New Perspectives in Efficient Large-Scale Modeling

Volker Eyert

Center for Electronic Correlations and Magnetism Institute for Physics, University of Augsburg

September 24, 2009

All-Electron Full-Potential Methods
Fundamental Considerations
Full-Potential ASW Method
Proof of Concept: Results

ъ

- 2 All-Electron Full-Potential Methods
 - Fundamental Considerations
 - Full-Potential ASW Method
 - Proof of Concept: Results

- 2 All-Electron Full-Potential Methods
 - Fundamental Considerations
 - Full-Potential ASW Method
 - Proof of Concept: Results

All-Electron Full-Potential Methods
Fundamental Considerations
Full-Potential ASW Method
Proof of Concept: Results

3 Materials Science: Delafossites

ъ

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling

Materials Design

- on-the-fly calculation storage in databases
 - calculational approaches?
 - functional indicators?

Materials Design

- on-the-fly calculation storage in databases
 - calculational approaches?
 - functional indicators?
- Edisonian luck (trial and error) ⇐⇒ systematic search
 - optimization strategies?
 - evolutionary approaches?

Materials Design

- - calculational approaches?
 - functional indicators?
- Edisonian luck (trial and error) ⇐⇒ systematic search
 - optimization strategies?
 - evolutionary approaches?
- identifying functional building blocks
 - ⇐⇒ identifying common phenomena across materials

Materials Design

- on-the-fly calculation ⇐⇒ storage in databases
 - calculational approaches?
 - functional indicators?
- Edisonian luck (trial and error) ⇐⇒ systematic search
 - optimization strategies?
 - evolutionary approaches?
- identifying functional building blocks
 - ⇐⇒ identifying common phenomena across materials
- knowledge \leftarrow understanding
 - where does scientific experience/intuition enter?

Materials Design

Computational Modeling — A Zoo of Options

• pure ab initio approaches

→

Materials Design

Computational Modeling — A Zoo of Options

- pure ab initio approaches
- mapping ab initio results to models

< ∃⇒

Materials Design

- pure ab initio approaches
- mapping ab initio results to models
- purely model based approaches

Materials Design

- pure ab initio approaches
- mapping ab initio results to models
- purely model based approaches
- molecular dynamics

Materials Design

- pure ab initio approaches
- mapping ab initio results to models
- purely model based approaches
- molecular dynamics
- genetic algorithms

Materials Design

- pure ab initio approaches
- mapping ab initio results to models
- purely model based approaches
- molecular dynamics
- genetic algorithms
- continuum approaches

Materials Design

ab initio Approaches

- plane waves \leftarrow spherical waves
 - efficiency? accuracy?

< ∃→

Materials Design

ab initio Approaches

- plane waves \leftarrow spherical waves
 - efficiency? accuracy?
- atom, molecule \iff period lattice

э

Materials Design

ab initio Approaches

- plane waves \leftarrow spherical waves
 - efficiency? accuracy?
- atom, molecule \iff period lattice
- pseudopotentials \(\low \rightarrow augmentation \)

ъ

Materials Design

- plane waves \Leftlinetian spherical waves
 - efficiency? accuracy?
- atom, molecule \iff period lattice
- pseudopotentials \leftarrow augmentation
- Hartree-Fock ⇔ DFT ⇔ Quantum Monte Carlo

Materials Design

- plane waves \leftarrow spherical waves
 - efficiency? accuracy?
- atom, molecule ⇔ period lattice
- pseudopotentials \(\low \rightarrow augmentation \)
- Hartree-Fock ⇔ DFT ⇔ Quantum Monte Carlo
- LDA/GGA \iff OEP/EXX

Materials Design

- plane waves \Leftlinetian spherical waves
 - efficiency? accuracy?
- atom, molecule \iff period lattice
- pseudopotentials \leftarrow augmentation
- Hartree-Fock ⇔ DFT ⇔ Quantum Monte Carlo
- LDA/GGA \iff OEP/EXX
- single-particle \iff many-body
 - LDA+U, LDA+DMFT

