All-Electron Full-Potential Calculations at $\mathcal{O}(\mathsf{ASA})$ Speed — A Fata Morgana?

Volker Eyert

Center for Electronic Correlations and Magnetism Institute for Physics, University of Augsburg

February 4, 2008

- Background
- 2 Full-Potential ASW Method
- Proof of Concept: Results

- Background
- Full-Potential ASW Method
- Proof of Concept: Results

- Background
- Full-Potential ASW Method
- Proof of Concept: Results

- Background
- 2 Full-Potential ASW Method
- Proof of Concept: Results

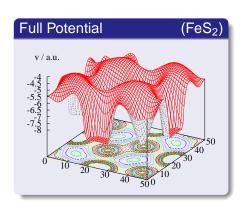
John C. Slater

Full Potential

 $v_{\sigma}(\mathbf{r})$: $\begin{cases}
\text{ spherical symmetric near nuclei} \\
\text{flat outside the atomic cores}
\end{cases}$

John C. Slater

Full Potential


 $v_{\sigma}(\mathbf{r})$: spherical symmetric near nuclei flat outside the atomic cores

Muffin-Tin Approximation

$$v_{\sigma}^{MT}(\mathbf{r}) = \left\{ egin{array}{l} ext{spherical symmetric in spheres} \\ ext{constant in interstitial region} \end{array}
ight.$$

Muffin-Tin Approximation

distinguish:

atomic regions

remainder

Muffin-Tin Approximation

distinguish:

- atomic regions
 - muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
- remainder

Muffin-Tin Approximation

distinguish:

- atomic regions
 - muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
- remainder
 - interstitial region
 - $v_{eff,\sigma}(\mathbf{r}) = 0$

Partial Waves

- muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
- interstitial region
 - $v_{eff,\sigma}(\mathbf{r}) = 0$

All-Electron Full-Potential Calculations at O(ASA) Speed

Partial Waves

- muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
 - solve radial Schrödinger equation numerically
- interstitial region
 - $v_{eff,\sigma}(\mathbf{r}) = 0$

Partial Waves

- muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
 - solve radial Schrödinger equation numerically
- interstitial region
 - $v_{eff,\sigma}(\mathbf{r}) = 0$
 - exact solutions
 - plane waves
 - spherical waves

Partial Waves

- muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
 - solve radial Schrödinger equation numerically
- interstitial region
 - $v_{eff,\sigma}(\mathbf{r}) = 0$
 - exact solutions
 - plane waves
 - spherical waves
- match at sphere surface ("augment")

Partial Waves

- muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
 - solve radial Schrödinger equation numerically
- interstitial region
 - $v_{eff,\sigma}(\mathbf{r}) = 0$
 - exact solutions
 - plane waves
 - spherical waves
- match at sphere surface ("augment")

Basis Functions

- matched partial waves
 - augmented plane waves (APWs)
 - "muffin-tin orbitals" (MTOs), augmented spherical waves (ASWs)

All-Electron Full-Potential Calculations at $\mathcal{O}(ASA)$ Speed

Wave Function

expand in basis functions

 expansion coefficients from variational principle

Basis Functions

- matched partial waves
 - augmented plane waves (APWs)
 - "muffin-tin orbitals" (MTOs), augmented spherical waves (ASWs)

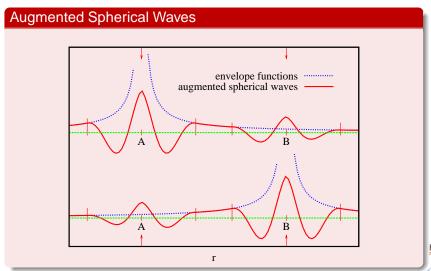
Wave Function

expand in basis functions

 expansion coefficients from variational principle

Core States

all-electron methods


- fully included
- orthogonal to partial waves

Basis Functions

- matched partial waves
 - augmented plane waves (APWs)
 - "muffin-tin orbitals" (MTOs), augmented spherical waves (ASWs)
- used to describe valence states

Ole K. Andersen

"Linear Methods in Band Theory"

- energy dependence of basis functions almost linear \rightarrow linearize $(\varphi, \dot{\varphi})$
 - huge increase in computat. efficiency!

Ole K. Andersen

"Linear Methods in Band Theory"

- energy dependence of basis functions almost linear \rightarrow linearize $(\varphi, \dot{\varphi})$
 - huge increase in computat. efficiency!

