All-Electron Full-Potential Calculations at $\mathcal{O}(ASA)$ Speed — A Fata Morgana?

Volker Eyert

SFB 484, Teilprojekt D6

October 5, 2007

Full-Potential ASW Method

2 Full-Potential ASW Method

Back in the 1930's ...

John C. Slater

Full Potential

 $v_{\sigma}(\mathbf{r})$: { spherical symmetric near nuclei flat outside the atomic cores

Image: A matrix of the second seco

Back in the 1930's ...

John C. Slater

Full Potential

 $v_{\sigma}(\mathbf{r})$: { spherical symmetric near nuclei flat outside the atomic cores

Muffin-Tin Approximation

$$v^{MT}_{\sigma}({f r}) =$$

spherical symmetric in spheres constant in interstitial region

Back in the 1930's ...

Volker Eyert

TITUT für PHYSIK

Back in the 1930's ...

Muffin-Tin Approximation

distinguish:

atomic regions

remainder

Muffin-Tin Potential

Back in the 1930's ...

Muffin-Tin Approximation

distinguish:

- atomic regions
 - muffin-tin spheres

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$$

remainder

Muffin-Tin Potential

Back in the 1930's ...

Muffin-Tin Approximation

distinguish:

- atomic regions
 - muffin-tin spheres

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$$

- remainder
 - interstitial region

•
$$v_{eff,\sigma}(\mathbf{r}) = 0$$

Muffin-Tin Potential

Image: A matrix of the second seco

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$$

interstitial region

•
$$V_{\text{eff},\sigma}(\mathbf{r}) = 0$$

Muffin-Tin Potential

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$$

- solve radial Schrödinger equation numerically
- interstitial region

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = 0$$

Muffin-Tin Potential

Image: A matrix and a matrix

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$$

- solve radial Schrödinger equation numerically
- interstitial region

•
$$v_{eff,\sigma}(\mathbf{r}) = 0$$

- exact solutions
 - plane waves
 - spherical waves

Muffin-Tin Potential

Image: A matrix and a matrix

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$$

- solve radial Schrödinger equation numerically
- interstitial region

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = 0$$

- exact solutions
 - plane waves
 - spherical waves
- match at sphere surface ("augment")

Muffin-Tin Potential

< 口 > < 同 >

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$$

- solve radial Schrödinger equation numerically
- interstitial region

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = 0$$

- exact solutions
 - plane waves
 - spherical waves
- match at sphere surface ("augment")

Basis Functions

- matched partial waves
 - augmented plane waves (APWs)

3 × 4 3

TITUT für PHYSIK

 "muffin-tin orbitals" (MTOs), augmented spherical waves (ASWs)

Image: A matrix and a matrix

Back in the 1930's ...

Wave Function

expand in basis functions

 expansion coefficients from variational principle

Basis Functions

matched partial waves

- augmented plane waves (APWs)
- "muffin-tin orbitals" (MTOs), augmented spherical

waves (ASWs)

Image: A matrix and a matrix

Back in the 1930's ...

Wave Function

expand in basis functions

 expansion coefficients from variational principle

Core States

all-electron methods

- fully included
- orthogonal to partial waves

Basis Functions

- matched partial waves
 - augmented plane waves (APWs)
 - "muffin-tin orbitals" (MTOs), augmented spherical
 - waves (ASWs)
- used to describe valence states

Image: A matrix and a matrix

Back in the 1930's ...

Augmented Spherical Waves

Back in the 1970's ...

"Linear Methods in Band Theory"

- energy dependence of basis functions almost linear → linearize (φ, φ)
 - huge increase in computat. efficiency!

Back in the 1970's ...

"Linear Methods in Band Theory"

- energy dependence of basis functions almost linear → linearize (φ, φ)
 - huge increase in computat. efficiency!

Linear Augmented Plane Wave (LAPW)

- muffin-tin approximation
- easy to implement
- full-potential at a low price

good!

bad!

SIK

- basis functions from muffin-tin potential
- wave functions from full potential
- example: Wien2k
- large basis set (pprox 100 pw's/atom)

Back in the 1970's ...

Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity

bad!

NSTITUT für PH

∃ → ∢

-

- natural interpretation of results
- o difficult to implement
- full-potential extension extremely difficult
- muffin-tin approximation (?)
 - finite interstitial region
 - Iarge basis set:

two functions per s-, p-, d-state

• still inefficient

< 口 > < 同 >

Back in the 1970's ...

Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity

bad!

bad!

- natural interpretation of results
- difficult to implement
- full-potential extension extremely difficult
- muffin-tin approximation (?)
 - finite interstitial region
 - large basis set: two functions per s-, p-, d-state
 - still inefficient

Back in the 1970's ...

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 → O(ASA) speed!!!

(日)

ыĸ

- makes potential more realistic
- systematic error in total energy

Back in the 1970's ...

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 → O(ASA) speed!!!

(日)

ыĸ

makes potential more realistic

systematic error in total energy

Back in the 1970's ...

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 → O(ASA) speed!!!

(日)

bad!

ыĸ

- makes potential more realistic
- systematic error in total energy

Iron Pyrite: FeS₂

Pyrite

- Pa3

 (T_h⁶)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs $\parallel \langle 111 \rangle$ axes
- $x_{\rm S} = 0.38484$
- rotated FeS₆ octahedra

< 口 > < 同 >

ULUL TUR PHYSIK

FeS₂: Structure Optimization

ASW Version 2.2

Towards a Full-Potential Spherical-Wave Method

Conclusions

- ASA (space-filling atomic spheres)
 - $\mathcal{O}(ASA)$ speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - $\bullet \ \text{larger basis set} \to \text{inefficient}$

Towards a Full-Potential Spherical-Wave Method

Conclusions

- ASA (space-filling atomic spheres)
 - $\mathcal{O}(ASA)$ speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - $\bullet \ \text{larger basis set} \to \text{inefficient}$

Requirements

- restore interstitial region
 - go to non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation
- inside muffin-tin spheres
 - non-spherical contributions

HYSIK

Towards a Full-Potential Spherical-Wave Method

Conclusions

- ASA (space-filling atomic spheres)
 - O(ASA) speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - $\bullet \ \text{larger basis set} \to \text{inefficient}$

Requirements

- restore interstitial region
 - go to non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation
- inside muffin-tin spheres
 - non-spherical contributions

HYSIK

Towards a Full-Potential Spherical-Wave Method

Guidelines

- interstitial quantities expanded in plane waves
 - straightforward to implement
 - inefficient
- interstitial quantities expanded in spherical waves
 - elegant, no periodicity required
 - efficient
 - o difficult to implement

Towards a Full-Potential Spherical-Wave Method

Guidelines

- interstitial quantities expanded in plane waves
 - straightforward to implement
 - inefficient
- interstitial quantities expanded in spherical waves
 - elegant, no periodicity required
 - efficient
 - difficult to implement

ASW Method

Characteristics

- similar to LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations

ASW Method

Characteristics

- similar to LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations

Oth Generation (Williams, Kübler, Gelatt, 1970s)

PRB 19, 6094 (1979)

Image: A matrix and a matrix

ASW Method

Characteristics

- similar to LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations

1st Generation (VE, 1990s)

IJQC 77, 1007 (2000)

HYSIK

- completely new, monolithic implementation
- new algorithms \longrightarrow improved accuracy, numerical stability
- much improved functionality, usability, and portability
- all LDA-parametrizations, most GGA-schemes
- many new interpretative tools
- still based on atomic-sphere approximation
ASW Method: Further Reading

Outline

Basic Principles

Steps to be Taken

remove total energy error due to overlap of atomic spheres

- reintroduce non-overlapping muffin-tin spheres
- restore interstitial region

Image: A matrix and a matrix

Basic Principles

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential

- inside muffin-tin spheres
- in the interstitial region

Image: A matrix and a matrix

Basic Principles

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
 - inside muffin-tin spheres
 - in the interstitial region

Basic Principles

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - in the interstitial region

Basic Principles

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - use spherical-harmonics expansions
 - in the interstitial region

∃ ▶ ∢

Basic Principles

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - use spherical-harmonics expansions
 - in the interstitial region
 - o no exact spherical-wave representation available!