Materials Design

- plane waves \Leftarrow spherical waves
 - efficiency? accuracy?
- atom, molecule \iff period lattice
- pseudopotentials \(\low \rightarrow augmentation \)
- Hartree-Fock ⇔ DFT ⇔ Quantum Monte Carlo
- LDA/GGA \iff OEP/EXX
- single-particle \iff many-body
 - LDA+U, LDA+DMFT
- ground state \iff excitations

Materials Design

- plane waves \Leftarrow spherical waves
 - efficiency? accuracy?
- atom, molecule \iff period lattice
- pseudopotentials \(\low \rightarrow augmentation \)
- Hartree-Fock ⇔ DFT ⇔ Quantum Monte Carlo
- LDA/GGA \iff OEP/EXX
- single-particle \iff many-body
 - LDA+U, LDA+DMFT
- ground state \iff excitations
- muffin-tin potential \iff full potential

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Outline

2 All-Electron Full-Potential Methods

- Fundamental Considerations
- Full-Potential ASW Method
- Proof of Concept: Results

э

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1930's ...

John C. Slater

Full Potential

 $V_{\sigma}(\mathbf{r})$:

spherical symmetric near nuclei flat outside the atomic cores

< □ > < @ > <

프 🖌 🛪 프 🕨

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1930's ...

John C. Slater

Full Potential

 $v_{\sigma}(\mathbf{r})$: { spherical symmetric near nuclei flat outside the atomic cores

Muffin-Tin Approximation

$$v^{MT}_{\sigma}({f r}) =$$

spherical symmetric in spheres constant in interstitial region

< ロ > < 同 > < 回 > < 回 >

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1930's ...

Muffin-Tin Potential

ъ

-

< □ > < 同 >

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$v_{eff,\sigma}(\mathbf{r}) = v_{eff,\sigma}(|\mathbf{r}|)$$

interstitial region

•
$$V_{\text{eff},\sigma}(\mathbf{r}) = 0$$

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$$

- solve radial Schrödinger equation numerically
- interstitial region

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = 0$$

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$$

- solve radial Schrödinger equation numerically
- interstitial region

•
$$V_{eff,\sigma}(\mathbf{r}) =$$

- "envelope functions"
 - plane waves
 - spherical waves

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$$

- solve radial Schrödinger equation numerically
- interstitial region

•
$$V_{eff,\sigma}(\mathbf{r}) =$$

- "envelope functions"
 - plane waves
 - spherical waves
- match at sphere surface ("augment")

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$$

- solve radial Schrödinger equation numerically
- interstitial region

•
$$V_{eff,\sigma}(\mathbf{r}) =$$

- "envelope functions"
 - plane waves
 - spherical waves
- match at sphere surface ("augment")

Basis Functions

- matched partial waves
 - augmented plane waves (APWs)

3 > < 3

 "muffin-tin orbitals" (MTOs), augmented spherical waves (ASWs)

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1930's ...

Wave Function

expand in basis functions

 expansion coefficients from variational principle

Basis Functions

- matched partial waves
 - augmented plane waves (APWs)
 - "muffin-tin orbitals" (MTOs), augmented spherical waves (ASWs)

ъ

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1930's ...

Wave Function

expand in basis functions

 expansion coefficients from variational principle

Core States

all-electron methods

- fully included
- orthogonal to partial waves

Basis Functions

- matched partial waves
 - augmented plane waves (APWs)
 - "muffin-tin orbitals" (MTOs), augmented spherical
 - waves (ASWs)

E ▶ .

 used to describe valence states

< □ > < 同

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1930's ...

Augmented Spherical Waves

Volker@Eyert.de

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1970's ...

"Linear Methods in Band Theory"

- energy dependence of basis functions almost linear → linearize (φ, φ)
 - huge increase in computat. efficiency!

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1970's ...