Linear Augmented Plane Wave (LAPW)

- muffin-tin approximation
- easy to implement

good!

- full-potential at a low price
 - basis functions from muffin-tin potential
 - wave functions from full potential
 - example: Wien2k
- large basis set (≈ 100 pw's/atom) bad!

Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- difficult to implement

bad!

- full-potential extension extremely difficult
- muffin-tin approximation (?)
 - finite interstitial region
 - large basis set: two functions per s-, p-, d-state
 - still inefficient

hadl

Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- difficult to implement

bad!

- full-potential extension extremely difficult
- muffin-tin approximation (?)
 - finite interstitial region
 - large basis set: two functions per s-, p-, d-state
 - still inefficient

bad!

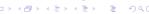
Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 - $\rightarrow \mathcal{O}(ASA)$ speed!!!

3IK

Ole K. Andersen



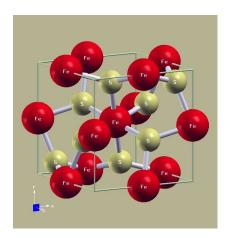
Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 - $\rightarrow \mathcal{O}(ASA)$ speed!!!
 - makes potential more realistic

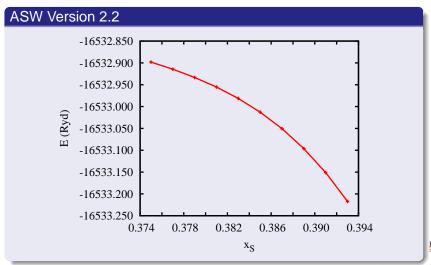
3IK

Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)


- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 - $\rightarrow \mathcal{O}(ASA)$ speed!!!
 - makes potential more realistic
 - systematic error in total energy

Iron Pyrite: FeS₂



Pyrite

- Pa3̄ (T_h⁶)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs || (111) axes
- $x_S = 0.38484$
- rotated FeS₆ octahedra

FeS₂: Structure Optimization

Conclusions

- ASA (space-filling atomic spheres)
 - O(ASA) speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - larger basis set → inefficient

Conclusions

- ASA (space-filling atomic spheres)
 - O(ASA) speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - larger basis set → inefficient

Requirements

- restore interstitial region
 - go to non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation
- inside muffin-tin spheres
 - non-spherical contributions

Conclusions

- ASA (space-filling atomic spheres)
 - O(ASA) speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - larger basis set → inefficient

Requirements

- restore interstitial region
 - go to non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation
- inside muffin-tin spheres
 - non-spherical contributions

Guidelines

- interstitial quantities expanded in plane waves
 - straightforward to implement
 - inefficient
- interstitial quantities expanded in spherical waves
 - elegant, no periodicity required
 - efficient
 - difficult to implement

Guidelines

- interstitial quantities expanded in plane waves
 - straightforward to implement
 - inefficient
- interstitial quantities expanded in spherical waves
 - elegant, no periodicity required
 - efficient
 - difficult to implement

ASW Method

Characteristics

- similar to LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations

ASW Method

Characteristics

- similar to LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations

0th Generation (Williams, Kübler, Gelatt, 1970s)

PRB **19**, 6094 (1979)

ASW Method

Characteristics

- similar to LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations

1st Generation (VE, 1990s)

IJQC 77, 1007 (2000)

- completely new, monolithic implementation
- new algorithms → improved accuracy, numerical stability
- much improved functionality, usability, and portability
- xAnderson convergence acceleration scheme
- all LDA-parametrizations, most GGA-schemes
- still based on atomic-sphere approximation

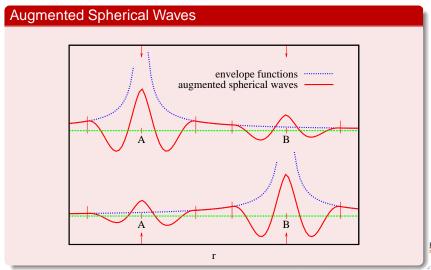
Wave Function Expanded in Basis Functions

$$\psi_{\sigma}(\mathbf{r}) = \sum_{L\kappa i} c_{L\kappa i\sigma} H^{\infty}_{L\kappa\sigma}(\mathbf{r}_i)$$

 $\longrightarrow c_{L\kappa i\sigma}$ determined variationally

Wave Function Expanded in Basis Functions

$$\psi_{\sigma}(\mathbf{r}) = \sum_{L\kappa i} c_{L\kappa i\sigma} H^{\infty}_{L\kappa\sigma}(\mathbf{r}_i)$$