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

Image: A matrix of the second seco

∃ ▶ ∢

From Wave Functions to Electron Density

Density inside MT-Spheres

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

(AI)

From Wave Functions to Electron Density

Products of Basis Functions in Interstitial Region

$$p'(\mathbf{r}) = \sum_{n} d_{n} F_{n}(\mathbf{r})$$
$$\int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r}) p'(\mathbf{r}) = \sum_{n} d_{n} \int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r}) F_{n}(\mathbf{r})$$

From Wave Functions to Electron Density

Products of Basis Functions in Interstitial Region

$$p'(\mathbf{r}) = \sum_n d_n F_n(\mathbf{r})$$

$$\int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) p'(\mathbf{r}) = \sum_n d_n \int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) F_n(\mathbf{r})$$

- $F_n(\mathbf{r})$: plane waves
 - integrals exact
 - inefficient
 - Weyrich 1988, Blöchl 1989, VE 1991, Savrasov 1992, Methfessel 2000

Image: A matrix and a matrix

From Wave Functions to Electron Density

Products of Basis Functions in Interstitial Region

$$p'(\mathbf{r}) = \sum_{n} d_{n}F_{n}(\mathbf{r})$$

 $\int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r})p'(\mathbf{r}) = \sum_{n} d_{n} \int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r})F_{n}(\mathbf{r})$

- $F_n(\mathbf{r})$: spherical waves
 - would be efficient
 - integrals not known analytically
 - Springborg/Andersen 1987, Methfessel 1988, VE 2002, VE 2006

< □ > < 同 > < 回 > < 回 >

HYSIK

From Wave Functions to Electron Density

Products of Basis Functions in Interstitial Region

$$p'(\mathbf{r}) = \sum_{n} d_{n}F_{n}(\mathbf{r})$$

 $\int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r})p'(\mathbf{r}) = \sum_{n} d_{n} \int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r})F_{n}(\mathbf{r})$

- $F_n(\mathbf{r})$: spherical waves
 - would be efficient
 - integrals not known analytically
 - Springborg/Andersen 1987, Methfessel 1988, VE 2002, VE 2006
 - Methfessel 1988:

match values and slopes at MT-sphere surfaces

HYSIK

From Wave Functions to Electron Density

From Electron Density to Full Potential

Inside Muffin-Tin Spheres

density, Hartree-potential and xc-potential numerically

Interstitial Region

- density from value/slope matching
- Hartree-potential analytically
- xc-potential from value/slope matching

From Electron Density to Full Potential

Inside Muffin-Tin Spheres

density, Hartree-potential and xc-potential numerically

Interstitial Region

- density from value/slope matching
- Hartree-potential analytically
- xc-potential from value/slope matching

From Full Potential to Basis Functions

Previous Approaches

- project full potential to muffin-tin potential
- construct basis functions from muffin-tin potential
- no minimal basis set! (large basis set!)

Present Approach

- project full potential to ASA potential
- construct basis functions from ASA potential
- minimal basis set!

< □ > < 同 > < 回 > <

TITUT für Pl

From Full Potential to Basis Functions

Previous Approaches

- project full potential to muffin-tin potential
- construct basis functions from muffin-tin potential
- no minimal basis set! (large basis set!)

Present Approach

- project full potential to ASA potential
- construct basis functions from ASA potential
- minimal basis set!

< □ > < 同 > < 回 > <

TITUT für PH

Comparison of Approaches

Ole K. Andersen

 ASA geometry used for basis functions 	
ightarrow minimal basis set	good!
 ASA geometry used for density and potential 	

 \rightarrow error in total energy

bad!

Comparison of Approaches

Ole K. Andersen

ASA geometry used for basis functions → minimal basis set good!

 ASA geometry used for density and potential → error in total energy

Michael S. Methfessel

- MT geometry used for density and potential
 → accurate total energy good!
 MT geometry used for basis functions
 - \rightarrow large basis set bad!

Image: A matrix and a matrix

bad!

TITUT für PHYSIK

Comparison of Approaches

Ole K. Andersen

- ASA geometry used for basis functions
- ASA geometry used for density and potential

Michael S. Methfessel• MT geometry used for density and potentialgood!• MT geometry used for basis functionsbad!

present approach

ASA geometry used for basis functions
 → minimal basis set → O(ASA) speed

great!

great!

HYSIK

good!

bad!

- MT geometry used for density and potential
 - \rightarrow accurate total energy

Implementation

2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of ℜσ and ℑσ
 - no Kramers-Kronig relations needed
- LDA+U method

• all "flavours" for double-counting terms (AMF, FLL, DFT

at O(ASA) speed!

SHAZIK

< D > < P > < P >

Implementation

2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of ℜσ and ℑσ
 - no Kramers-Kronig relations needed

LDA+U method

all "flavours" for double-counting terms (AMF, FLL, DFT)

at O(ASA) speed!

