From Quantum Mechanics to Materials Design

Volker Eyert

Institut für Physik, Universität Augsburg

Volker Eyert From Quantum Mechanics to Materials Design

All-Electron Full-Potential Calculations at $\mathcal{O}(ASA)$ Speed — A Fata Morgana?

Volker Eyert

Institut für Physik, Universität Augsburg

Full-Potential ASW Method

2 Full-Potential ASW Method

Back in the 1930's ...

John C. Slater

Full Potential

 $v_{\sigma}(\mathbf{r})$: { spherical symmetric near nuclei flat outside the atomic cores

Image: A matrix and a matrix

Back in the 1930's ...

John C. Slater

Full Potential

 $v_{\sigma}(\mathbf{r})$: { spherical symmetric near nuclei flat outside the atomic cores

Muffin-Tin Approximation

$$v^{MT}_{\sigma}({f r}) =$$

spherical symmetric in spheres constant in interstitial region

Back in the 1930's ...

Back in the 1930's ...

Muffin-Tin Approximation

distinguish:

atomic regions

remainder

Muffin-Tin Potential

Back in the 1930's ...

Muffin-Tin Approximation

distinguish:

- atomic regions
 - muffin-tin spheres

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$$

remainder

Muffin-Tin Potential

Back in the 1930's ...

Muffin-Tin Approximation

distinguish:

- atomic regions
 - muffin-tin spheres

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$$

- remainder
 - interstitial region

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = 0$$

Muffin-Tin Potential

Image: A matrix and a matrix

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$$

interstitial region

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = 0$$

Muffin-Tin Potential

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$$

- solve radial Schrödinger equation numerically
- interstitial region

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = \mathbf{C}$$

Muffin-Tin Potential

Image: A matrix and a matrix

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$v_{\text{eff},\sigma}(\mathbf{r}) = v_{\text{eff},\sigma}(|\mathbf{r}|)$$

- solve radial Schrödinger equation numerically
- interstitial region

•
$$v_{eff,\sigma}(\mathbf{r}) = 0$$

- exact solutions
 - plane waves
 - spherical waves

Muffin-Tin Potential

Image: A matrix and a matrix

Back in the 1930's ...

Partial Waves

muffin-tin spheres

•
$$V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$$

- solve radial Schrödinger equation numerically
- interstitial region

•
$$v_{eff,\sigma}(\mathbf{r}) = 0$$

- exact solutions
 - plane waves
 - spherical waves
- match at sphere surface ("augment")

Muffin-Tin Potential

< 口 > < 同 >

Back in the 1970's ...

"Linear Methods in Band Theory"

- linearize energy dependence of basis functions
 - root tracing \rightarrow eigenvalue problem
 - huge increase in computat. efficiency

Back in the 1970's ...

"Linear Methods in Band Theory"

- linearize energy dependence of basis functions
 - root tracing \rightarrow eigenvalue problem
 - huge increase in computat. efficiency

Back in the 1970's ...

"Linear Methods in Band Theory"

- linearize energy dependence of basis functions
 - root tracing → eigenvalue problem
 - huge increase in computat. efficiency

Linear Augmented Plane Wave (LAPW)

- muffin-tin approximation
- easy to implement
- full-potential with moderate effort
 - basis functions from muffin-tin potential

ЯK

- wave functions from full potentia
- large basis set

Back in the 1970's ...

"Linear Methods in Band Theory"

- linearize energy dependence of basis functions
 - root tracing → eigenvalue problem
 - huge increase in computat. efficiency

Linear Augmented Plane Wave (LAPW)

- muffin-tin approximation
- easy to implement
- full-potential with moderate effort
 - basis functions from muffin-tin potential
 wave functions from full potential

ЯK

- wave functions from full potentia
- large basis set

Back in the 1970's ...

"Linear Methods in Band Theory"

- linearize energy dependence of basis functions
 - root tracing → eigenvalue problem
 - huge increase in computat. efficiency

Linear Augmented Plane Wave (LAPW)

- muffin-tin approximation
- easy to implement
- full-potential with moderate effort
 - basis functions from muffin-tin potential

SIK

wave functions from full potential

• large basis set

Back in the 1970's ...