 $\longrightarrow c_{L\kappa i\sigma}$ determined variationally

Augmented Spherical Wave

$$H^{\infty}_{L\kappa\sigma}(\mathbf{r}_i) = egin{cases} H^{I}_{L\kappa}(\mathbf{r}_i) & ext{interstitial region} \ ilde{H}_{L\kappa\sigma}(\mathbf{r}_i) & ext{on-centre sphere } i \ \sum_{L'j}' \tilde{J}_{L'\kappa\sigma}(\mathbf{r}_j) B_{L'L\kappa} & ext{off-centre spheres } j \end{cases}$$

 $B_{L'L\kappa}(\mathbf{R}_j - \mathbf{R}_i)$: structure constants ASW classified by atomic site \mathbf{R}_i , L = (I, m), decay κ , spin σ

Envelope Functions

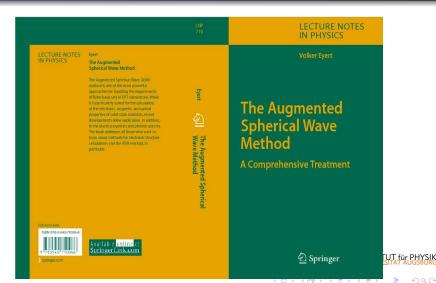
$$H_{L\kappa}^{I}(\mathbf{r}_{i}) := i\kappa^{I+1}h_{I}^{(1)}(\kappa r_{i})Y_{L}(\hat{\mathbf{r}}_{i})$$

 $h_I^{(1)}(\kappa r_i)$: spherical Hankel function

Envelope Functions

$$H_{L\kappa}^{I}(\mathbf{r}_{i}) := i\kappa^{I+1}h_{I}^{(1)}(\kappa r_{i})Y_{L}(\hat{\mathbf{r}}_{i})$$

 $h_i^{(1)}(\kappa r_i)$: spherical Hankel function


Augmented Functions

$$\tilde{H}_{L\kappa\sigma}(\mathbf{r}_i) := \tilde{h}_{I\kappa\sigma}(r_i) Y_L(\hat{\mathbf{r}}_i)
\tilde{J}_{L'\kappa\sigma}(\mathbf{r}_j) := \tilde{\jmath}_{l'\kappa\sigma}(r_j) Y_{L'}(\hat{\mathbf{r}}_j)$$

 \tilde{h} , $\tilde{\jmath}$: numerical solutions of radial Kohn-Sham equation boundary conditions from envelope functions correspond to φ and $\dot{\varphi}$ of LMTO

ASW Method: Further Reading

Outline

- Background
- 2 Full-Potential ASW Method
- Proof of Concept: Results

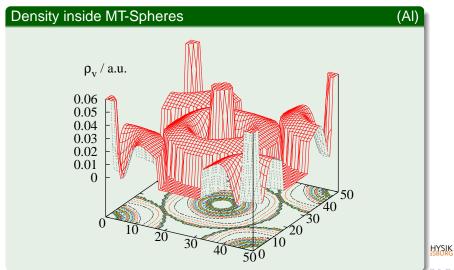
- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential

- inside muffin-tin spheres
- in the interstitial region

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
 - inside muffin-tin spheres
 - in the interstitial region

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - in the interstitial region



- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - use spherical-harmonics expansions
 - in the interstitial region

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - use spherical-harmonics expansions
 - in the interstitial region
 - no exact spherical-wave representation available!

Products of Basis Functions in Interstitial Region

$$p'(\mathbf{r}) = \sum_{n} d_{n} F_{n}(\mathbf{r})$$

$$\int d^3\mathbf{r}\, F_{n'}^*(\mathbf{r}) p^I(\mathbf{r}) = \sum_n d_n \int d^3\mathbf{r}\, F_{n'}^*(\mathbf{r}) F_n(\mathbf{r})$$

Products of Basis Functions in Interstitial Region

$$\begin{split} \rho^I(\mathbf{r}) &= \sum_n d_n F_n(\mathbf{r}) \\ \int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) \rho^I(\mathbf{r}) &= \sum_n d_n \int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) F_n(\mathbf{r}) \end{split}$$

- $F_n(\mathbf{r})$: plane waves
 - integrals exact
 - inefficient
 - Weyrich 1988, Blöchl 1989, VE 1991, Savrasov 1992, Methfessel 2000