2HYSIK

Image: A matrix and a matrix

Implementation

2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of ℜσ and ℑσ
 - no Kramers-Kronig relations needed
- LDA+U method
 - all "flavours" for double-counting terms (AMF, FLL, DFT)

A ID > A A P > A

at O(ASA) speed!

2HYSIK

Outline

Electronic Structure of BaTiO₃

G

M B

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

Electronic Structure of BaTiO₃

Electronic Structure of BaTiO₃

New!

 much better agreement with other full-potential codes (valence-band width, valence states at M-point)

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

< □ > < 同 > < 回 > <

ъ

HYSIK

Fermi Surface of MoO₂

Iron Pyrite: FeS₂

Pyrite

- Pa3

 (T_h⁶)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs $\parallel \langle 111 \rangle$ axes
- $x_{\rm S} = 0.38484$
- rotated FeS₆ octahedra

< □ > < 同 >

ULUL TUR PHYSIK

FeS₂: Density and Laplacian

FeS₂: Density and Laplacian

FeS₂: Equilibrium Volume and Bulk Modulus

FeS₂: Equilibrium Volume and Bulk Modulus

Lattice Constant

10.28	NCPP	Zeng and Holzwarth '94
10.02	FPLO	Opahle <i>et al.</i> '99
10.17	CRYSTAL98	Muscat <i>et al.</i> '02
9.92	CASTEP	Muscat <i>et al.</i> '02
10.18	FPASW	present work

10.23	exp.	Finklea <i>et al.</i> '76
10.22	exp.	Will <i>et al.</i> '84
10.23	exp.	Stevens et al. '91

Image: A matrix of the second seco

FeS₂: Equilibrium Volume and Bulk Modulus

Bulk Modulus				
187	LMTO	Nguyen-Manh <i>et al.</i> '98		
185	FPLO	Opahle et al. '99		
209	CRYSTAL98	Muscat <i>et al.</i> '02		
208	CASTEP	Muscat <i>et al.</i> '02		
171	FPASW	present work		
148	exp.	Drickamer et al. '66		
118	exp.	Will <i>et al.</i> '84		
215	exp.	Chattopadhyay and von Schnering '85		
157	exp.	Fujii <i>et al.</i> '86		
143	exp.	Jephcoat and Olson '87		
162	exp.	Ahrens and Jeanloz '87		
145	exp.	Blachnik <i>et al.</i> '98		

HYSIK

FeS₂: Structure Optimization

FeS₂: Structure Optimization

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

Image: A matrix and a matrix

NSTITUT für PHYSIK

ъ

э

FeS₂: Structure Optimization

Sulfur Position

0.378	NCPP	Zeng and Holzwarth '94
0.377	FPLO	Opahle et al. '99
0.378	CRYSTAL98	Muscat <i>et al.</i> '02
0.382	CASTEP	Muscat et al. '02
0.382	FPASW	present work
0.386	exp.	Finklea <i>et al.</i> '76
0.386	exp.	Will <i>et al.</i> '84
0.385	exp.	Stevens et al. '91

Phase Stability in Silicon

• β -tin structure most stable # nature (diamond structure)

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

Image: A matrix and a matrix

ъ

э

HYSIK

Phase Stability in Silicon

New!

- diamond structure most stable
- pressure induced phase transition to β -tin structure

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

HYSIK

LTO(Γ)-Phonon in Silicon

LTO(Γ)-Phonon in Silicon

Dielectric Functions of Corundum Imaginary Part

Dielectric Functions of Corundum Real Part

LDA+U-Calculations for Gadolinium

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

Image: A matrix and a matrix

3 × 4 3

Summary

Full-Potential ASW Method

(Versions 2.3/2.4)

HYSIK

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- Accurate Total Energies
- O(ASA) Speed!
- Optical Properties implemented
- LDA+U-Method implemented

What's Next?

• Forces? Automated Structure Optimization?

 Improved Treatment of Exchange (EXX) and Correlations (LDA+DMFT, EXX+DMFT)?

.

Summary

Full-Potential ASW Method

(Versions 2.3/2.4)

HYSIK

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- Accurate Total Energies
- O(ASA) Speed!
- Optical Properties implemented
- LDA+U-Method implemented

What's Next?

- Forces? Automated Structure Optimization?
- Improved Treatment of Exchange (EXX) and Correlations (LDA+DMFT, EXX+DMFT)?

Acknowledgments