"Linear Methods in Band Theory"

- linearize energy dependence of basis functions
 - root tracing → eigenvalue problem
 - huge increase in computat. efficiency

Linear Augmented Plane Wave (LAPW)

- muffin-tin approximation
- easy to implement
- full-potential with moderate effort
 - basis functions from muffin-tin potential

SIK

- wave functions from full potential
- Iarge basis set

Back in the 1970's ...

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - intuitive interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling
 - more realistic
 - minimal basis set
 - very high computational efficiency

SIK

- systematic error in total energy
- o difficult to implement
- full-potential extension very difficult

ヘロア 人間 アメヨアメヨ

Back in the 1970's ...

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - intuitive interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling
 - more realistic
 - minimal basis set
 - very high computational efficiency

SIK

- systematic error in total energy
- difficult to implement
- full-potential extension very difficult

ヘロア 人間 アメヨアメヨ

Back in the 1970's ...

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - intuitive interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling
 - more realistic
 - minimal basis set
 - very high computational efficiency

SIK

- systematic error in total energy
- difficult to implement
- full-potential extension very difficult

< 同 > < 三 > < 三

Back in the 1970's ...

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - intuitive interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling
 - more realistic
 - minimal basis set
 - very high computational efficiency

ыĸ

- systematic error in total energy
- difficult to implement
- full-potential extension very difficult

< 同 > < 回 > < 回 >

Towards a Full-Potential Spherical-Wave Method

Requirements

- restore interstitial region
 - overlapping atomic spheres
 - \rightarrow non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation

Towards a Full-Potential Spherical-Wave Method

Requirements

- restore interstitial region
 - overlapping atomic spheres
 - \rightarrow non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation
- inside muffin-tin spheres
 - non-spherical contributions

Image: A matrix and a matrix

Towards a Full-Potential Spherical-Wave Method

Requirements

- restore interstitial region
 - overlapping atomic spheres
 - \rightarrow non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation

Choices

- interstitial potential expanded in plane waves
 - straightforward implementation
 - inefficient
- interstitial potential expanded in spherical waves
 - elegant, no periodicity required
 - efficient
 - very difficult to implement

HYSIK

Towards a Full-Potential Spherical-Wave Method

Requirements

- restore interstitial region
 - overlapping atomic spheres
 - \rightarrow non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation

Choices

- interstitial potential expanded in plane waves
 - straightforward implementation
 - inefficient
- interstitial potential expanded in spherical waves
 - elegant, no periodicity required
 - efficient
 - very difficult to implement

HYSIK

ASW Method

Naming

 Augmented Spherical Wave (for beginners)

ASW Method

Naming

- Augmented Spherical Wave (for beginners)
- Aussersinnliche Wahrnehmung ("extrasensory perception", for the experienced)

ASW Method

Naming

- Augmented Spherical Wave (for beginners)
- Aussersinnliche Wahrnehmung ("extrasensory perception", for the experienced)
- Always Slightly Wrong (for experts)

ASW Method

Characteristics

- similar to LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations

ASW Method

Characteristics

- similar to LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations
- all-electron method
 - core electrons fully included
 - full coverage of periodic table

< 17 ▶

ASW Method

Characteristics

- similar to LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations
- all-electron method
 - core electrons fully included
 - full coverage of periodic table
- minimal basis set
 - atomic-like (s, p, d, f) basis functions
 - intuitive interpretation of results
 - very high computational efficiency
ASW Method

Characteristics

- similar to LMTO
- all-electron method
- minimal basis set

Oth Generation (Williams, Kübler, Gelatt, 1970s)

PRB 19, 6094 (1979)

ASW Method

Characteristics

- similar to LMTO
- all-electron method
- minimal basis set

1st Generation (VE, 1990s)

- completely new implementation
- extended, more flexible basis set
- new algorithms accuracy, numerical stability
- all LDA-parametrizations, most GGA-schemes
- new interpretative tools
- still based on atomic-sphere approximation

IJQC 77, 1007 (2000)

ASW Method: Basic Formalism

Wave Function Expanded in Basis Functions

$$\psi_{\sigma}(\mathbf{r}) = \sum_{L\kappa i} c_{L\kappa i\sigma} H^{\infty}_{L\kappa\sigma}(\mathbf{r}_i)$$