Products of Basis Functions in Interstitial Region

$$\begin{split} \rho^I(\mathbf{r}) &= \sum_n d_n F_n(\mathbf{r}) \\ \int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) \rho^I(\mathbf{r}) &= \sum_n d_n \int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) F_n(\mathbf{r}) \end{split}$$

- $F_n(\mathbf{r})$: spherical waves
 - would be efficient
 - integrals not known analytically
 - Springborg/Andersen 1987, Methfessel 1988, VE 2002, VE 2006

Interstitial Products of Basis Functions

expand in atom-centered spherical waves (Hankel functions):

$$\rho^{\prime}(\mathbf{r}) := \left(H^{\infty}_{L\kappa_{1}\sigma}(\mathbf{r}_{i})\right)^{*}H^{\infty}_{L^{\prime}\kappa_{2}\sigma}(\mathbf{r}_{j}) \stackrel{!}{=} \sum_{n} \sum_{K\eta} d^{L\kappa_{1}iL^{\prime}\kappa_{2}j}_{K\eta n\sigma}H_{K\eta}(\mathbf{r}_{n})$$

- $H^{\infty}_{L'\kappa_2\sigma}(\mathbf{r}_j)$: orbital basis set (obs)
- $H_{K\eta}(\mathbf{r}_n)$: product basis set (pbs)

coefficients from projection \mathcal{P} :

$$\mathcal{P}\left[\rho^{I}(\mathbf{r})\right] = \mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right]$$
$$= \sum_{n}\sum_{K\eta}d_{K\eta n\sigma}^{L\kappa_{1}iL'\kappa_{2}j}\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

Interstitial Products of Basis Functions

expand in atom-centered spherical waves (Hankel functions):

$$\rho^{\prime}(\mathbf{r}) := \left(H^{\infty}_{L\kappa_{1}\sigma}(\mathbf{r}_{i})\right)^{*}H^{\infty}_{L^{\prime}\kappa_{2}\sigma}(\mathbf{r}_{j}) \stackrel{!}{=} \sum_{n} \sum_{K\eta} d^{L\kappa_{1}iL^{\prime}\kappa_{2}j}_{K\eta n\sigma}H_{K\eta}(\mathbf{r}_{n})$$

- $H^{\infty}_{L'\kappa_2\sigma}(\mathbf{r}_j)$: orbital basis set (obs)
- $H_{K\eta}(\mathbf{r}_n)$: product basis set (pbs)

coefficients from projection \mathcal{P} :

$$\mathcal{P}\left[\rho^{I}(\mathbf{r})\right] = \mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L^{\prime}\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right]$$
$$= \sum_{n}\sum_{K_{n}}d_{K\eta n\sigma}^{L\kappa_{1}iL^{\prime}\kappa_{2}j}\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

Interstitial Products of Basis Functions

projection \mathcal{P} :

$$\mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right] = \sum_{n}\sum_{K_{n}}d_{K\eta n\sigma}^{L\kappa_{1}iL'\kappa_{2}j}\,\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

Interstitial Products of Basis Functions

projection \mathcal{P} :

$$\mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right] = \sum_{n}\sum_{K\eta}d_{K\eta n\sigma}^{L\kappa_{1}iL'\kappa_{2}j}\,\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

 Springborg/Andersen 1987 integrate over interstitial region, use one-center expansions

$$\mathcal{P}_{\mathbf{K}'\eta'\mathbf{n}'}\dots \hat{=} \int_{\Omega_I} d^3\mathbf{r} \, H^*_{\mathbf{K}'\eta'}(\mathbf{r}_{\mathbf{n}'})\dots$$

Interstitial Products of Basis Functions

projection \mathcal{P} :

$$\mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right] = \sum_{n}\sum_{K\eta}d_{K\eta n\sigma}^{L\kappa_{1}iL'\kappa_{2}j}\,\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

 Methfessel 1988 match values and slopes at MT-sphere surfaces

$$\mathcal{P}_{\mathcal{K}'\eta'n'}\dots \hat{=} \int d^2\hat{\mathbf{r}} \ \mathsf{Y}_{\mathcal{K}'}(\hat{\mathbf{r}}) \left(\frac{\partial}{\partial r}\right)^{\eta'-1}\dots \big|_{|\mathbf{r}_{n'}|=\mathbf{s}_{n'}}$$

Interstitial Products of Basis Functions

projection \mathcal{P} :