"Linear Methods in Band Theory"

- energy dependence of basis functions almost linear → linearize (φ, φ)
 - huge increase in computat. efficiency!

Linear Augmented Plane Wave (LAPW)

- muffin-tin approximation
- easy to implement

good!

bad

- full-potential at a low price
 - basis functions from muffin-tin potential
 - wave functions from full potential
 - example: Wien2k
- large basis set (\approx 100 pw's/atom)

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1970's ...

Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity

bad!

- natural interpretation of results
- difficult to implement
- full-potential extension extremely difficult
- muffin-tin approximation (?)
 - finite interstitial region
 - large basis set:
 - two functions per s-, p-, d-state
 - still inefficient

< □ > < 同 >

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1970's ...

Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity

bad!

bad!

- natural interpretation of results
- difficult to implement
- full-potential extension extremely difficult
- muffin-tin approximation (?)
 - finite interstitial region
 - large basis set: two functions per s-, p-, d-state
 - still inefficient

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1970's ...

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 → O(ASA) speed!!!

(日)

makes potential more realisticsystematic error in total energy

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1970's ...

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 → O(ASA) speed!!!

(日)

- makes potential more realistic
- systematic error in total energy

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Back in the 1970's ...

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 → O(ASA) speed!!!

< ロ > < 同 > < 回 > < 回 >

bad!

- makes potential more realistic
- systematic error in total energy

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Iron Pyrite: FeS₂

Pyrite

- Pa3

 (T_h⁶)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs $\parallel \langle 111 \rangle$ axes
- $x_{\rm S} = 0.38484$
- rotated FeS₆ octahedra

3 1 4 3

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

FeS₂: Structure Optimization

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Towards a Full-Potential Spherical-Wave Method

Conclusions

- ASA (space-filling atomic spheres)
 - $\mathcal{O}(ASA)$ speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - $\bullet \ \text{larger basis set} \to \text{inefficient}$

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Towards a Full-Potential Spherical-Wave Method

Conclusions

- ASA (space-filling atomic spheres)
 - $\mathcal{O}(ASA)$ speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - $\bullet \ \text{larger basis set} \to \text{inefficient}$

Requirements

- restore interstitial region
 - go to non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation
- inside muffin-tin spheres
 - non-spherical contributions

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Towards a Full-Potential Spherical-Wave Method

Conclusions

- ASA (space-filling atomic spheres)
 - O(ASA) speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - $\bullet \ \text{larger basis set} \to \text{inefficient}$

Requirements

- restore interstitial region
 - go to non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation
- inside muffin-tin spheres
 - non-spherical contributions

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Towards a Full-Potential Spherical-Wave Method

Guidelines

- interstitial quantities expanded in plane waves
 - straightforward to implement
 - inefficient
- Interstitial quantities expanded in spherical waves
 - elegant, no periodicity required
 - efficient
 - o difficult to implement

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Towards a Full-Potential Spherical-Wave Method

Guidelines

- interstitial quantities expanded in plane waves
 - straightforward to implement
 - inefficient
- interstitial quantities expanded in spherical waves
 - elegant, no periodicity required
 - efficient
 - difficult to implement

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

ASW Method: Further Reading

Volker@Eyert.de

New Perspectives in Efficient Large-Scale Modeling

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Basic Principles

Steps to be Taken

remove total energy error due to overlap of atomic spheres

- reintroduce non-overlapping muffin-tin spheres
- restore interstitial region

э

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Basic Principles

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential

- inside muffin-tin spheres
- in the interstitial region

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Basic Principles

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
 - inside muffin-tin spheres
 - in the interstitial region

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Basic Principles

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - in the interstitial region

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Basic Principles

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - use spherical-harmonics expansions
 - in the interstitial region

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Basic Principles

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - use spherical-harmonics expansions
 - in the interstitial region
 - no exact spherical-wave representation available!