 $\longrightarrow c_{L\kappa i\sigma}$ determined variationally

ASW Method: Basic Formalism

Wave Function Expanded in Basis Functions

$$\psi_{\sigma}(\mathbf{r}) = \sum_{L\kappa i} c_{L\kappa i\sigma} H^{\infty}_{L\kappa\sigma}(\mathbf{r}_i)$$

 $\longrightarrow c_{L\kappa i\sigma}$ determined variationally

Augmented Spherical Wave

$$H_{L\kappa\sigma}^{\infty}(\mathbf{r}_{i}) = \begin{cases} H_{L\kappa}^{l}(\mathbf{r}_{i}) & \text{interstitial region} \\ \tilde{H}_{L\kappa\sigma}(\mathbf{r}_{i}) & \text{on-centre sphere } i \\ \sum_{L'j}^{\prime} \tilde{J}_{L'\kappa\sigma}(\mathbf{r}_{j}) B_{L'L\kappa} & \text{off-centre spheres } j \end{cases}$$

 $B_{L'L\kappa}(\mathbf{R}_j - \mathbf{R}_i)$: structure constants ASW classified by atomic site \mathbf{R}_i , L = (I, m), decay κ , spin σ

・ロト ・聞 ト ・ ヨト ・ ヨト

ASW Method: Basic Formalism

Augmented Spherical Waves

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

ASW Method: Basic Formalism

Envelope Functions

$$H_{L\kappa}^{I}(\mathbf{r}_{i}) := i\kappa^{I+1}h_{I}^{(1)}(\kappa r_{i})Y_{L}(\hat{\mathbf{r}}_{i})$$

 $h_l^{(1)}(\kappa r_i)$: spherical Hankel function

ASW Method: Basic Formalism

Envelope Functions

$$H_{L\kappa}^{l}(\mathbf{r}_{i}) := i\kappa^{l+1}h_{l}^{(1)}(\kappa r_{i}) Y_{L}(\hat{\mathbf{r}}_{i})$$

 $h_{l}^{(1)}(\kappa r_{i})$: spherical Hankel function

Augmented Functions

$$\begin{array}{lll} \tilde{H}_{L\kappa\sigma}(\mathbf{r}_i) & := & \tilde{h}_{l\kappa\sigma}(r_i) \, \mathsf{Y}_L(\hat{\mathbf{r}}_i) \\ \tilde{J}_{L'\kappa\sigma}(\mathbf{r}_j) & := & \tilde{\jmath}_{l'\kappa\sigma}(r_j) \, \mathsf{Y}_{L'}(\hat{\mathbf{r}}_j) \end{array}$$

 \tilde{h} , \tilde{j} : numerical solutions of radial Kohn-Sham equation boundary conditions from envelope functions correspond to φ and $\dot{\varphi}$ of LMTO

Further Reading

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

Outline

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

Basic Principles

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region

Basic Principles

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential

- inside muffin-tin spheres
- in the interstitial region

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

Image: A matrix and a matrix

TITUT für PH

Basic Principles

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
 - inside muffin-tin spheres
 - in the interstitial region

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

ITUT für PH

Basic Principles

Steps to be Taken

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - in the interstitial region

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

ITUT für PH

From Wave Functions to Electron Density

Products of Basis Functions

$$\boldsymbol{\rho}(\mathbf{r}) := \left(H_{L\kappa_1\sigma}^{\infty}(\mathbf{r}_i)\right)^* H_{L'\kappa_2\sigma}^{\infty}(\mathbf{r}_j) = \boldsymbol{\rho}^I(\mathbf{r})\Theta_I + \tilde{\boldsymbol{\rho}}(\mathbf{r})(1 - \Theta_I)$$

• $\Theta_I = 0/1$ inside MT-spheres/in interstitial region

From Wave Functions to Electron Density

Products of Basis Functions

$$\boldsymbol{\rho}(\mathbf{r}) := \left(H_{L\kappa_1\sigma}^{\infty}(\mathbf{r}_i)\right)^* H_{L'\kappa_2\sigma}^{\infty}(\mathbf{r}_j) = \boldsymbol{\rho}^I(\mathbf{r})\Theta_I + \tilde{\boldsymbol{\rho}}(\mathbf{r})(1 - \Theta_I)$$

• $\Theta_I = 0/1$ inside MT-spheres/in interstitial region

Products of Basis Functions inside MT-Spheres

spherical-harmonics expansion

$$\tilde{p}(\mathbf{r}_m) = \sum_{\kappa} \tilde{p}_{\kappa}(r_m) \, \mathsf{Y}_{\kappa}(\hat{\mathbf{r}}_m) \Theta_m$$