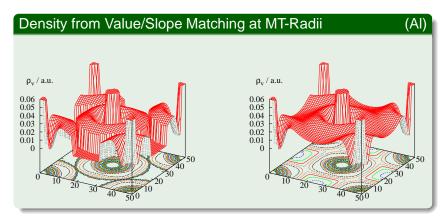
$$\mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right] = \sum_{n}\sum_{K_{n}}d_{K\eta n\sigma}^{L\kappa_{1}iL'\kappa_{2}j}\,\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

 VE 2002 integrate over interstitial region, use one-center expansions (interstitial → shells between AS- and MT-spheres)

$$\mathcal{P}_{\mathcal{K}'\eta'n'}\dots \hat{=} \sum_{m} \int_{\Omega'_{m}} d^{3}\mathbf{r}_{m} H_{\mathcal{K}'\eta'}^{*}(\mathbf{r}_{n'})\dots$$

Interstitial Products of Basis Functions

projection \mathcal{P} :


$$\mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right] = \sum_{n}\sum_{K\eta}d_{K\eta n\sigma}^{L\kappa_{1}iL'\kappa_{2}j}\,\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

experience

- product basis set almost overcomplete
- value/slope (Methfessel) matching most stable

From Electron Density to Full Potential

Inside Muffin-Tin Spheres

density, Hartree-potential and xc-potential numerically

Interstitial Region

- density from value/slope matching
- Hartree-potential analytically
- xc-potential from value/slope matching

From Electron Density to Full Potential

Inside Muffin-Tin Spheres

density, Hartree-potential and xc-potential numerically

Interstitial Region

- density from value/slope matching
- Hartree-potential analytically
- xc-potential from value/slope matching

From Full Potential to Basis Functions

Previous Approaches

- project full potential to muffin-tin potential
- construct basis functions from muffin-tin potential
- no minimal basis set! (large basis set!)

Present Approach

- project full potential to ASA potential
- construct basis functions from ASA potential
- minimal basis set!
- future
 - use spheres larger than space-filling
 - remove linearization error

From Full Potential to Basis Functions

Previous Approaches

- project full potential to muffin-tin potential
- construct basis functions from muffin-tin potential
- no minimal basis set! (large basis set!)

Present Approach

- project full potential to ASA potential
- construct basis functions from ASA potential
- minimal basis set!
- future
 - use spheres larger than space-filling
 - remove linearization error

Comparison of Approaches

Ole K. Andersen

- ASA geometry used for basis functions
 - → minimal basis set
- ASA geometry used for density and potential
 - → error in total energy

bad!

good!

Comparison of Approaches

Ole K. Andersen

- ASA geometry used for basis functions
 - → minimal basis set good!
- ASA geometry used for density and potential
 - → error in total energy

bad!

Michael S. Methfessel

- MT geometry used for density and potential
 - → accurate total energy

good!

- MT geometry used for basis functions
 - → large basis set

bad!

Comparison of Approaches

Ole K. Andersen

- ASA geometry used for basis functions
- ASA geometry used for density and potential bad!

Michael S. Methfessel

- MT geometry used for density and potential good!
- MT geometry used for basis functions

present approach

- ASA geometry used for basis functions
 - \rightarrow minimal basis set $\rightarrow \mathcal{O}(ASA)$ speed
- MT geometry used for density and potential
 - → accurate total energy

great!

good!

great! HYSIK

Implementation

2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of $\Re \sigma$ and $\Im \sigma$
 - no Kramers-Kronig relations needed
- LDA+U method
 - all "flavours" for double-counting terms (AMF, FLL, DFT)

Implementation

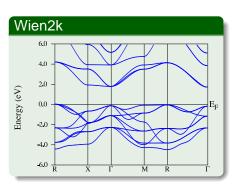
2nd Generation ASW (VE, 2000s)

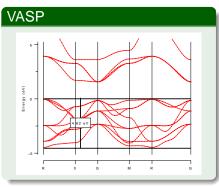
- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of $\Re \sigma$ and $\Im \sigma$
 - no Kramers-Kronig relations needed
- LDA+U method
 - all "flavours" for double-counting terms (AMF, FLL, DFT

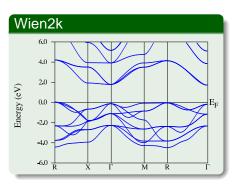
Implementation

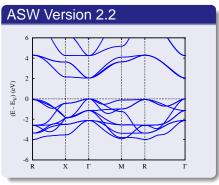
2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of $\Re \sigma$ and $\Im \sigma$
 - no Kramers-Kronig relations needed
- LDA+U method
 - all "flavours" for double-counting terms (AMF, FLL, DFT)