< □ > < @ >

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

(AI)

From Wave Functions to Electron Density

Density inside MT-Spheres

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

From Wave Functions to Electron Density

Products of Basis Functions in Interstitial Region

$$p'(\mathbf{r}) = \sum_{n} d_{n}F_{n}(\mathbf{r})$$

 $\int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r})p'(\mathbf{r}) = \sum_{n} d_{n} \int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r})F_{n}(\mathbf{r})$

- *F_n*(**r**): spherical waves
 - would be efficient
 - integrals not known analytically
 - Springborg/Andersen 1987, Methfessel 1988, VE 2002, VE 2006
 - Methfessel 1988:

match values and slopes at MT-sphere surfaces

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

From Wave Functions to Electron Density

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

From Electron Density to Full Potential

Inside Muffin-Tin Spheres

density, Hartree-potential and xc-potential numerically

Interstitial Region

- density from value/slope matching
- Hartree-potential analytically
- xc-potential from value/slope matching

< ロ > < 同 > < 回 > < 回 >

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

From Electron Density to Full Potential

Inside Muffin-Tin Spheres

density, Hartree-potential and xc-potential numerically

Interstitial Region

- density from value/slope matching
- Hartree-potential analytically
- xc-potential from value/slope matching

< □ > < 同

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

From Full Potential to Basis Functions

Previous Approaches

- project full potential to muffin-tin potential
- construct basis functions from muffin-tin potential
- no minimal basis set! (large basis set!)

Present Approach

- project full potential to ASA potential
- construct basis functions from ASA potential
- minimal basis set!

< □ > < @ >

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

From Full Potential to Basis Functions

Previous Approaches

- project full potential to muffin-tin potential
- construct basis functions from muffin-tin potential
- no minimal basis set! (large basis set!)

Present Approach

- project full potential to ASA potential
- construct basis functions from ASA potential
- minimal basis set!

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Comparison of Approaches

Ole K. Andersen

 ASA geometry used for basis functions 	
\rightarrow minimal basis set	good!
 ASA geometry used for density and potential 	
\rightarrow error in total energy	bad!

▶ < ⊒ >

< □ > < 同 >

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Comparison of Approaches

Ole K. Andersen

ASA geometry used for basis functions	
\rightarrow minimal basis set	good!

Michael S. Methfessel

- MT geometry used for basis functions
 → large basis set

bad!

good!

bad!

< □ > < 同

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Comparison of Approaches

Ole K. Andersen

- ASA geometry used for basis functions
- ASA geometry used for density and potential

Michael S. Methfessel• MT geometry used for density and potential• MT geometry used for basis functions• bad!

present approach

ASA geometry used for basis functions
 → minimal basis set → O(ASA) speed

great!

great

good!

bad!

- MT geometry used for density and potential
 - \rightarrow accurate total energy

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Implementation

2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of $\Re\sigma$ and $\Im\sigma$
 - no Kramers-Kronig relations needed
- transport properties, thermoelectrics
- LDA+U method

• all "flavours" for double-counting terms (AMF, FLL, DF1

at O(ASA) speed!

・ロト ・聞 ト ・ ヨト ・ ヨト

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

at $\mathcal{O}(ASA)$ speed!

< ロ > < 同 > < 回 > < 回 >

Implementation

2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of ℜσ and ℑσ
 - no Kramers-Kronig relations needed
- transport properties, thermoelectrics
- LDA+U method

all "flavours" for double-counting terms (AMF, FLL, DFT)

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Implementation

2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of ℜσ and ℑσ
 - no Kramers-Kronig relations needed
- transport properties, thermoelectrics
- LDA+U method

all "flavours" for double-counting terms (AMF, FLL, DF⁻

at O(ASA) speed!

< ロ > < 同 > < 回 > < 回 >

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Implementation

2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of ℜσ and ℑσ
 - no Kramers-Kronig relations needed
- transport properties, thermoelectrics
- LDA+U method
 - all "flavours" for double-counting terms (AMF, FLL, DFT)

Volker@Evert.de New Perspectives in Efficient Large-Scale Modeling

(日)

at O(ASA) speed!