< □ > < 同 > < 回 > <

From Wave Functions to Electron Density

Products of Basis Functions

$$\boldsymbol{\rho}(\mathbf{r}) := \left(H_{L\kappa_1\sigma}^{\infty}(\mathbf{r}_i)\right)^* H_{L'\kappa_2\sigma}^{\infty}(\mathbf{r}_j) = \boldsymbol{\rho}^I(\mathbf{r})\Theta_I + \tilde{\boldsymbol{\rho}}(\mathbf{r})(1 - \Theta_I)$$

• $\Theta_I = 0/1$ inside MT-spheres/in interstitial region

Products of Basis Functions inside MT-Spheres

spherical-harmonics expansion

$$\tilde{p}(\mathbf{r}_m) = \sum_{K} \tilde{p}_K(r_m) \, \mathbf{Y}_K(\hat{\mathbf{r}}_m) \Theta_m$$

 $\tilde{p}_{\mathcal{K}}(r_m)$ from augmented functions ($\tilde{h}_{l\kappa\sigma}(r_m)$ and $\tilde{\jmath}_{l\kappa\sigma}(r_m)$)

< ロ > < 同 > < 回 > < 回 >

From Wave Functions to Electron Density

Density inside MT-Spheres

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

(AI)

From Wave Functions to Electron Density

Products of Basis Functions in Interstitial Region

$$p'(\mathbf{r}) = \sum_{n} d_{n} F_{n}(\mathbf{r})$$
$$\int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r}) p'(\mathbf{r}) = \sum_{n} d_{n} \int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r}) F_{n}(\mathbf{r})$$

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

From Wave Functions to Electron Density

Products of Basis Functions in Interstitial Region

$$p'(\mathbf{r}) = \sum_n d_n F_n(\mathbf{r})$$

$$\int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) p'(\mathbf{r}) = \sum_n d_n \int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) F_n(\mathbf{r})$$

- $F_n(\mathbf{r})$: plane waves
 - integrals exact
 - inefficient
 - Weyrich 1988, Blöchl 1989, VE 1991, Savrasov 1992, Methfessel 2000

Image: A matrix and a matrix

INSTITUT für PH

From Wave Functions to Electron Density

Products of Basis Functions in Interstitial Region

$$p'(\mathbf{r}) = \sum_n d_n F_n(\mathbf{r})$$

$$\int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) \rho^{\prime}(\mathbf{r}) = \sum_n d_n \int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) F_n(\mathbf{r})$$

- $F_n(\mathbf{r})$: spherical waves
 - integrals not known analytically
 - would be efficient
 - Springborg/Andersen 1987, Methfessel 1988, VE 2002, VE 2006

Image: A matrix and a matrix

INSTITUT für PH

From Wave Functions to Electron Density

Interstitial Products of Basis Functions

expand in atom-centered spherical waves (Hankel functions):

$$p'(\mathbf{r}) := \left(H_{L\kappa_1\sigma}^{\infty}(\mathbf{r}_i)\right)^* H_{L'\kappa_2\sigma}^{\infty}(\mathbf{r}_j) \stackrel{!}{=} \sum_n \sum_{K\eta} d_{K\eta n\sigma}^{L\kappa_1 i L'\kappa_2 j} H_{K\eta}(\mathbf{r}_n)$$

H[∞]_{L'κ2σ}(**r**_j): orbital basis set (obs)
 *H*_{Kn}(**r**_n): product basis set (pbs)

coefficients from projection \mathcal{P} :

$$\mathcal{P}\left[\boldsymbol{p}^{\prime}(\mathbf{r})\right] = \mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L^{\prime}\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right] \\ = \sum_{n}\sum_{K\eta}d_{K\eta n\sigma}^{L\kappa_{1}iL^{\prime}\kappa_{2}j}\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

From Wave Functions to Electron Density

Interstitial Products of Basis Functions

expand in atom-centered spherical waves (Hankel functions):

$$p'(\mathbf{r}) := \left(H_{L\kappa_1\sigma}^{\infty}(\mathbf{r}_i)\right)^* H_{L'\kappa_2\sigma}^{\infty}(\mathbf{r}_j) \stackrel{!}{=} \sum_n \sum_{K\eta} d_{K\eta n\sigma}^{L\kappa_1 i L' \kappa_2 j} H_{K\eta}(\mathbf{r}_n)$$