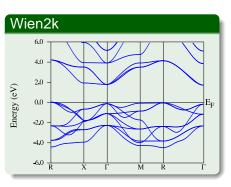

Outline

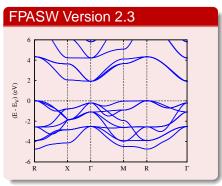

- Background
- 2 Full-Potential ASW Method
- Proof of Concept: Results


Electronic Structure of BaTiO₃

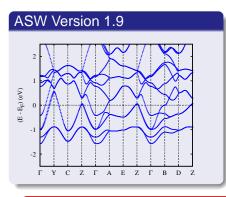


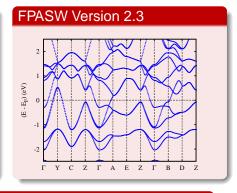
Electronic Structure of BaTiO₃



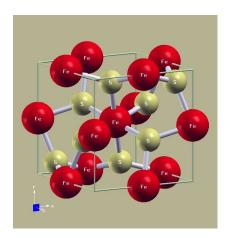


Electronic Structure of BaTiO₃


New!

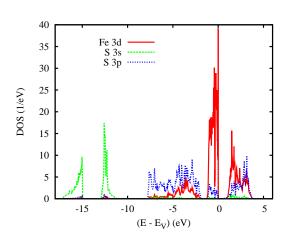

 much better agreement with other full-potential codes (valence-band width, valence states at M-point)

Fermi Surface of MoO₂


New!

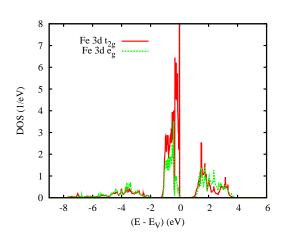
- no hole pocket near Z-point
- much better agreement with ARPES, de Haas-van Alphen

HYSIK


Iron Pyrite: FeS₂

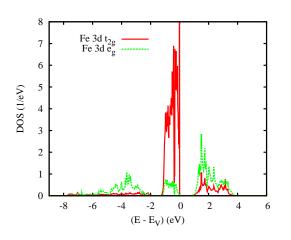
Pyrite

- Pa3̄ (T_h⁶)
- \bullet a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs || ⟨111⟩ axes
- $x_S = 0.38484$
- rotated FeS₆ octahedra



Relevant states

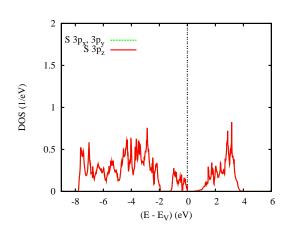
- Fe 3d
- S 3s
- S 3p


Crystal field splitting

Fe 3d in octahedron: t_{2a} and e_a states

without rotation

with rotation

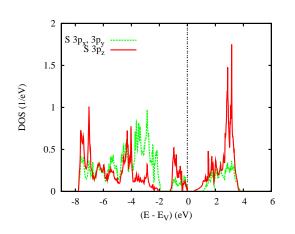

Crystal field splitting

Fe 3d in octahedron: t_{2a} and e_a states

without rotation

with rotation

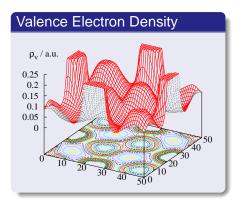
Crystal field splitting


S 3p: p_x/p_y vs. p_z states

without rotation

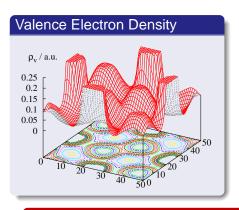
with rotation: z axis $\| \langle 111 \rangle$

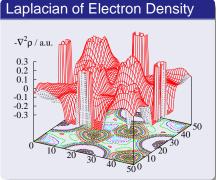
Crystal field splitting


S 3p: p_x/p_y vs. p_z states

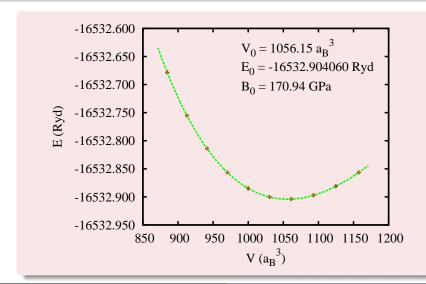
without rotation

with rotation: z axis $\parallel \langle 111 \rangle$


FeS₂: Density and Laplacian



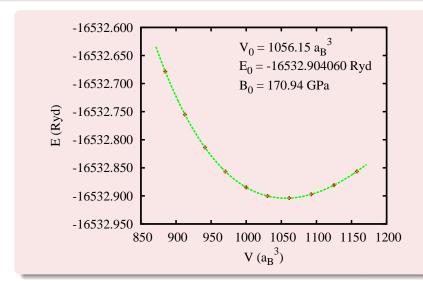
FeS₂: Density and Laplacian


New!

