides
- still efficient for open structures
- minimal basis set
- computationally efficient
- o difficult to implement

< □ > < 同 > < 回 > < 回 > < 回 >

HYSIK

Augmented Spherical Waves

- o not require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- good for all atoms including transition metals, rare earth, and actinides
- still efficient for open structures
- minimal basis set
- computationally efficient
- o difficult to implement

< □ > < 同 > < 回 > < 回 > < 回 >

HYSIK

Augmented Spherical Waves

- o not require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- good for all atoms including transition metals, rare earth, and actinides
- still efficient for open structures
- minimal basis set
- computationally efficient
- o difficult to implement

< □ > < 同 > < 回 > < 回 > < 回 >

HYSIK

Augmented Spherical Waves

- o not require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- good for all atoms including transition metals, rare earth, and actinides
- still efficient for open structures
- minimal basis set
- computationally efficient
- o difficult to implement

< □ > < 同 > < 回 > < 回 > < 回 >

HYSIK

Augmented Spherical Waves

- o not require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- good for all atoms including transition metals, rare earth, and actinides
- still efficient for open structures
- minimal basis set
- computationally efficient
- o difficult to implement

< □ > < 同 > < 回 > < 回 > < 回 >

HYSIK

Augmented Spherical Waves

- o not require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- good for all atoms including transition metals, rare earth, and actinides
- still efficient for open structures
- minimal basis set
- computationally efficient
- o difficult to implement

< □ > < 同 > < 回 > < 回 > < 回 >

HYSIK

Augmented Spherical Waves

- o not require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- good for all atoms including transition metals, rare earth, and actinides
- still efficient for open structures
- minimal basis set
- computationally efficient
- difficult to implement

< □ > < 同 > < 回 > < 回 > < 回 >

HYSIK

Augmented Spherical Waves

- o not require periodic cell
- good for solids and surfaces
- good for metals, semiconductors, and insulators
- good for all atoms including transition metals, rare earth, and actinides
- still efficient for open structures
- minimal basis set
- computationally efficient
- difficult to implement

< □ > < 同 > < 回 > < 回 > < 回 >

HYSIK

Summary

Density Functional Theory ...

- allows for an accurate determination of a still growing number of materials properties
- is a ground state theory
- is in principle exact
- has given rise to a large variety of implementations

Summary

Density Functional Theory ...

- allows for an accurate determination of a still growing number of materials properties
- is a ground state theory
- is in principle exact
- has given rise to a large variety of implementations

Summary

Density Functional Theory ...

- allows for an accurate determination of a still growing number of materials properties
- is a ground state theory
- is in principle exact
- has given rise to a large variety of implementations

< 口 > < @ >
Motivation Calculated Materials Properties Computational Approaches Summary

Summary

Density Functional Theory ...

- allows for an accurate determination of a still growing number of materials properties
- is a ground state theory
- is in principle exact
- has given rise to a large variety of implementations

< □ > < 同 >

Motivation Calculated Materials Properties Computational Approaches Summary

Further Reading I

- P. Hohenberg and W. Kohn Inhomogeneous Electron Gas Phys. Rev. 136, B864 (1964)
- W. Kohn and L. J. Sham Quantum Density Oscillations in an Inhomogeneous Electron Gas Phys. Rev. 140, A1133 (1965)

W. Kohn

An Essay on Condensed Matter Physics in the Twentieth Century Rev. Mod. Phys. **71**, S59 (1999)

< □ > < 同 >

∃ ▶ ∢

Motivation **Calculated Materials Properties** Computational Approaches Summarv

Further Reading II

R. M. Dreizler and E. K. U. Gross Density Functional Theory (Springer, Berlin, 1990)

🛸 R. G. Parr and W. Yang

Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)

🍆 H. Eschrig

The Fundamentals of Density-Functional Theory (Edition am Gutenbergplatz, Leipzig 2003)

TITUT für Pl

< □ > < 同 > < 回 > <

Motivation **Calculated Materials Properties** Computational Approaches Summarv

Further Reading III

J. Kübler and V. Eyert

Electronic structure calculations

in: Electronic and Magnetic Properties of Metals and Ceramics ed by K. H. J. Buschow (VCH, Weinheim, 1992), pp. 1-145

Volume 3A of *Materials Science and Technology*

E. Wimmer

Prediction of Materials Properties

in: Encyclopedia of Computational Chemistry ed by P. von Ragué-Schleyer (Wiley, New York, 1998)