- $H^{\infty}_{L'\kappa_2\sigma}(\mathbf{r}_j)$: orbital basis set (obs)
- $H_{K\eta}(\mathbf{r}_n)$: product basis set (pbs)

coefficients from projection \mathcal{P} :

$$\mathcal{P}\left[\boldsymbol{\rho}'(\mathbf{r})\right] = \mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right] \\ = \sum_{n}\sum_{K\eta}d_{K\eta n\sigma}^{L\kappa_{1}jL'\kappa_{2}j}\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

From Wave Functions to Electron Density

Interstitial Products of Basis Functions

projection \mathcal{P} :

$$\mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right]=\sum_{n}\sum_{K\eta}d_{K\eta n\sigma}^{L\kappa_{1}iL'\kappa_{2}j}\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

From Wave Functions to Electron Density

Interstitial Products of Basis Functions

projection \mathcal{P} :

$$\mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right]=\sum_{n}\sum_{K\eta}d_{K\eta n\sigma}^{L\kappa_{1}iL'\kappa_{2}j}\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

 Springborg/Andersen 1987 integrate over interstitial region, use one-center expansions

$$\mathcal{P}_{K'\eta'n'}\ldots \hat{=} \int_{\Omega_l} d^3\mathbf{r} \, H^*_{K'\eta'}(\mathbf{r}_{n'})\ldots$$

Image: A matrix and a matrix

NSTITUT für PH

From Wave Functions to Electron Density

Interstitial Products of Basis Functions

projection \mathcal{P} :

$$\mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right]=\sum_{n}\sum_{K\eta}d_{K\eta n\sigma}^{L\kappa_{1}iL'\kappa_{2}j}\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

 Methfessel 1988 match values and slopes at MT-sphere surfaces

$$\mathcal{P}_{\mathcal{K}'\eta'n'}\ldots = \int d^2\hat{\mathbf{r}} Y_{\mathcal{K}'}(\hat{\mathbf{r}}) \left(\frac{\partial}{\partial r}\right)^{\eta'-1} \cdots ||\mathbf{r}_{n'}| = s_{n'}$$

Image: A matrix and a matrix

NSTITUT für PH

From Wave Functions to Electron Density

Interstitial Products of Basis Functions

projection \mathcal{P} :

$$\mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right]=\sum_{n}\sum_{K\eta}d_{K\eta n\sigma}^{L\kappa_{1}iL'\kappa_{2}j}\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

VE 2002

integrate over interstitial region, use one-center expansions (interstitial \rightarrow shells between AS- and MT-spheres)

$$\mathcal{P}_{\mathcal{K}'\eta'n'}\ldots \stackrel{\circ}{=} \sum_{m} \int_{\Omega'_{m}} d^{3}\mathbf{r}_{m} H^{*}_{\mathcal{K}'\eta'}(\mathbf{r}_{n'})\ldots$$

< □ > < 同 > < 回 > <

From Wave Functions to Electron Density

Interstitial Products of Basis Functions

projection \mathcal{P} :

$$\mathcal{P}\left[\left(H_{L\kappa_{1}\sigma}^{\infty}(\mathbf{r}_{i})\right)^{*}H_{L'\kappa_{2}\sigma}^{\infty}(\mathbf{r}_{j})\right]=\sum_{n}\sum_{K\eta}d_{K\eta n\sigma}^{L\kappa_{1}iL'\kappa_{2}j}\mathcal{P}\left[H_{K\eta}(\mathbf{r}_{n})\right]$$

experience

- product basis set almost overcomplete
- value/slope (Methfessel) matching most stable

Image: A matrix and a matrix

.⊒

TITUT für PH

From Wave Functions to Electron Density

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

From Electron Density to Full Potential

Inside Muffin-Tin Spheres

density, Hartree-potential and xc-potential numerically

Interstitial Region

- density from value/slope matching
- Hartree-potential analytically
- xc-potential from value/slope matching

From Electron Density to Full Potential

Inside Muffin-Tin Spheres

density, Hartree-potential and xc-potential numerically

Interstitial Region

- density from value/slope matching
- Hartree-potential analytically
- xc-potential from value/slope matching

From Full Potential to Basis Functions

Previous Approaches

- project full potential to muffin-tin potential
- construct basis functions from muffin-tin potential
- no minimal basis set! (multiple- κ basis set!)