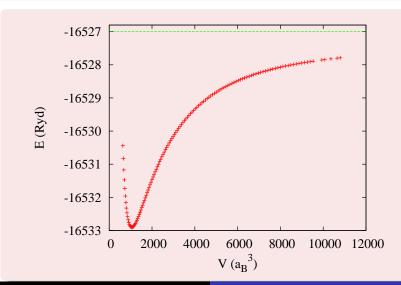
topological analysis (Bader analysis)

FeS₂: Equilibrium Volume and Bulk Modulus

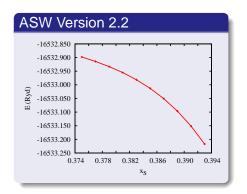
FeS₂: Equilibrium Volume and Bulk Modulus


Lattice Constant				
10.28	NCPP	Zeng and Holzwarth '94		
10.02	FPLO	Opahle et al. '99		
10.17	CRYSTAL98	Muscat et al. '02		
9.92	CASTEP	Muscat et al. '02		
10.18	FPASW	present work		
10.23	exp.	Finklea et al. '76		
10.22	exp.	Will et al. '84		
10.23	exp.	Stevens et al. '91		

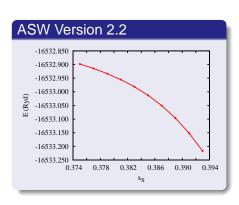
FeS₂: Equilibrium Volume and Bulk Modulus

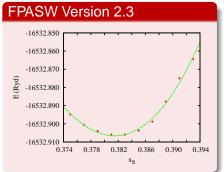

Bulk Modulus				
187	LMTO	Nguyen-Manh et al. '98		
185	FPLO	Opahle et al. '99		
209	CRYSTAL98	Muscat et al. '02		
208	CASTEP	Muscat et al. '02		
171	FPASW	present work		
148	exp.	Drickamer et al. '66		
118	exp.	Will et al. '84		
215	exp.	Chattopadhyay and von Schnering '85		
157	exp.	Fujii <i>et al.</i> '86		
143	exp.	Jephcoat and Olson '87		
162	exp.	Ahrens and Jeanloz '87		
145	exp.	Blachnik et al. '98		

FeS₂: From Atoms to the Solid

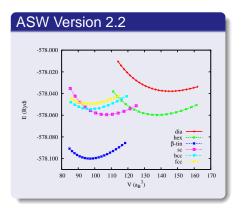


FeS₂: From Atoms to the Solid




FeS₂: Structure Optimization

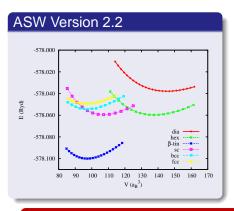
FeS₂: Structure Optimization

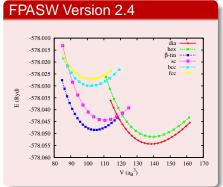


FeS₂: Structure Optimization

Sulfur Position				
0.378	NCPP	Zeng and Holzwarth '94		
0.377	FPLO	Opahle et al. '99		
0.378	CRYSTAL98	Muscat et al. '02		
0.382	CASTEP	Muscat et al. '02		
0.382	FPASW	present work		
0.386	exp.	Finklea et al. '76		
0.386	exp.	Will et al. '84		
0.385	exp.	Stevens et al. '91		

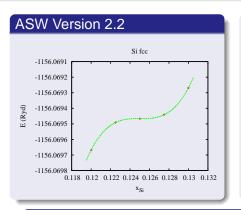
Phase Stability in Silicon




Bad

• β -tin structure most stable # nature (diamond structure)

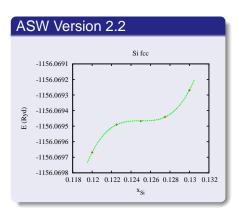
Phase Stability in Silicon

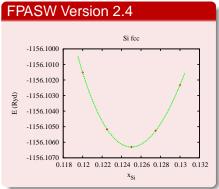


New!