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Iron Pyrite: FeS₂

Pyrite

- Pa3

 (T_h⁶)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs $\parallel \langle 111 \rangle$ axes
- $x_{\rm S} = 0.38484$
- rotated FeS₆ octahedra

3 1 4 3

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

FeS₂: Equilibrium Volume and Bulk Modulus

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

FeS₂: Equilibrium Volume and Bulk Modulus

Lattice Constant

10.28	NCPP	Zeng and Holzwarth '94
10.02	FPLO	Opahle et al. '99
10.17	CRYSTAL98	Muscat <i>et al.</i> '02
9.92	CASTEP	Muscat <i>et al.</i> '02
10.18	FPASW	present work
40.00		E : 11 (170
10.23	exp.	Finklea et al. 76
10.22	exp.	Will <i>et al.</i> '84
10.23	exp.	Stevens et al. '91

▶ < ⊒ >

-

< □ > < 同 >

Proof of Concept: Results

FeS₂: Equilibrium Volume and Bulk Modulus

Bulk N	lodulus	
187	LMTO	Nguyen-Manh <i>et al.</i> '98
185	FPLO	Opahle et al. '99
209	CRYSTAL98	Muscat et al. '02
208	CASTEP	Muscat <i>et al.</i> '02
171	FPASW	present work
148	exp.	Drickamer <i>et al.</i> '66
118	exp.	Will <i>et al.</i> '84
215	exp.	Chattopadhyay and von Schnering '85
157	exp.	Fujii <i>et al.</i> '86
143	exp.	Jephcoat and Olson '87

162

145

exp.

exp.

- Jephcoat and Olson '87
- Ahrens and Jeanloz '87
 - Blachnik et al. '98

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

FeS₂: Structure Optimization

▶ < ⊒ >

< □ > < 同 >

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

FeS₂: Structure Optimization

(日)

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

FeS₂: Structure Optimization

Sulfur Position

NCPP	Zeng and Holzwarth '94
FPLO	Opahle <i>et al.</i> '99
CRYSTAL98	Muscat et al. '02
CASTEP	Muscat et al. '02
FPASW	present work
	E : 11 (1170
exp.	Finklea <i>et al. 16</i>
exp.	Will et al. '84
exp.	Stevens et al. '91
	NCPP FPLO CRYSTAL98 CASTEP FPASW exp. exp. exp. exp.

(日)

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Phase Stability in Silicon

Bad

• β -tin structure most stable # nature (diamond structure)

▶ ∢ ≣

< □ > < 同 >

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

Phase Stability in Silicon

New!

- diamond structure most stable
- pressure induced phase transition to β -tin structure

Volker@Eyert.de

New Perspectives in Efficient Large-Scale Modeling

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

LTO(Γ)-Phonon in Silicon

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling

3 1 4 3

Fundamental Considerations Full-Potential ASW Method Proof of Concept: Results

LTO(Γ)-Phonon in Silicon

New!

• phonon frequency: $f_{calc} = 15.34 \text{ THz} (f_{exp} = 15.53 \text{ THz})$

< □ > < 同 > < 回 > < 回 >

500

Outline

All-Electron Full-Potential Methods Fundamental Considerations Full-Potential ASW Method

Proof of Concept: Results

ъ

Delafossite Structure

Building Blocks

- rhombohedral lattice
- triangular A-atom layers
- BO₂ sandwich layers
- B-atoms octahedrally coordinated
- Iinear O–A–O bonds

Delafossite Structure

Building Blocks

- rhombohedral lattice
- triangular A-atom layers
- BO₂ sandwich layers
- B-atoms octahedrally coordinated
- Iinear O-A-O bonds

Issues

- dimensionality
- geometric frustration
- play chemistry

< □ > < 同 > < 回 > < 回 >

э

Delafossite Structure

Prototype Materials

- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CulnO₂, ...
- PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂

Properties

- semiconductors, AF interactions, (distorted) triangular
- non-mag. semicond., high TEP
- wide-gap semicond., p-type TCO
- very good metals, high anisotropy

Delafossite Structure

Prototype Materials

- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CulnO₂, ...
- PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂

Properties

- semiconductors, AF interactions, (distorted) triangular
- onn-mag. semicond., high TEP
- wide-gap semicond., p-type TCO
- very good metals, high anisotropy

Delafossite Structure

Prototype Materials

- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CuInO₂, ...
- PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂

Properties

- semiconductors, AF interactions, (distorted) triangular
- non-mag. semicond., high TEP
- wide-gap semicond., p-type TCO

very good metals, high anisotropy

Delafossite Structure

Prototype Materials

- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CuInO₂, ...
- PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂

Properties

- semiconductors, AF interactions, (distorted) triangular
- non-mag. semicond., high TEP
- wide-gap semicond., p-type TCO
- very good metals, high anisotropy

PdCoO₂ and PtCoO₂

Delafossite Structure

Experimental Results

- very low resistivity
- anisotropy ratio ≈ 200
- PES: only Pd 4d states at E_F
- PES/IPES: E_F in shallow DOS minimum
 - high TEP on doping?

PdCoO₂ and PtCoO₂

Delafossite Structure

Experimental Results

- very low resistivity
- anisotropy ratio ≈ 200
- PES: only Pd 4d states at E_F
- PES/IPES: E_F in shallow DOS minimum
 - high TEP on doping?

Open Issues

role of Pd 4d, Co 3d, and O 2p orbitals?

< ∃⇒

Structure Optimization in PdCoO₂

Delafossite Structure

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling

Structure Optimization in PdCoO₂

Delafossite Structure

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling

Structure Optimization in PdCoO₂

Structural Data Total energy surface experiment • a = 2.83 Å ● c = 17.743 Å • $z_0 = 0.1112$ theory ● a = 2.8767 Å c = 17.7019Å • $z_0 = 0.1100$

5.365.385.45.425.445.465

VE, R. Frésard, A. Maignan, Chem. Mat. 20, 2370 (2008)

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling

Electronic Properties of PdCoO₂

Results

- Co 3d-O 2p hybridization
- CoO₆ octahedra: Co $3d \Rightarrow t_{2q}$ and e_q
- Co 3d⁶ (Co³⁺) LS
- Pd 4d⁹ (Pd¹⁺)
- Co 3d, O 2p: very small DOS at E_F

VE, R. Frésard, A. Maignan, Chem. Mat. 20, 2370 (2008)

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling

Electronic Properties of PdCoO₂

Results

- broad Pd d_{xy,x^2-y^2} bands
 - short in-plane Pd-Pd distance
- non-bonding Pd d_{xz,yz} bands
- strong Pd $4d_{3z^2-r^2}$ -O 2p hybridization
- states at E_F: Pd d_{xy,x²-y²}, d_{3z²-r²}

VE, R. Frésard, A. Maignan, Chem. Mat. 20, 2370 (2008)

Electronic Properties of PdCoO₂

Fermi Surface

Results

- quasi-2D
- single band crossing E_F
- but: bands below E_F disperse along Γ-A

VE, R. Frésard, A. Maignan, Chem. Mat. 20, 2370 (2008)

CuFeO₂

Delafossite Structure

Basics

- semiconductor
- AF interactions
- triangular lattice

CuFeO₂

Delafossite Structure

Basics

- semiconductor
- AF interactions
- triangular lattice

Open Issues

- frustration vs. long-range order
- role of Cu 3d orbitals?
- role of Fe 3d and O 2p orbitals?