Present Approach

- project full potential to ASA potential
- construct basis functions from ASA potential
- minimal basis set!
- future
 - use spheres larger than space-filling
 - remove linearization error

< □ > < 同 > < 回 > < 回 > < 回 >

From Full Potential to Basis Functions

Previous Approaches

- project full potential to muffin-tin potential
- construct basis functions from muffin-tin potential
- no minimal basis set! (multiple- κ basis set!)

Present Approach

- project full potential to ASA potential
- construct basis functions from ASA potential
- minimal basis set!
- future
 - use spheres larger than space-filling
 - remove linearization error

< □ > < 同 > < 回 > < 回 >

Comparison of Approaches

Ole K. Andersen

 ASA geometry used for basis functions 	
ightarrow minimal basis set	good!
• ASA geometry used for density and potential	

 \rightarrow error in total energy

bad!

Comparison of Approaches

Ole K. Andersen

ASA geometry used for basis functions → minimal basis set good!

Michael S. Methfessel

- MT geometry used for density and potential

 → accurate total energy
 MT second for basis functions
- MT geometry used for basis functions
 → multiple-κ basis set

bad!

bad!

Image: A matrix and a matrix

Comparison of Approaches

Ole K. Andersen

- ASA geometry used for basis functions
- ASA geometry used for density and potential

Michael S. Methfessel• MT geometry used for density and potentialgood!• MT geometry used for basis functionsbad!

present approach ● ASA geometry used for basis functions → minimal basis set good! ● MT geometry used for density and potential → accurate total energy good!

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

good!

bad!

Implementation

2nd Generation (VE, 2000s)

based on 1st generation code

- monolithic implementation
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties

at O(ASA) speed!

Implementation

2nd Generation (VE, 2000s)

- based on 1st generation code
- monolithic implementation
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties

at O(ASA) speed!

Implementation

2nd Generation (VE, 2000s)

- based on 1st generation code
- monolithic implementation
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties

at O(ASA) speed!

Implementation

2nd Generation (VE, 2000s)

- based on 1st generation code
- monolithic implementation
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties

at O(ASA) speed!

Implementation

2nd Generation (VE, 2000s)

- based on 1st generation code
- monolithic implementation
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra

optical properties

at O(ASA) speed!

Image: A matrix of the second seco

Implementation

2nd Generation (VE, 2000s)

- based on 1st generation code
- monolithic implementation
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties

at O(ASA) speed!

Image: A matrix and a matrix

Outline

Electronic Structure of BaTiO₃

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

< 口 > < 同

TITUT für PHYSIK

Electronic Structure of BaTiO₃

TITUT für PHYSIK

Electronic Structure of BaTiO₃

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

TITUT für PHYSIK

Iron Pyrite: FeS₂

Pyrite

- Pa3

 (T_h⁶)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs $\parallel \langle 111 \rangle$ axes
- $x_{\rm S} = 0.38484$
- rotated FeS₆ octahedra

< □ > < 同 >

ULUL TUR PHYSIK

FeS₂: Band Structure

FeS₂: Partial Densities of States

FeS₂: Partial Densities of States

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

э

FeS₂: Partial Densities of States

э

FeS₂: Partial Densities of States

FeS₂: Partial Densities of States

ъ

FeS₂: Density and Laplacian

FeS₂: Density and Laplacian

TITUT für PHYSIK

FeS₂: Equilibrium Volume and Bulk Modulus

FeS₂: Equilibrium Volume and Bulk Modulus

Lattice Constant

10.28	NCPP	Zeng and Holzwarth '94
	-	_

- 10.02 FPLO Opahle *et al.* '99
- 10.17 CRYSTAL98 Muscat et al. '02
 - 9.92 CASTEP Muscat et al. '02
- 10.18 FPASW present work
- 10.23
 exp.
 Finklea et al. '76