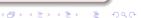
- diamond structure most stable
- pressure induced phase transition to β -tin structure

LTO(Γ)-Phonon in Silicon

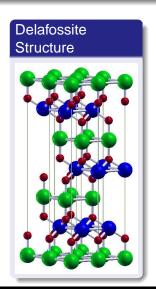



Bad

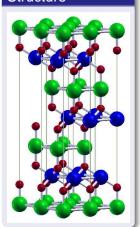
no stable Si position # nature

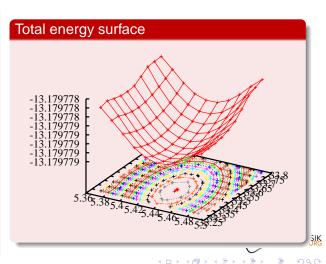

LTO(Γ)-Phonon in Silicon

New!


• phonon frequency: $f_{calc} = 15.26 \,\text{THz} \, (f_{exp} = 15.53 \,\text{THz})$

HYSIK

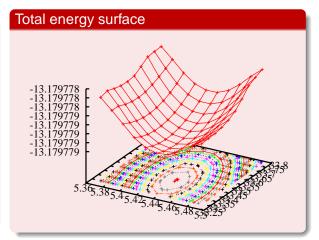

Structure Optimization in PdCoO₂



Structure Optimization in PdCoO₂

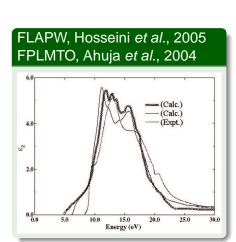
Delafossite Structure

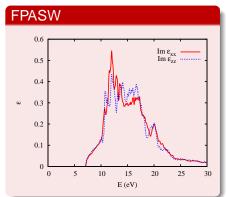
Structure Optimization in PdCoO₂


Structural Data

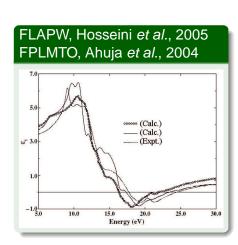
experiment

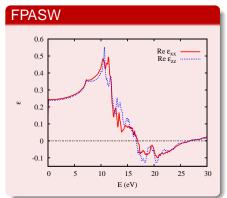
- a = 2.83 Å
- \circ c = 17.743 Å
- $z_0 = 0.1112$

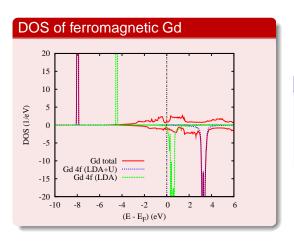

theory


- a = 2.8767 Å
- c = 17.7019 Å
- $z_0 = 0.1100$

VE, R. Frésard, A. Maignan, Chem. Mat. (2008), in press


Dielectric Functions of Corundum Imaginary Part




NSTITUT für PHYSIK

Dielectric Functions of Corundum Real Part

LDA+U-Calculations for Gadolinium

Summary

Full-Potential ASW Method

(Versions 2.3/2.4)

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- Accurate Total Energies
- O(ASA) Speed!
- Optical Properties implemented
- LDA+U-Method implemented

What's Next?

- Forces? Automated Structure Optimization?
- Exact Exchange (EXX)?

at $\mathcal{O}(ASA)$ speed?

Summary

Full-Potential ASW Method

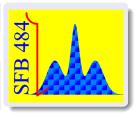
(Versions 2.3/2.4)

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- Accurate Total Energies
- O(ASA) Speed!
- Optical Properties implemented
- LDA+U-Method implemented

What's Next?

- Forces? Automated Structure Optimization?
- Exact Exchange (EXX)?

at $\mathcal{O}(ASA)$ speed?


Acknowledgments

Stuttgart

O. K. Andersen

SFB 252 Augsburg

T. Kopp, J. Mannhart, K.-H. Höck, W. Scherer

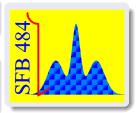
Darmstadt

Darmstadt

J. Sticht †

Darmstadt

P. C. Schmidt, M. Stephan


Acknowledgments

Stuttgart

O. K. Andersen

SFB 252 Augsburg

T. Kopp, J. Mannhart, K.-H. Höck, W. Scherer

Darmstadt

Darmstadt

J. Sticht †

Darmstadt

P. C. Schmidt, M. Stephan

Cocoyoc

Thank You for Your Attention!

HYSIK