CuFeO₂

Previous Neutron Data

- $T_{N_1} = 16 \,\mathrm{K}, \ T_{N_2} = 11 \,\mathrm{K}$
- $\Theta_{CW} = -90 \,\mathrm{K}$
- magnetic supercells
- no structural distortion
- $m_{Fe^{3+}} = 4.4 \, \mu_B$

э

< □ > < 同 > < 回 > < 回 >

CuFeO₂

Previous Neutron Data

- $T_{N_1} = 16 \,\mathrm{K}, \ T_{N_2} = 11 \,\mathrm{K}$
- $\Theta_{CW} = -90 \,\mathrm{K}$
- magnetic supercells
- no structural distortion
- $m_{Fe^{3+}} = 4.4 \, \mu_B$

Band Calculations

- rhombohedral structure
- $m_{Fe} = 0.9 \, \mu_B$, $m_{Fe} = 3.8 \, \mu_B$

< ロ > < 同 > < 回 > < 回 > < 回 >

- $E_g = 0$ in LDA, GGA
- ♯ PES, XES

CuFeO₂

Previous Neutron Data

- $T_{N_1} = 16 \,\mathrm{K}, \ T_{N_2} = 11 \,\mathrm{K}$
- $\Theta_{CW} = -90 \,\mathrm{K}$
- magnetic supercells
- no structural distortion
- $m_{Fe^{3+}} = 4.4 \, \mu_B$

Band Calculations

- rhombohedral structure
- $m_{Fe} = 0.9 \, \mu_B$, $m_{Fe} = 3.8 \, \mu_B$

< ロ > < 同 > < 回 > < 回 >

- $E_g = 0$ in LDA, GGA
- # PES, XES

New Neutron Data

- magnetic supercells
- monoclinic structure below 4 K

CuFeO₂

Previous Neutron Data

- $T_{N_1} = 16 \,\mathrm{K}, \ T_{N_2} = 11 \,\mathrm{K}$
- $\Theta_{CW} = -90 \,\mathrm{K}$
- magnetic supercells
- no structural distortion
- $m_{Fe^{3+}} = 4.4 \, \mu_B$

New Neutron Data

- magnetic supercells
- monoclinic structure below 4 K

Band Calculations

- rhombohedral structure
- $m_{Fe} = 0.9 \,\mu_B$, $m_{Fe} = 3.8 \,\mu_B$
- $E_g = 0$ in LDA, GGA
- # PES, XES

Open Issues

- spin-state of Fe?
- influence of monoc. structure?

< ロ > < 同 > < 回 > < 回 >

Electronic Properties of CuFeO₂

Results Fe 3*d*-O 2*p* hybridization FeO₆ octahedra:

- Fe 3 $d \Rightarrow t_{2g}$ and e_g
- Cu 4d¹⁰ (Cu¹⁺)
- Fe 3*d t*_{2*g*}
 - sharp peak at E_F

VE, R. Frésard, A. Maignan, Phys. Rev. B 78, 052402 (2008)

}

Electronic Properties of CuFeO₂

Fermi Surface Results strongly 3D FS PdCoO₂

VE, R. Frésard, A. Maignan, Phys. Rev. B 78, 052402 (2008)

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling

Magnetic Properties of CuFeO₂

Total Energ	ies (mRyd/f.u.)	, Magn. N	loms. (μ	a _B), Band	Gaps (eV)
structure	magn. order	ΔE	m _{Fe}	m _O	E_{g}
rhomb.	spin-deg.	0.0			-
rhomb.	ferro (LS)	-16.7	1.03	-0.02	-
rhomb.	ferro (IS)	-12.0	2.02	-0.02	-
rhomb.	ferro (HS)	-19.2	3.73	0.21	-
VE, R. Frésard, A. Maignan, Phys. Rev. B 78, 052402 (2008)					

Magnetic Properties of CuFeO₂

Results

- LS, IS, HS in rhombohedral structure
- HS: O 2p polarization via Fe 3d eg

VE, R. Frésard, A. Maignan, Phys. Rev. B 78, 052402 (2008)