 10.22
 exp.
 Will et al. '84

 10.23
 exp.
 Stevens et al. '91

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

Image: A matrix and a matrix

FeS₂: Equilibrium Volume and Bulk Modulus

Bulk Modulus					
187	LMTO	Nguyen-Manh <i>et al.</i> '98			
185	FPLO	Opahle et al. '99			
209	CRYSTAL98	Muscat <i>et al.</i> '02			
208	CASTEP	Muscat <i>et al.</i> '02			
171	FPASW	present work			
148	exp.	Drickamer et al. '66			
118	exp.	Will <i>et al.</i> '84			
215	exp.	Chattopadhyay and von Schnering '85			
157	exp.	Fujii <i>et al.</i> '86			
143	exp.	Jephcoat and Olson '87			
162	exp.	Ahrens and Jeanloz '87			
145	exp.	Blachnik <i>et al.</i> '98			

FeS₂: From Atoms to the Solid

FeS₂: From Atoms to the Solid

FeS₂: Frozen Phonon Calculation

FeS₂: Frozen Phonon Calculation

|--|

0.378	NCPP	Zeng and Holzwarth '94
0.377	FPLO	Opahle <i>et al.</i> '99
0.378	CRYSTAL98	Muscat <i>et al.</i> '02
0.382	CASTEP	Muscat et al. '02
0.382	FPASW	present work
0.386	exp.	Finklea <i>et al.</i> '76
0.386	exp.	Will <i>et al.</i> '84
0.385	exp.	Stevens <i>et al.</i> '91

Dielectric Functions of Corundum Imaginary Part

Dielectric Functions of Corundum Real Part

Summary

Full-Potential ASW Method

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential

Volker Evert

- O(ASA) Speed
- Encouraging Results

Outlook

- Additional Tests
- Implementation of
 - ELF, ELI
 - Topological Analysis, AIM
- Exact Exchange Interaction

< □ > < 同 > < 回 > < 回 > < 回 >

Summary

Full-Potential ASW Method

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- O(ASA) Speed
- Encouraging Results

Outlook

- Additional Tests
- Implementation of
 - ELF, ELI
 - Topological Analysis, AIM
- Exact Exchange Interaction

< □ > < 同 > < 回 > < 回 > < 回 >

Summary

Full-Potential ASW Method

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- O(ASA) Speed
- Encouraging Results

Outlook

- Additional Tests
- Implementation of
 - ELF, ELI
 - Topological Analysis, AIM
- Exact Exchange Interaction

< □ > < 同 > < 回 > < 回 > < 回 >

Summary

Full-Potential ASW Method

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- O(ASA) Speed
- Encouraging Results

Outlook

- Additional Tests
- Implementation of
 - ELF, ELI
 - Topological Analysis, AIM
- Exact Exchange Interaction

< □ > < 同 > < 回 > < 回 > < 回 >

Summary

Full-Potential ASW Method

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- O(ASA) Speed
- Encouraging Results

Outlook

- Additional Tests
- Implementation of
 - ELF, ELI
 - Topological Analysis, AIM
- Exact Exchange Interaction

< □ > < 同 > < 回 > < 回 > < 回 >

Summary

Full-Potential ASW Method

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- O(ASA) Speed
- Encouraging Results

Outlook

- Additional Tests
- Implementation of
 - ELF, ELI
 - Topological Analysis, AIM
- Exact Exchange Interaction

speed???)

< ロ > < 同 > < 回 > < 回 >

Summary

Full-Potential ASW Method

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- O(ASA) Speed
- Encouraging Results

Outlook

- Additional Tests
- Implementation of
 - ELF, ELI
 - Topological Analysis, AIM
- Exact Exchange Interaction

(日)

Summary

Full-Potential ASW Method

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- O(ASA) Speed
- Encouraging Results

Outlook

- Additional Tests
- Implementation of
 - ELF, ELI
 - Topological Analysis, AIM
- Exact Exchange Interaction

< ロ > < 同 > < 回 > < 回 >

Summary

Full-Potential ASW Method

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- O(ASA) Speed
- Encouraging Results

Outlook

- Additional Tests
- Implementation of
 - ELF, ELI
 - Topological Analysis, AIM
- Exact Exchange Interaction

(at *O*(ASA) speed???)

Background Full-Potential ASW Method Proof of Concept: Results

Acknowlegments

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

Background Full-Potential ASW Method Proof of Concept: Results

Acknowlegments

Oran

Thank You for Your Attention!

Volker Eyert All-Electron Full-Potential Calculations at O(ASA) Speed

< 口 > < 同 >