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling

Magnetic Properties of CuFeO₂

Total Energ	ies (mRyd/f.u.)	, Magn. N	/loms. (μ	ι _B), Band	Gaps (eV)
structure	magn. order	ΔE	<i>m</i> _{Fe}	m _o	E_{g}
rhomb.	spin-deg.	0.0			-
rhomb.	ferro (LS)	-16.7	1.03	-0.02	-
rhomb.	ferro (IS)	-12.0	2.02	-0.02	-
rhomb.	ferro (HS)	-19.2	3.73	0.21	-
monoc.	spin-deg.	-6.0			-
monoc.	ferro (LS)	-21.5	1.04	-0.02	-
monoc.	ferro (IS)	-19.0	2.08	-0.02	-
monoc.	ferro (HS)	-32.0	3.62	0.19	-

VE, R. Frésard, A. Maignan, Phys. Rev. B 78, 052402 (2008)

Magnetic Properties of CuFeO₂

Results

- monoc. structure
- Fe³⁺ HS
- O 2*p* polarization via Fe 3*d e*_g

VE, R. Frésard, A. Maignan, Phys. Rev. B 78, 052402 (2008)

}

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling
Magnetic Properties of CuFeO₂

Total Energies (mRyd/f.u.), Magn. Moms. (μ_B), Band Gaps (eV)					
structure	magn. order	ΔE	$m_{ m Fe}$	m _O	E_{g}
rhomb.	spin-deg.	0.0			-
rhomb.	ferro (LS)	-16.7	1.03	-0.02	-
rhomb.	ferro (IS)	-12.0	2.02	-0.02	-
rhomb.	ferro (HS)	-19.2	3.73	0.21	-
monoc.	spin-deg.	-6.0			-
monoc.	ferro (LS)	-21.5	1.04	-0.02	-
monoc.	ferro (IS)	-19.0	2.08	-0.02	-
monoc.	ferro (HS)	-32.0	3.62	0.19	-
monoc.	antiferro	-46.0	± 3.72	± 0.08	0.05

VE, R. Frésard, A. Maignan, Phys. Rev. B 78, 052402 (2008)

CuRhO₂

Delafossite Structure

Experimental Findings

- semiconductor
- high TEP on hole doping
 - $Rh^{3+} \longrightarrow Mg^{2+}$ up to 12%
- high T-independent PF

э

э

CuRhO₂

Delafossite Structure

Experimental Findings

- semiconductor
- high TEP on hole doping
 - $Rh^{3+} \longrightarrow Mg^{2+}$ up to 12%
- high T-independent PF

Open Issues

- origin of high TEP
- role of Cu 3d orbitals?
- role of Rh 4d and O 2p orbitals?

Electronic Properties of CuRhO₂

Results

- Rh 4d-O 2p hybridization
- RhO₆ octahedra: Rh 4 $d \Rightarrow t_{2g}$ and e_g
- $E_g \approx 0.75 \, eV$
- Cu 4d¹⁰ (Cu¹⁺)
- electronic structure: strongly 3D

< 17 ▶

A. Maignan, VE, et al., Phys. Rev. B 80, 115103 (2009)

э

Thermoelectric Power of CuRhO₂

A. Maignan, VE, et al., Phys. Rev. B 80, 115103 (2009)

Volker@Eyert.de New Perspectives in Efficient Large-Scale Modeling

(日)

Summary

Computational Modeling ...

Full-Potential ASW Method

- Highly Accurate Total Energies
- O(ASA) Speed!
- Optical and Transport Properties Available

ъ

Summary

Computational Modeling ...

Full-Potential ASW Method

- Highly Accurate Total Energies
- O(ASA) Speed!
- Optical and Transport Properties Available

Acknowledgments

Caen

R. Frésard, S. Hébert A. Maignan, C. Martin

Darmstadt/Jülich

P. C. Schmidt, M. Stephan J. Sticht †

Augsburg

K.-H. Höck, T. Kopp, J. Mannhart

Acknowledgments

Rio de Janeiro

Thank You for Your Attention!